Emerg Infect DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention18439375260022207-111610.3201/eid1405.071116DispatchSeasonal Cholera from Multiple Small Outbreaks, Rural BangladeshCholera Outbreaks, Rural BangladeshCholera, Rural BangladeshStineO. Colin*AlamMunirulTangLi*NairG. BalakrishSiddiqueA. KasemFaruqueShah M.HuqAnwarColwellRita*§SackR. Bradley§MorrisJ. GlennJr*University of Maryland School of Medicine, Baltimore, Maryland, USAInternational Center for Diarrheal Disease Research, Dhaka, BangladeshUniversity of Maryland, College Park, Maryland, USAJohns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USAUniversity of Florida, Gainesville, Florida, USAAddress for correspondence: O. Colin Stine, University of Maryland School of Medicine, 596 Howard Hall, 660 W Redwood St, Baltimore, MD 21201, USA; email: ostin001@umaryland.edu52008145831833

Clinical and environmental Vibrio cholerae organisms collected from February 2004 through April 2005 were systematically isolated from 2 rural Bangladeshi locales. Their genetic relatedness was evaluated at 5 loci that contained a variable number of tandem repeats (VNTR). The observed minimal overlap in VNTR patterns between the 2 communities was consistent with sequential, small outbreaks from local sources.

Keywords: Choleravariable number of tandem repeatsepidemiologyoutbreaksgenetic variationdispatch

Cholera is a major cause of illness in the developing world. The World Health Organization reported in 2006 that 236,896 cases of cholera occurred in 52 countries, a 79% increase over 2005 (1). Although major advances in the understanding of the molecular basis of Vibrio cholerae pathogenicity have been made, including defining the environmental reservoirs for the microorganism (24), we do not fully understand the cause of seasonal epidemics in cholera-endemic areas nor the factors that drive epidemics. Specifically, whether these seasonal epidemics arise from a single clonal strain or reflect superimposition of multiple small outbreaks is not clear.

The Study

From February 2004 through April 2005, we systematically collected clinical and environmental V. cholerae from Bakerganj and Mathbaria, 2 small communities 50 miles apart in the southern part of coastal Bangladesh. Samples were collected on 3 consecutive days every 2 weeks throughout the year. Clinical isolates were collected from ≈20% of all patients who had symptoms of cholera when seen at the local clinics. Environmental isolates were cultured from water, sediment, and plankton samples taken at 6 sites (ponds or river sites) in each of the 2 communities. The same sites were used throughout the 15-month study, and the same method was applied at all sites and across all time points. Isolation was performed by standard culture methods, and V. cholerae was identified by a combination of biochemical (5), molecular, and serologic techniques (6). All samples were collected according to protocols approved by Institutional Review Boards at Johns Hopkins University, University of Maryland, and the International Centre for Diarrheal Disease Research, Bangladesh.

For multilocus sequence typing (MLST) and variable number of tandem repeat (VNTR) determinations, each locus was PCR amplified by using standard conditions and appropriate primers from the literature (7) (Technical Appendix). The resulting fragments were sequenced by using Big Dye Kit (Applied Biosystems, Foster City, CA, USA). Trace files were generated by using an ABI 3730xl automatic sequencer and read using either 1) the Phred (8,9), Phrap (www.washington.edu), or Consed (10) package or 2) Sequencher (AGCT, Gene Codes Corporation, Ann Arbor, MI, USA).

A total of 391 environmental and clinical isolates of V. cholerae were collected and identified from February 2004 through April 2005. Of these, 267 environmental isolates were identified as belonging to non-O1 and non-O139 serogroups and did not carry the gene for cholera toxin (ctx). Analysis of these 267 by MLST (using the 7 loci identified previously [7]) yielded a genetic background that was distinct from that of the clinical/epidemic strains. The other 68 (20%) of 335 environmental V. cholerae isolates shared a genetic background identical or nearly identical to clinical/epidemic V. cholerae. These 68 and all 56 clinical isolates collected (all of which were related by MLST) were further analyzed by examining 5 VNTR loci.

