We describe an outbreak of vomiting, wasting, and encephalomyelitis syndrome in piglets in Argentina, caused by porcine hemagglutinating encephalomyelitis coronavirus (PHE-CoV) infection. Diagnosis was made by epidemiologic factors, pathologic features, immunohistochemistry, reverse transcription–PCR, and genomic sequencing. This study documents PHE-CoV infection in South America.
Porcine hemagglutinating encephalomyelitis (PHE) is an infectious disease that primarily affects pigs <3 weeks of age (
PHE-CoV was first isolated in Canada from the brains of suckling piglets with encephalomyelitis (
Presumptive diagnosis can be made by correlating epidemiologic data, age susceptibility information, and disease course with histopathologic findings (
The farm was a 3-site herd with a total of 6,000 sows. At the time of the outbreak, 55% of breeder stock were gilts or first- or second-parity sows. Site 1 comprised 20 gestation barns and 19 farrowing barns, site 2 (nursery) comprised 9 barns, and site 3 comprised growing and fattening barns.
The outbreak began on August 8 and ended on August 23, 2006. Of 19 farrowing barns, 10 (52.6%) were affected. Total proportion of deaths in pigs that had not been weaned was 16.9% (1,226 dead pigs); an estimated 12.6% of pigs that died had suspected PHE-CoV infection (913 animals).
Clinical signs were observed in pigs
A) Nursery piglets showing clinical signs compatible with porcine hemagglutinating encephalomyelitis coronavirus (PHE-CoV). Nonaffected pigs of the same age are also shown. B) Muscle layer of stomach from affected piglet showing perivascular cuffing (arrow); hematoxylin-eosin stain, magnification ×100. C) Brainstem from affected piglet showing satellitosis (arrows) and gliosis; hematoxylin-eosin stain, magnification x400. D) Brainstem from affected piglet showing positive label of neuron perikarion (arrows); nitroblue-tetrazolium imunohistochemical stain, magnification x400.
Postmortem examinations were performed on 16 affected piglets, 2–11 days of age. Samples submitted for histopathologic examination included brainstem, trigeminal ganglia, tonsils, pyloric gland area of the stomach, jejunum, ileum, lymph nodes, heart, spleen, liver, kidneys, and lung.
Selected paraffin sections of brainstem from 5 piglets that had characteristic microscopic lesions were examined for PHE-CoV antigen by IHC tests with an anti PHE- CoV-67N strain mouse antibody; the samples were diluted 1:1,000 and incubated overnight at 4°C. Samples were then labeled with biotinylated conjugated anti
RNA was isolated with a commercial kit (RNeasy, QIAGEN GmbH, Hilden, Germany), from brain samples of 7 symptomatic piglets (6–11 days of age) that had nonsuppurative encephalomyelitis, from 1 asymptomatic piglet, and from a PK-15 cell culture suspension inoculated with a pool of tissues from 1 symptomatic piglet. Ribonuclease-A (RNase)–free water was used as negative control. The RT-PCR reaction was performed immediately after RNA isolation by using the specific primer pair for CoV, Cor-FW 5′→3′ (DNA) ACTCAAATGAATTTGAAATATGC, and Cor-RV 5′→3′ (DNA) TCACACTTTGGATAA TCCCA that amplifies a 251-bp fragment of the polymerase gene (
The amplicons were purified by using the QIAquick PCR purification kit (QIAGEN) and sequenced on a MegaBase 1000 DNA sequencer (GE Healthcare, Chalfont St. Giles, UK). The obtained sequence was analyzed by using NCBI BLAST (
Virus isolation was attempted by inoculation of PK-15 and SK-K cells with brains and tonsils from 5 pigs positive for PHE-CoV by RT-PCR. Five blind passages were performed at 7-day intervals. IHC testing was also performed on SK-K cells.
Microscopic changes were observed in samples taken from 5- to 11-day-old affected pigs. The most remarkable changes were perivascular cuffing around Meissner and Auerbach ganglia in the muscle layer of stomach (
RT-PCR analysis showed a product of the expected size for CoV (≈250 bp) in all analyzed brain samples. No amplification was observed in inoculated PK 15 cells (
Polyacrylamide gel and silver staining of reverse transcription–PCR products from brains of piglets infected with porcine hemagglutinating encephalomyelitis coronavirus. Amplicons of ≈250 bp were found in brain samples from pigs 6, 8, 9, and 11 days of age. Neg, negative control (water + mastermix); PK15, amplification of PK15 cells inoculated with brain and tonsil from affected piglet; AP, asymptomatic piglet; and Ladder, 50-bp Fermentas.
| Organ | Days old (days with clinical signs) | IHC | RT-PCR | Histopathologic diagnosis |
|---|---|---|---|---|
| Brain stem | 6 (2) | Encephalitis | ||
| Brain stem | 8 (4) | Encephalitis | ||
| Trigeminal ganglion | 8 (4) | Focal ganglioneuritis | ||
| Brain stem | 8 (4) | ND | ND | Encephalitis |
| Spinal cord | 9 (5) | ND | + | Myelitis |
| Tonsil | 9 (5) | ND | ND | Necrotizing tonsilitis |
| Brain stem | 9 (5) | ND | ND | Meningoencephalitis |
| Medulla oblongata | 11(6) | Meningoencephalitis |
*IHC, immunohistochemical; RT-PCR, reverse transcription–PCR; PHE-CoV, porcine hemagluttinating encephalomyelitis coronavirus; ND, not done; +, positive.
From an epidemiologic standpoint, the clinical course of the disease (3 weeks), age of affected pigs (<3 weeks), and clinical signs were in agreement with those of VWD caused by PHE-CoV (
Pensaert (
We thank Carolina Aralda and Lorena Diaz for their valuable help with making histopathologic slides and Magdalena Rambeaud for assistance with English translation.
This work was supported by grants from Fondo para la Investigación Científica y Tecnológica 05-33987, Secretaría de Ciencia y Técnica, Universidad Nacional de La Plata, and Pacuca Pig Farm SA, Argentina.
Dr Quiroga is a doctor of veterinary medicine at Universidad Nacional de la Plata, Argentine. Her main areas of interest are emerging viral diseases of pigs, including circovirus type 2 and coronavirus.