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Abstract

Objective—The rapid growth of electronic health records (EHRs) nationwide presents a unique 

opportunity for conducting automated diabetes surveillance in the United States. However, the 

validity of such a surveillance system relies on the accuracy of algorithms used to identify 

diabetes cases, which are currently lacking. This study aimed to develop an automated computable 

phenotype (CP) algorithm for identifying diabetes cases in children and adolescents within the 

EHR.

Materials and Methods—The CP algorithm was iteratively derived based on structured data 

from EHRs (UF Health system 2012–2020). We randomly selected 536 presumed cases among 

individuals < 18 years old who has (1) HbA1c ≥ 6.5%; or (2) fasting glucose ≥ 126 mg/dL; or 

(3) random plasma glucose ≥ 200 mg/dL; (4) diabetes-related diagnosis code from an inpatient 

or outpatient encounter; or (5) prescribed, administered, or dispensed diabetes-related medication. 

Four reviewers independently reviewed the patient charts to determine diabetes status and type.

Results—Presumed cases without type 1 (T1D) or type 2 (T2D) diabetes diagnosis codes were 

categorized as non-diabetes/other types of diabetes. The rest were categorized as T1D if the most 

recent diagnosis was T1D, or otherwise categorized as T2D if the most recent diagnosis was T2D. 

Next, we applied a list of diagnoses and procedures that can determine diabetes type (e.g., steroid 

use suggests induced diabetes) to correct misclassifications from step 1. Among the 536 reviewed 

cases, 159 and 64 had T1D and T2D. The sensitivity, specificity, and positive predictive values of 

the CP algorithm were 94%, 98%, and 96% for T1D; 95%, 95%, and 73% for T2D.

Conclusion—We developed a highly accurate EHR-based CP for diabetes in youth based on 

EHR data from UF Health. Consistent with prior studies, T2D was more difficult to identify using 

these methods.

Background

As a common chronic disease, diabetes imposes significant health and economic 

challenges.1 In recent decades, the burden of diabetes in children and adolescents has been 

increasing in the United States. The estimated prevalence increased from 1.48 to 2.15 per 

1000 individuals between 2001 and 2017 for type 1 diabetes (T1D) and from 0.34 to 0.67 

per 1000 individuals between 2001 and 2017 for type 2 diabetes (T2D).1 To identify factors 

associated with the increasing rate of diabetes onset and provide timely surveillance of 

diabetes in children and adolescents, building a timely and accurate surveillance system is 

not only necessary but critical.

Currently, diabetes surveillance relies heavily on national surveys such as the National 

Health and Nutrition Examination Survey (NHANES) and the National Health Interview 

Survey (NHIS).3 However, the NHIS does not collect any health information from children 
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and adolescents, and the sample size of children and adolescents is limited in NHANES.3 

To overcome the limitations of national surveys on the surveillance of diabetes in children 

and adolescents, the Centers for Disease and Prevention (CDC) and the National Institute of 

Diabetes and Digestive and Kidney Diseases (NIDDK) funded the SEARCH for Diabetes 

in Youth Study (SEARCH)5. SEARCH provided critical information on the incidence and 

prevalence of diabetes in children and adolescents.6–9 However, it only included patients 

from a small number of states, limiting its generalizability to certain high populous states, 

such as Florida, which was not covered in the SEARCH study10 Besides, cases were 

ascertained primarily through networks of pediatric endocrinologists, where the remainder 

of the cases were identified through local pediatric diabetes databases and electronic health 

records (EHRs).11 Such a traditional method is logistically complex and requires intensive 

human labor, which is both costly and time-consuming, leading to delays in important 

surveillance metrics.

The rich real-world data, including EHRs and claims data, such as those in the OneFlorida+ 

Clinical Research Network (CRN)12 offer an unique opportunity to developing a diabetes 

surveillance system. The OneFlorida+ CRN is one of the eight CRNs funded by PCORI 

that contributes to the National Patient-Centered Clinical Research Network (PCORnet).13 

The OneFlorida+ CRN has a large statewide repository of EHRs from its clinical partners 

linked with a number of other data sources (e.g., Medicaid claims) that contains patients’ 

demographics, diagnosis, procedures, laboratory test results, and more, which are necessary 

for developing an accurate and timely statewide diabetes surveillance system.

