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Abstract

Context: Lead exposures among school-age children are a major public health issue. While the 

harmful effects of lead exposure during the first years of life are well known, there is not as much 

understanding of the effects of low levels of lead exposure during later childhood.

Objective: To review the effects of blood lead levels (BLLs) <10 µg/dL in school-age children 

and adolescents

Data Sources: We searched Medline, Embase, Global health, CINAHL, Scopus, and 

Environmental Science Collection databases between January 1, 2000, and May 11, 2023.

Study Selection: We included peer-reviewed English-language articles that presented data on 

the effects of BLLs <10 µg/dL in individuals ages 5 through 18 years.

Data Extraction: Data on country, population, analytic design, sample size, age, BLLs, 

outcomes, covariates, and results were extracted.

Results: Overall, 115 of 3,180 screened articles met the inclusion criteria. The reported mean or 

median BLL was <5 µg/dL in 98 articles (85%). Of the included articles, 89 (77%) presented some 

evidence of an association between BLLs <10 µg/dL during school age and detrimental outcomes 

in a wide range of categories. The strongest evidence of an association was for the outcomes 

of intelligence quotient (IQ), and attention-deficit/hyperactivity disorder (ADHD) diagnoses or 

behaviors.
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Limitations: Few articles controlled for BLLs at age younger than 5 years, limiting conclusions 

about the relation between later BLLs and outcomes

Conclusions: BLLs <10 µg/dL in school-age children and adolescents may be associated with 

negative outcomes. This review highlights areas that could benefit from additional investigation.

Article Summary

This scoping review summarizes the current literature on the effects of blood lead levels <10 

µg/dL in school-age children and adolescents.

Introduction

Lead is a toxic element present in the Earth’s crust and human activities.1 It is ubiquitous in 

both indoor and outdoor environments. Children are particularly susceptible to the harmful 

effects of lead due to their behavior and the essential development that occurs during 

childhood. Recently, there has been increased activity in programs aiming to test and 

remediate lead hazards in schools to reduce lead exposures among school-age children.2, 

3 Potential sources of lead exposure in schools include lead-contaminated water, lead-based 

paint in older school buildings, lead-contaminated soil, and lead-containing playground 

equipment and surfacing.4, 5

While there has been a particular focus on lead exposures among children under the age 

of 6 due to their rapid development and known vulnerability to lead,6 there is not as much 

understanding of the effects of lead exposure, particularly at low to moderate levels, during 

later childhood. As children grow, they ingest fewer environmental toxins per kilogram of 

body weight.7 Older children often outgrow hand to mouth behaviors and spend less time 

on the floor and ground, which can result in a reduction in lead exposure. Development also 

differs between younger and older children. For example, the brain grows most rapidly in 

the first years of life and reaches 90% of its adult size by age 6.8 The brain is particularly 

susceptible to the effects of toxins during this period of rapid development.9 A better 

understanding of the effects of low to moderate blood lead levels (BLLs) during school 

age could inform current initiatives focused on lead. To support public health programs 

and decision-making, we conducted a scoping review on the effects of BLLs <10 µg/dL in 

school-age children and adolescents.

Methods

We searched Medline, Embase, Global Health, CINAHL, Scopus, and Environmental 

Science Collection databases for articles published between January 1, 2000, and May 11, 

2023. Search criteria included key words and medical subject headings (MeSH) related to 

lead (e.g., lead exposure, blood lead, lead poisoning), school-age children and adolescents 

(e.g., child, pediatric, school age), and outcomes of interest (e.g., cognition, academic 

performance, crime). Full search criteria are included in Supplemental Table 1. We identified 

additional relevant studies by screening the references of included articles and review 

articles on lead.
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We included peer-reviewed articles available in English that presented data on the effect of 

BLLs <10 µg/dL in individuals between the ages of 5 and 18 years. The outcome studied 

could be at any age after the BLL was tested. We excluded articles if they did not include an 

estimate of the association between individual BLL and an outcome, or if they did not report 

the BLLs in the sample. For example, studies that examined aggregated measures of BLLs 

and outcomes, for instance at the census tract level, were excluded. Studies that included 

children or adolescents with BLLs >10 µg/dL, or individuals under the age of 5 years or over 

the age of 18 years, were only included if they presented some results that met inclusion 

criteria (i.e., restricted to children with BLLs <10 µg/dL drawn between the ages of 5 and 

18 years). Studies that did not list a maximum BLL in the sample were excluded if, based 

on the parameters presented, it seemed likely that the distribution included values >10 µg/dL 

(e.g., a sample with a mean BLL of 8.0).