Sequence typing was based on 5 polymorphic VNTR loci. These loci were identified with the program Tandem Repeat Finder (11). Four of the 5 loci had hexameric repeats in coding regions. The loci were identified by those genes in which they occur: VC0147vntr, VC0436–7vntr (intergenic), VC1650vntr, VC0171vntr, and VCA0283vntr. Alleles were distinguished by the number of tandem repeats as determined by Tandem Repeat Finder (11) (Technical Appendix). Sequences from 1 locus with identical numbers of repeats were assigned to the identical allele. The alleles at the 5 loci were ordered to generate a sequence type (ST), for example, 3,5,2,2,8. Each locus was polymorphic with 7, 6, 6, 20, and 16 alleles, respectively. Thirty-six STs were observed. The various STs were defined as related if they were identical at 4 of the 5 loci. When we defined a VNTR genetic group as differing by a single locus variant from another member of the group, 3 large VNTR genetic groups were identified and 5 VNTR genetic groups composed of only 2 isolates and 7 unrelated strains. These 7 singletons differed from all other STs at 2 or more loci.

There was statistically significant agreement between serogroup and VNTR genetic group. For V. cholerae O139, all STs were 4,1,1,x,x (Technical Appendix). Thus, the isolates were considered to be related because x,x = 1,1; 2,1; or 2,8, i.e., a change in a single locus serially connected all isolates. Summing the number of isolates of a sequence type, we found that the 23 ctx+ O139 strains formed a VNTR genetic group. A second group comprised 75 ctx+ O1 Inaba isolates. Finally, 18 ctx+ O1 Ogawa clustered into 3 additional VNTR genetic groups. There were 10 exceptions, i.e., 3 non-O1, non-O139 ctx+ isolates were in groups; 3 ctx O139, 2 ctx O1 Inaba, 1 ctx, and 1 ctx+ O1 Ogawa were not.

We found that Bakerganj and Mathbaria yielded distinct V. cholerae populations; only 2 (ST 3,5,2,2,7 and 1,1,3,9,8) of 36 STs identified were found at both locations (Table 1; Technical Appendix). There was substantial divergence in STs among strains isolated from patients, compared with strains from the environment in Mathbaria; only 1 (ST 3,5,2,2,7) of 16 STs were found in both patient and environmental isolates. Similarly, in Bakerganj, only 2 (ST 3,5,2,2,6 and 3,5,2,1,5) of 24 STs were found in both clinical and environmental isolates.

Number of <italic>Vibrio cholerae</italic> sequence types in distinct serotypes and sample types in Bakerganj and Mathbaria, Bangladesh, 2004–2005
SerotypeSourceBakerganjMathbaria
O1 InabaClinic107
Environment71
O1 OgawaClinic66
Environment10
O139Environment03

Clinical or environmental isolates from a given period were more likely to have a common ST (Technical Appendix). For example, at Mathbaria, 49 of the 53 isolates with an ST identical to that of another isolate were found in the same or neighboring month. Similarly, at Bakerganj, 33 of 36 isolates with identical STs were found in the same or neighboring month.

Variation in the VNTR loci appeared to be greater among clinical isolates than among environmental isolates. A total of 29 STs occurred in clinical isolates, whereas only 12 occurred in environmental isolates (Table 1). When we controlled for location and month of collection (Table 2), the total number of STs among environmental isolates (7 ST/35 isolates) was less than that among clinical isolates (16 ST/32 isolates) (χ2 = 4.4, df 1, p = 0.036). Common STs were found among environmental isolates, despite the isolates coming from samples from different ponds and distinct subsamples (e.g., water, phytoplankton, zooplankton).

Sequence type (ST) variations among <italic>Vibrio cholerae</italic> O1 Inaba isolates from environmental and clinical sources by month of collection, Bangladesh, 2004–2005
LocationDateSourceNo. pondsNo. isolatesNo. STsVariation*
Mathbaria2004 DecEnvironment41210.08
Bakerganj2004 SepEnvironment51640.25
Bakerganj2005 AprEnvironment4720.29
Bakerganj2004 OctClinic940.44
Mathbaria2004 MayClinic1150.45
Mathbaria2004 AprClinic840.50
Bakerganj2004 DecClinic430.75

*Variation, no. STs/no. isolates.