Developing an accurate automated algorithm to identify diabetes cases from EHRs is the 

critical step in developing a diabetes surveillance system. Many efforts have been made 

in identifying people with T1D and T2D through EHRs in recent years, leading to the 

development of several EHR-based diabetes CP algorithms.14–21 For example, Sharma and 

colleagues developed a two-step algorithm to identify T1D or T2D based on diagnostic 

records, treatment, and clinical test results.14 Daniel et al. used electronic health records 

in primary care in the UK to develop and validate a machine-learning algorithm to predict 

T1D children.22 Lo-ciganic et al. developed a recursive partitioning and regression tree 

model to identify T1D and T2D using administrative data.23 However, previous studies 

found that using only diagnostic codes (i.e., ICD-9/10-CM) to identify cases in EHRs 

has poor sensitivity and specificity.24 Besides, it’s difficult to ascertain diabetes and 

subtypes when the diagnoses recorded in the EHR system for the same patient across 

different encounters were conflicting. Instead, algorithms combining diagnoses, medication, 

and lab results from EHRs were reported to perform better with higher sensitivity and 

specificity.25,26 Most current algorithms used a combination of diabetes diagnosis codes, 

blood glucose level, insulin use, cumulative days of non-insulin prescriptions, and age at 

first diagnosis to classify the diabetes sub-type.23,27–29 Although the reported sensitivity 

and positive predictive value (PPV) for T1D are generally acceptable, most studies failed 

to correctly identify T2D cases and often required additional manual review to ascertain 

the diabetes type.23,27–29 In addition, there were data quality issues in the data sources 

used to develop these algorithms. For example, patient records may be incomplete due to 

patients seeking care from multiple healthcare systems with unconnected EHR systems. As 

one of the largest statewide clinical data repositories, OneFlorida+ CRN includes 13 unique 
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healthcare organizations providing care for about half of all Floridians (~17.2 million), 

which could provide more comprehensive clinical profiles for patients and reduce the data 

quality issues in the data source. Morris and colleagues developed an automated algorithm 

to identify diabetes in children and adolescents using data from the UF Health system, one 

of the data partners of OneFlorida+ CRN.30 The algorithm performed well in identifying 

T1D. However, the PPV for identifying T2D was low. This algorithm only used diabetes 

diagnoses, blood glucose level, and glucose-lowering medication information. There was 

still abundant clinical information in EHR, such as comorbidity, steroid use, and lab results 

of T1D-related autoantibody, which can be leveraged to improve the overall performance of 

the automated algorithm for diabetes.

This study aimed to develop a new automatic algorithm for identifying diabetes cases in 

children and adolescents by integrating diagnoses, patient characteristics, and sets of clinical 

features in EHRs from the UF Health system, one of the main data contributors to the 

OneFlorida+ CRN.

Method

Data sources

OneFlorida+ CRN includes 13 unique healthcare systems providing care for about half of 

all Floridians (~17.2 million).31 We used EHRs from the UF Health System Integrated Data 

Repository (IDR), one of the main data contributors to the OneFlorida+ CRN, because we 

have access to patients’ complete clinical charts to validate diabetes cases. The UF IDR 

is a large-scale medical network that collects data from UF Health System, including both 

clinical and research enterprises. UF Health System is a medical network associated with the 

University of Florida. The IDR serves as a secure, clinical data warehouse that aggregates 

data from the university’s clinical and administrative information systems, including the 

electronic health record system. UF IDR contains demographics, clinical encounter data, 

diagnoses, procedures, lab results, medications, comorbidity information, etc. As of January 

2020, the IDR contains records of 1.2 million patients with over 1 billion observation 

facts. EHR data is composed of two main parts: structured data and unstructured data. 