We first screened titles and abstracts of database search results. Next, we screened the full 

texts of relevant articles to determine if they met inclusion criteria. For selected articles, 

we abstracted data on country, population, analytic design, sample size, age range, BLL, 

outcomes, covariates, and results. For analytic design, we abstracted the design of the 

analysis that met our inclusion criteria, not necessarily of the overall study. If a prospective 

cohort study only had results on BLLs and an outcome that were measured concurrently, 

we listed it as a cross-sectional analytic design. We used the study results and perceived 

likelihood of bias to classify the strength of the evidence in each article as no evidence of 

an association, some evidence of an association, and strong evidence of an association. To 

ensure the accuracy of the data abstraction, data were abstracted from each article twice (AP, 

MS, CC, SC contributed to the abstractions).

We followed the PRISMA extension for scoping reviews (PRISMA-ScR) guidelines.10 This 

activity was reviewed by the Centers for Disease Control and Prevention (CDC) and was 

conducted consistent with applicable federal law and CDC policy.

Results

The database searches resulted in 3,094 non-duplicate references (Figure 1). We identified 

an additional 86 references to screen from the reference lists of included articles and 

from review papers on lead. Of the 3,180 reviewed papers, 2,578 were excluded after title 

and abstract review. We reviewed the full texts of 602 papers. Of these papers, 487 were 

excluded because they did not meet inclusion criteria. Common reasons for exclusion after 

full text review were no reported measures of blood lead during school age (n=50), no 

reported outcomes at age 5 years or older (n=18), no analytic results restricted to the ages 

and BLLs of interest (n=268), not an original research study (n=48), and not available in 

English (n=43). Ultimately, 115 articles met the inclusion criteria.

Studies were conducted in 28 different countries and most frequently took place in the 

United States (n=36), the Republic of Korea (n=21), China (n=13), and Russia (n=6) 

(Supplemental Table 2). There was a wide range in the types of populations included in 

studies. It was most common for studies to include children and adolescents with no known 

environmental exposure to lead. Some studies were conducted among specific ethnic or 
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cultural groups such as studies among Inuit children in the Canadian Arctic or children 

from the Akwesasne Mohawk Nation.11–14 Thirty-five studies were conducted among, 

or included, children or adolescents with potential industrial exposures to lead, such as 

children living near lead smelters or mines.15–49 The most common analytic design was 

cross-sectional (n=94, 82%); fewer analyses were from case-control studies (n=13, 11%) or 

prospective cohort studies (n=14, 12%) (Table 1).

The reported mean, geometric mean, or median BLL was <5 µg/dL in 98 articles (85%); 

of which it was <2 µg/dL in 58 articles (Supplemental Table 2). Almost all outcomes 

examined could be categorized into one of 15 general groups (Table 1). The outcome group 

with the greatest number of studies was Intelligence Quotient (IQ) (n=25, 22%), followed 

by neurocognitive and neurobehavioral function other than IQ (n=24, 21%), and attention-

deficit/hyperactivity disorder (ADHD) diagnoses and behaviors (n=22, 19%). The examined 

outcomes of gut microbiome,50 insulin-like growth factor 1 (IGF-1),34 and toxocariasis51 

did not fit into any of the larger categories. We did not identify any articles that looked at the 

outcomes of crime or juvenile detention even though they were included in the search terms.

When classifying the strength of evidence in an article, articles classified as providing 

strong evidence of an association typically presented elevated effect estimates adjusted for 

important covariates accompanied by confidence intervals excluding the null value. Some 

of the articles in the strong evidence category also presented a dose-response relationship 

between BLL and the examined outcome.

Of the 115 included articles, 89 (77%) presented findings that provided some evidence of a 

potential association between BLL <10 µg/dL during school age and detrimental outcomes 

and 20 (17%) provided strong evidence of an association. There was some evidence 

suggesting a detrimental impact of lead for each of the 15 outcome categories examined. 