Conclusions

Our data do not support the concept of seasonal cholera epidemics occurring by movement of a single clonal wave across the countryside. They are consistent, instead, with the natural occurrence of V. cholerae year-round in the aquatic environment of each site, with each site having its own, distinct grouping of strains (12,13). The limited overlap between STs in environmental and clinical isolates is an enigma that remains to be resolved. However, the extensive variation in VNTR STs in this short time frame and small geographic area suggests that VNTR STs can be useful in assessing genetic relatedness of isolates during outbreaks/epidemics. The strong temporal clustering of the variation arising in the VNTR STs of clinical isolates is consistent with the hypothesis that clinical cases reflect the occurrence of multiple small outbreaks.

Our data are drawn from rural Bangladesh; however, cholera is a global disease. Its epidemiology may well differ in sub-Saharan Africa, the Americas, or other parts of Asia, or in the mega-cities that are increasingly the hallmark of the developing world. These variations emphasize the need for application of similar techniques in these diverse settings.

Supplementary MaterialTechnical Appendix

Suggested citation for this article: Stine OC, Alam M, Tang L, Nair GB, Siddique AK, Faruque SM, et al. Seasonal cholera from multiple small outbreaks, rural Bangladesh. Emerg Infect Dis [serial on the Internet]. 2008 May [date cited]. Available from http://www.cdc.gov/EID/content/14/5/831.htm

Our work was supported by a National Institutes of Health award to R.B.S.

Dr Stine is an associate professor of epidemiology and preventive medicine at the University of Maryland School of Medicine. He is actively using genetic variation in bacteria and humans to elucidate medical problems.

ReferencesWorld Health Organization Cholera 2005.Wkly Epidemiol Rec 2006;81:29730816888873Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR Ecological relationships between Vibrio cholerae and planktonic crustacean copepods.Appl Environ Microbiol 1983;45:275836337551Brayton PR, Tamplin ML, Huq A, Colwell RR Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count.Appl Environ Microbiol 1987;53:286253324967Franco AA, Fix AD, Prada A, Paredes E, Palomino JC, Wright AC, Cholera in Lima, Peru, correlates with prior isolation of Vibrio cholerae from the environment.Am J Epidemiol 1997;146:1067759420531Tison DL, Kelly MT Vibrio species of medical importance.Diagn Microbiol Infect Dis 1984;2:26376 10.1016/0732-8893(84)90057-96386297Alam M, Sultana M, Nair GB, Sack RB, Sack DA, Siddique AK, Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh.Appl Environ Microbiol 2006;72:284955 10.1128/AEM.72.4.2849-2855.200616597991Garg P, Aydanian A, Smith DJ, Glenn M Jr, Nair GB, Stine OC. Molecular epidemiology of O139 Vibrio cholerae: mutation, lateral gene transfer, and founder flush.Emerg Infect Dis 2003;9:810412890320Ewing B, Green P Base-calling of automated sequencer traces using phred. II. Error probabilities.Genome Res 1998;8:186949521922Ewing B, Hillier L, Wendl MC, Green P Base-calling of automated sequencer traces using phred. I. Accuracy assessment.Genome Res 1998;8:175859521921Gordon D Viewing and editing assembled sequences using Consed. In: Baxevanis A, Davison D, editors. Current protocols in bioinformatics. New York: John Wiley & Co; 2004 p. 11.2.1–11.2.43.Benson G Tandem repeats finder: a program to analyze DNA sequences.Nucleic Acids Res 1999;27:57380 10.1093/nar/27.2.5739862982Colwell RR Global climate and infectious disease: the cholera paradigm.Science 1996;274:202531 10.1126/science.274.5295.20258953025Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh.Appl Environ Microbiol 2005;71:464554 10.1128/AEM.71.8.4645-4654.200516085859