Structured data includes demographic information, laboratory results, patient diagnosis lists, 

medication lists, procedure lists, etc. The unstructured data mainly includes physicians’ 

clinical notes.

Identification of presumptive cases

The study population included individuals under 18 years of age, who had at least one 

encounter in OneFlorida+ CRN between January 1, 2012, and December 31, 2020. Age was 

determined using the age at the end of the index year (i.e., the year first met any of the five 

presumptive criteria, details see below).

We applied the following rules to identify a group of individuals with presumed diabetes 

(i.e., presumptive cases): (1) at least one HbA1c ≥ 6.5%; or (2) at least one fasting glucose 

≥ 126 mg/dL; or (3) at least one random plasma glucose ≥ 200 mg/dL; or (4) at least one 

diagnosis code for diabetes from an inpatient or outpatient encounter; or (5) at least one 
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prescribed, administered, or dispensed diabetes-related medication, including metformin, 

sulfonylurea, glucagon-like peptide-1 receptor agonists, thiazolidinediones, SGLT2 inhibitor 

insulin, and other hypoglycemic agents. The goal of using such criteria is to capture as many 

potential diabetes cases as possible (i.e., high sensitivity) so that those who were not selected 

could be safely assumed to have no diabetes.

Diabetes diagnoses were identified using ICD-9-CM (International Classification of 

Diseases, Ninth Revision, Clinical Modification) code 250.xx and ICD-10-CM (the 

International Classification of Diseases, Tenth Revision, Clinical Modification after Oct 

2015) code E08-E13. Laboratory records including hemoglobin A1c (HbA1c) level, fasting 

blood glucose level, and random blood glucose level were identified using the Logical 

Observation Identifiers Names and Codes (LOINC®). All the lab tests were standardized 

across the different sites within the UF health system. RxNorm was used to identify the 

prescription refill records of diabetes-related medication.

Chart review

A stratified random sampling algorithm was applied to select 536 individuals from the 

overall presumptive cases (Appendix sTable 1). A standardized data extraction form (see 

Supplement) was developed to extract information from the EHR, including the lab test 

results (hemoglobin A1c, random glucose level, fasting glucose level, and T1D-related 

autoantibody), and diagnosis information (including encounter type and provider specialty), 

and medication use. We also extracted text written by clinicians in unstructured clinical 

notes.

Four reviewers (PL, ES, RP, KA) independently reviewed the patient charts to determine 

diabetes status and subtypes. For each selected patient chart, at least two reviewers were 

involved in the review process. Discrepancies between the two reviewers were resolved 

through discussions with the entire study team. If disagreement persisted after the group 

discussion, the case was sent to an endocrinology clinician (TD) to resolve the conflicts by 

reviewing the patient charts. The diabetes status and type for each individual from the chart 

review were considered the gold standard when evaluating the performance of the developed 

automated algorithm.

Algorithm development

We developed two algorithms following distinctive principles. The first one mimicked the 

reviewers’ detailed thought process in determining diabetes status. We drew a preliminary 

empirical decision tree to summarize how to determine diabetes status when we reviewed 

the first 100 charts. We used 2022 Standards of Care in Diabetes guideline as a starting 

point and instructed our chart reviewers to specifically adjudicate diabetes cases and types 

during the chart review.32 We refined the decision tree iteratively and got the optimal 

algorithm as we reviewed the remaining 536 charts. The algorithm developed under this 

principle is a decision-tree-based algorithm. This tree captured the flow of thought for how 

the reviewers determined the diabetes type by using the available information from the EHR. 

The second algorithm was a rule-based algorithm. During the process of chart reviewing, 

we tried to explore and summarize clinical information which plays an important role in 
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identifying cases and subtypes, e.g., T1D antibodies such as glutamic acid decarboxylase 

autoantibodies, islet cell autoantibodies, insulin autoantibodies, insulinoma-associated-2 

autoantibodies, or zinc transporter 8 autoantibodies as the gold standard to confirm T1D. 