The strongest evidence of an adverse association was for the outcome categories of IQ and 

ADHD diagnoses or behaviors. Out of the 25 articles with results on IQ, 8 (32%) presented 

strong results of an association with school-age lead16, 23, 41, 47, 52–55 while the remaining 

articles presented either some or no evidence of an association. A prospective cohort study 

by Skerfving and colleagues examined the association between lead exposure at ages 7–12 

years and IQ at ages 18–19 years in 3,176 children.47 When adjusting for covariates, and 

restricting the sample to children with BLL <5 µg/dL, they observed a negative association 

between BLL and IQ. Out of the 22 articles with results on ADHD diagnoses or associated 

behaviors, 5 (23%) presented strong evidence an association with school-age lead.19, 56–59 

For example, using data on 2,588 children and adolescents from the U.S. National Health 

and Nutrition Examination Survey (NHANES), Froehlich and colleagues observed a dose 

response relationship between BLLs among adolescents ages 8 to 15 years and ADHD 

diagnoses.57 They found that compared to adolescents with BLL 0.2–0.8 µg/dL, the odds of 

receiving an ADHD diagnosis were 1.7 times greater among adolescences with BLL 0.9–1.3 

µg/dL (95% Confidence Interval [CI]: 1.0, 2.9), and 2.3 times greater among adolescences 

with BLL >1.3 µg/dL (95% CI: 1.5, 3.8) when adjusting for covariates.

The outcome of behavior had a single study demonstrating strong evidence of an association 

and the outcome of neurocognitive and neurobehavioral function other than IQ had 2 
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studies demonstrating strong evidence of an association. However, for both outcomes a 

high proportion of studies provided some results suggesting an association (78% and 

63%, respectively). As an example of one of the studies providing some evidence of an 

association, a study conducted by Joo and colleagues among 271 Korean children observed 

evidence of an association between low BLLs and behavioral problems when adjusting for 

covariates, but only among girls and not among boys.60 There was less evidence of an 

association with school-age lead levels for the other outcome categories, either due to fewer 

studies examining the outcomes in the category (i.e., 5 or fewer studies) or fewer studies 

with evidence of an association (i.e., 45% or more of studies providing no evidence of an 

association).

Common threats to the quality of included articles were lack of control for BLL in early 

life, which are known to be related to many of the outcomes examined, and inability to 

determine the temporal sequence between exposure and outcome. Only 3 studies (3%) took 

into account in their analysis the effects of lead exposure before the age of 5 (e.g., BLLs 

measured at ages 2–3).52, 61, 62 The majority of articles (n=99, 86%) did adjust results for 

other potential confounders like sex, age, and parental characteristics such as parental IQ 

or education. Only 14 of the included studies (12%) had any measurements of BLL and 

the outcome of interest at different timepoints.34, 38–40, 43, 47, 61, 63–69 All other studies 

determined the exposure and outcome concurrently so were unable to determine whether the 

documented BLLs preceded the outcome.

Discussion

The articles identified in this review indicate that low to moderate BLLs in school-age 

children and adolescents may be associated with detrimental effects on a breadth of 

outcomes. Outcomes with the strongest evidence for an association were IQ and ADHD 

diagnoses and behaviors. This review suggests that preventing exposure to lead, even at low 

levels, continues to be important throughout later childhood and adolescence.

A strength of the literature on this topic is the study variety. Articles in this review sampled 

children and adolescents of different ages and backgrounds from diverse populations in 

28 different countries. Given the large number of included studies and the wide range 

of outcomes examined, we classified outcomes into 15 groups to facilitate describing 

the overall results of studies. These groups are heterogeneous and thus there is likely 

heterogeneity in the association between BLLs and the specific outcomes in any one 

outcome grouping. Additionally, the specific age window of susceptibility for different 

outcomes may vary. The details in Supplemental Table 2 can aid readers seeking more 

detail for specific outcomes. Likewise, the threshold for what we considered to be a study 

providing “some evidence” of an association between BLLs and an outcome of interest was 

low. For example, a study examining 10 different subscales or domains for a given outcome 

could easily observe associations between BLLs and one or two subscales by chance alone. 

We encourage readers to draw their own conclusions about the state of the evidence in the 

articles compiled in this review.
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One topic that was absent from the included studies was investigation into the main 

routes of low lead exposure among school-age children. Some of this is due to lack of 

data availability, for example large national surveys are unable to complete environmental 

investigations for all study participants. However, smaller studies could conceivably ask 

questions or complete investigations related to sources of lead exposure. Information on the 

main sources of lead exposure among school-age children with low BLLs could be helpful 

for prioritizing remediation activities in communities.