This rule-based algorithm was developed by summarizing and simplifying the reviewer’s 

decision-making process and utilizing direct determinative factors to determine diabetes 

status.

Assess the performance of the algorithms

We used the two newly developed algorithms to predict the diabetes status of the 536 

reviewed individuals. Using the results from the manual chart review as the gold standard, 

we evaluated the performance of the two algorithms. We used sensitivity, specificity, and 

positive predictive value (PPV) to assess the performance of the developed algorithms, 

which was the recommended matrix by the Centers for Disease Control and Prevention.33 

Sensitivity measures the ability of the algorithm to identify patients with diabetes correctly. 

Specificity measures the ability of the algorithm to identify people without diabetes 

correctly. The positive predictive value measures the proportion of individuals who truly 

have that diabetes after being categorized as diabetes by the algorithm. The algorithm 

developed by the SEARCH research team was used as a reference.34

Data analysis was conducted using R, version 4.0.3. This study has been approved by the UF 

Institutional Review Board (IRB).

Results

The demographic characteristics of the reviewed cases are presented in table 1. We identified 

135,764 presumptive cases <18 years of age from January 2012 to December 2020. Among 

the 135,764 presumptive cases, 536 cases were randomly selected for manual chart review, 

among whom 169 cases (31.5%) had T1D, 70 cases had T2D (13.1%), 297 (55.4%) cases 

were either other types of diabetes (including secondary diabetes mellitus, diabetes mellitus 

due to underlying condition, drug or chemical induced diabetes mellitus, other specified 

diabetes mellitus) or non-diabetes.

Figure 1 and Figure 2 present two separate automated algorithms to determine diabetes 

status. Figure 1 is a decision-tree-based algorithm, which mimics the reviewer’s reasoning 

steps to determine the diabetes status of the selected cases based on information obtained 

from the EHR, such as lab tests (HbA1c, fasting glucose, T1D antibody), medication 

(long-term usage of insulin, metformin, steroid), diagnosis (T1D, T2D, Other), comorbidity 

(heart transplant, cystic fibrosis, etc.), etc. Figure 2 presents a rule-based algorithm: among 

individuals who met the presumptive criteria, we first used the most recent diagnosis to 

determine the presumptive diabetes status (e.g., if the most recent diagnosis was T1D, 

then the case was classified as T1D). In the second step, we used a list of diagnosis 

and procedure records to correct misclassifications from the first step: (1) if T1D-related 

autoantibody (islet cell antibodies [ICA], glutamic acid decarboxylase 65 [GAD65], insulin 

autoantibodies [IAA]) is positive, then the case was corrected as T1D; (2) If having 

any of the comorbidities (cystic fibrosis, Cushing’s disease, heart transplantation, liver 

transplantation, lung transplantation, AIDS, and drug or chemical-induced diabetes), then 
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the case was re-classified as non-diabetes/other types of diabetes; (3) If having diabetes 

insipidus, then the case was re-classified as non-diabetes/other types of diabetes; (4) If 

using any of the following steroid (Cortisone Acetate, Dexamethasone, Hydrocortisone, 

Methylprednisolone, Prednisolone, and Prednisone), then the case was re-classified as non-

diabetes/other types of diabetes.

The performance matrix of the two developed algorithms is presented in table 2. The 

sensitivity, specificity, and PPVs of the decision-tree-based CP algorithm were 93%, 

99%, and 97% for T1D, 93%, 95%, and 71% for T2D, and 93%, 96%, and 97% for 

non-diabetes/other types of diabetes, respectively. The rule-based CP algorithm showed 

similar performance as the decision-tree-based CP algorithm. The sensitivity, specificity, and 

positive predictive values of the rule-based CP algorithm were 94%, 98%, and 96% for type 

1 diabetes, 95%, 95%, and 73% for T2D, and 93%, 98%, and 98% for non-diabetes/other 

types of diabetes. The sensitivity, specificity, and positive predictive values of the SEARCH 

algorithm were 95%, 97%, and 94% for T1D, 96%, 92%, and 62% for T2D, and 87%, 99%, 

and 99% for non-diabetes/other types of diabetes when implemented in the selected sample. 