BLLs most closely represent recent lead exposure and are not good estimates of cumulative 

lead doses over a longer period of time.70 A single measure may poorly reflect longer-term 

exposure patterns. There is no way to establish from a cross-sectional study whether the 

detected BLL caused, or even preceded, the outcome of interest. Likewise, a child with an 

undetectable BLL during school age may have had a higher BLL in early life that may be 

related to their current condition. These considerations are most relevant for outcomes that 

develop over a long period of time such as the timing of puberty or a child’s anthropogenic 

measurements. It is also possible that certain outcomes may increase the likelihood that a 

child consumes lead by changing a child’s behavior, such as pica. Such reverse causality 

is unidentifiable in a study where exposure and outcome are measured concurrently. These 

nuances emphasize the importance of longitudinal data, including data on BLLs during the 

first years of life, to disentangle these complicated relationships. Although there is a large 

body of literature on the impact of BLLs during school age on a wide range of outcomes, 

there is limited literature that can establish temporality between BLLs and outcomes of 

interest.

This review has limitations to consider. First, although our search terms included a wide 

range of outcomes, it is unlikely that they include every outcome that could possibly be 

related to lead. We may have missed certain groups of publications due to missing key words 

in our search criteria. Second, 268 articles were excluded because, although they assessed 

the impact of low to moderate BLLs in school-age children, they did not present results 

that combined the BLLs and ages of interest specified in our inclusion criteria. We did not 

contact the authors of these studies to inquire about the availability of additional analyses 

or data that may have met the inclusion criteria. The reference list of these publications 

is available from the authors upon request for any researchers aiming to complete meta-

analyses on this topic. Lastly, while we assessed specific characteristics that influence study 

quality, we did not quantitatively assess and present results on the study quality of each of 

the included articles. This was partly due to the heterogeneity between study outcomes and 

their differences in availability of objective measurements. Studies including a more limited 

scope of outcomes could address these issues more comprehensively.

This articles in this review can help support initiatives focused on reducing lead exposure 

among school-age children and adolescents. Future research on this topic could better 

control for the known effects of early-life lead exposure and better determine the temporality 

between BLLs and outcomes of interest. Understanding the impact of lead among school-

age children and adolescents can help us protect them from the harmful effects of lead.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart of selected studies
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Table 1.

Characteristics of included studies (n=115)

Characteristic n (%)

Sample Size

  <100 9 (8%)

  100–500 63 (55%)

  501–1,000 18 (16%)

  >1,000 25 (22%)

Analytic Designa

  Case-control study 13 (11%)

  Cross-sectional analysis 94 (82%)

  Prospective cohort study 14 (12%)

Outcome Categoryb References

  ADHD diagnoses and behaviors 22 (19%) 14, 19, 48, 54, 56–59, 62, 64, 71–82

  Allergic outcomes 3 (3%) 83–85

  Anthropometry 5 (4%) 31, 65, 69, 86, 87

  ASD diagnoses and behaviors 4 (3%) 66, 73, 88, 89

  Behavior 14 (12%) 14, 22, 24, 43, 48, 56, 60, 62, 63, 67, 68, 88, 90, 91

  Cardiovascular outcomes and risk factors 11 (10%) 88, 92–101

  Genetic (e.g., gene expression) 2 (2%) 26, 41

  Immune function 2 (2%) 32, 46

  IQ 25 (22%) 15–17, 23, 26, 27, 35, 36, 41, 45, 47, 49, 52–55, 59, 61, 62, 89, 102–106

  Metabolism, vitamin, or protein-related outcomes 4 (3%) 15, 29, 107, 108

  Neurocognitive and neurobehavioral function (other than IQ) 24 (21%) 13, 18, 20, 21, 36, 37, 42, 44, 45, 48, 49, 62, 71, 77, 88, 89, 102, 105, 109–114

  Oral health 3 (3%) 28, 115, 116

  Organ function (e.g., renal, kidney) 7 (6%) 15, 25, 30, 97, 117–119

  Puberty onset and reproductive hormones/function 12 (10%) 11, 12, 33, 38–40, 120–125

  School performance and learning disabilities 5 (4%) 47, 56, 77, 78, 126

  Otherc 3 (3%) 34, 50, 51

ADHD=attention-deficit/hyperactivity disorder, ASD=autism spectrum disorder, IQ=intelligence quotient

a
Percentages do not add up to 100 because some articles reported analyses in >1 category. Analytic design was determined by analysis type and not 

study design. For example, some analyses from prospective cohort studies were classified as cross-sectional if the exposure and outcome from the 
analysis that met the inclusion criteria were determined concurrently.

b
Percentages do not add up to 100 because some articles reported outcomes in >1 category

c
Includes gut microbiome, insulin-like growth factor 1 (IGF-1), and toxocariasis
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