Both newly developed algorithms achieved comparable performance for identifying T1D 

cases and improved performance for T2D.

Discussion

Conducting diabetes surveillance in children and adolescents is challenging because the 

available data to support the surveillance is scarce.35,36 The current diabetes surveillance 

systems are mainly built upon existing data sources, such as the NHANES and the NHIS, 

which contain limited information for children and adolescents. Using real-world large-

volume data such as EHR offers a potential solution for diabetes surveillance in these 

populations. In the two newly developed algorithms, we integrated diagnosis, medication, 

and lab information in EHR to identify diabetes cases and determine diabetes subtypes. 

Overall, the two algorithms can both accurately identify individuals with T1D with high 

sensitivity, specificity, and PPV (all above 90%) using EHRs from UF Health – one clinical 

site in the OneFlorida+ CRN. Our study demonstrated the feasibility of using EHRs to build 

a diabetes surveillance system for children and adolescents.

In a previous study, Morris and colleagues found that developing an automated algorithm 

to identify diabetes in children and adolescents using data from the UF Health system is 

challenging with a low PPV of 0.52 for T2D,30 which was also consistent with studies 

conducted in the other health systems.37,38 One potential explanation for the low PPV of 

the T2D algorithm was the low prevalence of T2D in children and adolescent, because PPV 

tend to be closely associated with the disease prevalence.39 The estimated T1D prevalence 

in the young population (15–19 years) was 3.23 per 1000 youths in 2009 and 3.91 per 1000 

youths in 2017. However, the estimated T2D prevalence in the young population (15–19 

years) was only 0.68 per 1000 youths in 2009 and 1.04 per 1000 youths in 2017.40 The 

low prevalence of T2D increased the difficulty of achieving a high PPV for the algorithm 

even though both sensitivity and specificity are higher than 0.9. The algorithm developed by 

Morris and colleagues was mainly based on diabetes diagnosis, lab results, and pharmacy 

data. Our new algorithms, on the other hand, used additional information such as diagnoses 
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of comorbidities, steroid use, and lab results of T1D-related autoantibody. For example, it 

is common that children and adolescents who are undergoing a heart/liver transplantation 

show continuous abnormal glucose levels during hospitalization due to steroid use during 

surgery.41 In such a scenario, the diabetes conditions shown in the patient problem list are 

temporary. Identifying cases using only diagnosing codes may increase the false positive 

rate. Our algorithms decreased the false positive rate by excluding those misclassified cases 

using those additional specific clinical diagnoses and procedures. Both new algorithms have 

improved PPV compared to the algorithm developed by Morris and colleagues for T2D 

identification (PPV: 0.52).30 And the rule-based algorithm showed a slightly higher PPV 

than the decision-tree-based algorithm (0.73 vs 0.71).

The SEARCH algorithm was developed based on a voting mechanism: T1D was determined 

by the ratio of type 1 codes to the sum of type 1 and type 2 codes.34 This algorithm 

achieved PPV of 0.76 and 0.63 at the Medical University of South Carolina (MUSC) and 

the University of North Carolina Health Care System (UNC), two SEARCH sites where 

the algorithm was initially developed. However, the algorithm showed a lower PPV (i.e., 

0.62) in OneFlorida+CRN data, indicating the necessity to build our health system-tailored 

algorithm. While the PPV of the two new algorithms was still lower than 0.8 for T2D 

identification, the PPV of the rule-based algorithm increased by 0.11 (0.73 vs. 0.62) 

when compared with the performance of the SEARCH algorithm in the OneFlorida+ data 

repository.

The decision-tree-based algorithm relies on complex steps to categorize a potential case, 

which is harder to implement compared to the rule-based algorithm. Besides, the chance of 

data overfitting is increased with the decision-tree-based algorithm because it uses highly 

specific information such as “≥ one diagnosis of diabetes from the provider whose specialty 

is Endocrinology, Diabetes and Metabolism” or “≥ two HbA1C or glucose on separate 

days”. On the contrary, the rule-based algorithm is easier to implement due to less complex 

steps and more concise and structured rules. Considering the similar performance between 

the decision-tree-based and the rule-based algorithms, we believe the rule-based algorithm 

is superior to the decision-tree-based algorithm and should be used for building the 

diabetes surveillance system in OneFlorida+CRN. We will also recommend this approach 

be externally validated and used in other EHR systems to develop their localized diabetes 

surveillance system.

This study has several strengths. First, we used data from EHR to build the algorithms, 

which is less costly and time-consuming than a diabetes registry approach.42 The 

development of the algorithms lay a solid foundation for timely and accurate surveillance 

of T1D and T2D prevalence for children and adolescents using EHR, which is crucial for 

monitoring the burden of the disease in this population. It can enable the detection and 

tracking of temporal trends in T1D and T2D prevalence. This is essential for understanding 

the changing patterns of T1D and T2D over time, identifying high-risk populations or 

regions. These information can assist policymakers in making informed decisions about 

resource allocation, screening, and prevention programs based on the prevalence estimates in 

the EHR surveillance system. Second, our algorithms are capable of differentiating between 
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T1D and T2D, providing the possibility of conducting subtype-specific surveillance and 

inferring subtype-specific prevention programs or policies.

Our study is also of a few limitations. First, we assumed that individuals who did not 

meet the five presumptive criteria were negative cases. We may miss a small number of 

diabetes cases. However, the five presumptive criteria were designed to be inclusive and 

highly sensitive, thus the chance of omitting diabetes cases will be low.43 Second, the 

algorithms were developed using data from the OneFlorida+ CRN. They might not be 

generalizable to other healthcare systems. External validation is necessary for widespread 

utilization outside of OneFlorida+ CRN. Researchers should first check the validity of the 

algorithm in other health systems before implementing them. Third, there is potential for 

misclassification between latent autoimmune diabetes in adults (LADA) and T1D due to 

their similar autoimmune markers. LADA cases in youth are likely to be diagnosed as 

T1D. However, since the target population of the algorithm is children and adolescents, 

LADA cases are expected to be relatively rare, and the potential misclassification is unlikely 

to be a significant issue. Fourth, the decision-tree-based algorithm, which mimicked the 

reviewers’ detailed thought process in determining diabetes status, could be updated to 

enhance performance as new clinical guidelines and diagnostic criteria become available. 

Fifth, if resources allow, we can review additional charts to further refine the algorithm 

development. Sixth, some high-risk population such as those with obesity may remain 

undiagnosed if they do not undergo routine blood glucose or hemoglobin testing during 

medical visits, which was greatly influenced by clinical training of physicians and the 

institution’s practice guidelines. Lastly, some information, such as antibody positivity, may 

not be fully documented in structured tables. Natural language processing can be used 

to capture additional information from unstructured clinical notes, thereby improving the 

accuracy of the algorithm. In conclusion, the newly developed algorithms can accurately 

identify diabetes cases in children and adolescents, especially for T1D. This new algorithm 

can be used to develop an EHR-based diabetes surveillance system for children and 

adolescents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of decision-tree-based algorithm

Note: Dx refers to diagnosis; T1D refers to type 1 diabetes; T2D refers to type 2 diabetes; 

NON-D refers to non-diabetes; Other-D refers to other type of diabetes; EDM refers 

that the provider’s specialty is “Endocrinology, Diabetes and Metabolism”; Ab refers 

to autoantibodies that are markers of type 1 diabetes, including include glutamic acid 

decarboxylase autoantibodies (GADA or Anti-GAD), islet cell autoantibodies (ICA), insulin 

autoantibodies (IAA), insulinoma-associated-2 autoantibodies (IA-2A or Anti-IA-2), or 

zinc transporter 8 autoantibodies (ZnT8A or Anti-ZnT8). Other types of diabetes include 

secondary diabetes mellitus, diabetes mellitus due to underlying condition, drug or chemical 

induced diabetes mellitus, other specified diabetes mellitus.

Li et al. Page 13

Diabetes Obes Metab. Author manuscript; available in PMC 2026 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Illustration of rule-based algorithm

Note: Dx refers to diagnosis; T1D refers to type 1 diabetes; T2D refers to type 2 diabetes. 

Other types of diabetes include secondary diabetes mellitus, diabetes mellitus due to 

underlying condition, drug or chemical induced diabetes mellitus, other specified diabetes 

mellitus.

T1D antibodies include glutamic acid decarboxylase autoantibodies (GADA or Anti-GAD), 

islet cell autoantibodies (ICA), insulin autoantibodies (IAA), insulinoma-associated-2 

autoantibodies (IA-2A or Anti-IA-2), or zinc transporter 8 autoantibodies (ZnT8A or Anti-

ZnT8).
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Table 1.

Demographic and clinical characteristics of the included individuals.

Total T1D T2D

Count % Count % Count %

Total 536 100 169 100 70 100

Gender

 Male 267 49.8 81 47.9 47 67.1

 Female 269 50.2 88 52.1 23 32.9

Age (years)

 0–4.9 180 33.6 22 13.0 2 2.9

 5.0–9.9 88 16.4 39 23.1 10 14.3

 10.0–14.9 140 26.1 58 34.3 33 47.1

 15.0–17.9 128 23.9 50 29.6 25 35.7

Race/ethnicity

 Non-Hispanic White 252 47.0 105 62.1 19 27.1

 Non-Hispanic Black 174 32.5 28 16.6 36 51.4

 Hispanic 54 10.1 21 12.4 7 10.0

 Other 36 6.7 9 5.3 4 5.7

 Unknown 20 3.7 6 3.6 4 5.7

Meeting presumptive criteria 1 214 39.9 139 82.2 44 62.9

Meeting presumptive criteria 2 6 1.1 1 0.6 4 5.7

Meeting presumptive criteria 3 402 75.0 141 83.4 28 40.0

Meeting presumptive criteria 4 288 53.7 167 98.8 69 98.6

Meeting presumptive criteria 5 410 76.5 163 96.4 59 84.3

Note: Presumptive criteria 1: at least one HbA1c ≥ 6.5%; presumptive criteria 2: at least one fasting glucose ≥ 126 mg/dL; presumptive criteria 
3: at least one random plasma glucose ≥ 200 mg/dL; presumptive criteria 4: at least one diagnosis code for diabetes from an inpatient or 
outpatient encounter; presumptive criteria 5: at least one prescribed, administered, or dispensed diabetes-related medication, including metformin, 
sulfonylureas, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, dipeptidyl peptidase 4 inhibitors, amylin analogs, GLP-1 receptor 
agonists, SGLT-2 inhibitors. Mg refers to milligrams; dL refers to deciliter.
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Table 2.

Performance of decision-tree-based and rule-based algorithms in the presumptive cases.

Performance Non-diabetes/Other types of diabetes T1D T2D

Decision-tree-based algorithm Sensitivity 0.93 0.93 0.93

Specificity 0.96 0.99 0.95

PPV 0.97 0.97 0.71

Rule-based algorithm Sensitivity 0.93 0.94 0.95

Specificity 0.98 0.98 0.95

PPV 0.98 0.96 0.73

SEARCH algorithm Sensitivity 0.87 0.95 0.96

Specificity 0.99 0.97 0.92

PPV 0.99 0.94 0.62

Note: PPV refers to positive predictive value; SEARCH refers to SEARCH for Diabetes in Youth Study, a national multi-center study aimed to 
aimed at understanding diabetes among children and young adults in the United States. Other types of diabetes include secondary diabetes mellitus, 
diabetes mellitus due to underlying condition, drug or chemical induced diabetes mellitus, other specified diabetes mellitus.
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