Emerg Infect DisEmerging Infect. DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention18217577337578007-079310.3201/eid1311.070793Letters to the EditorHuman Bocavirus in Infants, New ZealandHuman Bocavirus, New ZealandRedshawNatalie*WoodCatherine*RichFenella*GrimwoodKeithKirmanJoanna R.*Malaghan Institute of Medical Research, Wellington, New ZealandUniversity of Otago, Wellington, New ZealandAddress for correspondence: Joanna R. Kirman, Malaghan Institute of Medical Research, PO Box 7060, Wellington South 6021, Wellington, New Zealand; email: jkirman@malaghan.org.nz112007131117971799Keywords: Human bocavirusbronchiolitisNew Zealandparvoviridaerespiratory illnessdiarrhealetter

To the Editor: In 2005, a parvovirus, subsequently named human bocavirus (HBoV), was discovered in respiratory samples taken from infants and children hospitalized at Karolinksa University Hospital, Sweden, with lower respiratory tract infection (1). HBoV has since been identified in infants and children with respiratory illness in >17 countries, at frequencies ranging from 1.5% to >18.0%.

In the past decade New Zealand has experienced increasing bronchiolitis hospitalization rates, currently >70 admissions per 1,000 infants. To determine the contribution of HBoV to New Zealand’s bronchiolitis disease prevalence, we tested samples collected from infants hospitalized with community-acquired bronchiolitis (2) during 3 consecutive winter epidemics (June to October, 2003; July to October, 2004; and June to October, 2005) in Wellington, NZ, for HBoV by PCR. The Central Regional Ethics Committee approved the study. Written, informed consent was obtained from the parent or guardian.

Demographic, clinical, and laboratory data were collected during hospitalization. Ethnicity of those who ascribe to >1 group was determined by using a national census method that prioritizes ethnicity as follows: Māori>Pacific>Other>New Zealand European. Oxygen requirement was determined to be the best measure of bronchiolitis severity (2). Infants who needed assisted ventilation or continuous positive airway pressure were classified severe; those who required oxygen supplementation, moderate; and infants who were hospitalized but did not require supplemental oxygen, mild.

Nucleic acid was extracted from thawed nasopharyngeal aspirates (stored at 80°C) by using a High Pure Viral Nucleic Acid kit (Roche Diagnostics, Auckland, NZ). The HBoV nonstructural protein (NP-1) gene was amplified by using primers 188F (5′-GAGCTCTGTAAGTACTATTAC-3′) and 542R (5′-CTCTGTGTTGACTGAATACAG-3′) (1) with Expand High Fidelity DNA Polymerase (Roche Diagnostics, Basel, Switzerland) for 35 cycles. Products (354 bp) were purified and sequenced from primers 188F and 542R on an ABI3730 Genetic Analyzer by using a BigDye Terminator version 3.1 Ready Reaction Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA). Sequences were submitted to GenBank under accession nos. EF686006–13.

Alignments of NP-1 gene sequences from nucleotides (nt) 2410–2602, and NP-1 predicted amino acid sequences from amino acids (aa) 1–97 were constructed by using ClustalW version 1.83 (available from www.ebi.ac.uk/tools/clustalw/index.html) and compared with HBoV prototype sequences from GenBank (DQ00495-6). Nasopharyngeal aspirates were also screened for respiratory syncytial virus (RSV) by reverse transcription–PCR (RT-PCR) and nested PCR (3) and for human metapneumovirus (4), influenza A (H1, H3), and influenza B by RT-PCR (5).

Eight (3.5%) of 230 samples, collected from infants hospitalized with bronchiolitis during the 2003–2005 winter epidemic seasons, were positive for HBoV. In 5 HBoV-positive infants no other pathogens were identified, but RSV was detected in 3 (Table). The 8 HBoV-positive infants had a median age of 9.5 months, and the male:female ratio was 1:1. The median length of hospital stay was 5.5 (range 1–16) days.

Summary of 8 infants with human bocavirus infection hospitalized with bronchiolitis, New Zealand, 2003–2005*
Infant no.Date admittedSex/ age, moEthnicityAttended daycare?Length of hospital stay, dIllness severityApneaUnderlying conditions/ comorbititiesRSV subtypeHighest temp., °CEnteritic symptoms
1Jul 
2003M/9PacificNo16ModA40.1Diarrhea
2Aug 2003F/4PacificNo6SevB38.4Diarrhea
3Sep 2003F/11NZ EuropeanNo1Mod38.1
4Sep 2003F/10PacificNo4Sev33 weeks’ gestation38.3Diarrhea
5Aug 2004M/8PacificNo2ModHaemophilus influenzae conjunctivitis37.7
6Jul 
2005M/10ChineseNo10Mod34 weeks’ gestation, repaired esophageal atresia and tracheomalacia37.7
7Aug 2005F/9PacificNo9Sev+30 weeks’ gestationA39.2
8Sep 2005M/13NZ EuropeanYes5ModHydronephrosis, Pseudomonas aeruginosa urinary tract infection37.4

*Temp., temperature; Mod, moderate; Sev, severe; –, absent; NZ, New Zealand;+, present.

As expected, because HBoV NP-1 is highly conserved, sequence variation among New Zealand isolates and the prototype Stockholm ST-1 and ST-2 (1) NP-1 sequences was limited. Alignments of the partial NP-1 sequence (nt 2410–2602) of New Zealand isolates with those of ST-1 and ST-2 were identical, except for a G→A change at nt 176 in 2 New Zealand isolates (from infants 5 and 8 years of age), which resulted in a predicted amino acid exchange of S→N at aa 59. In addition, an A→T change at nt 274 in all 8 NZ isolates resulted in a predicted amino acid substitution of T→S at aa 92, a change that has been reported previously in Japanese isolates (6).

This study reaffirms previous reports of finding HBoV in a subset of infants with bronchiolitis (7). It is also, to our knowledge, the first study of its kind in New Zealand infants, confirming wide distribution of HBoV. In the northern hemisphere, HBoV circulates primarily during the winter months, although it continues circulating until early summer, later than most other seasonal respiratory viruses (8). Therefore, this study may underestimate the percentage of New Zealand infants with bronchiolitis whose HBoV test results were positive because sample collection ceased in October (southern hemisphere spring) at the end of the bronchiolitis epidemic. The small number of HBoV-positive infants prevents conclusions concerning ethnicity, coinfection, and bronchiolitis severity.

Although detection of viral nucleic acid by PCR in infants with bronchiolitis does not prove that the virus is the cause of the disease, it raises a hypothesis worthy of investigation. Further studies are required to determine the role of HBoV as a human pathogen. Although coinfection is common, HBoV detection appears to be infrequent in asymptomatic controls (9). In our study RSV was detected in 3 (37.5%) HBoV-positive samples. We may have underestimated additional coinfection because we did not test for several respiratory agents, including parainfluenza viruses, rhinoviruses, or the newly discovered coronaviruses.

Finally, HBoV has recently been detected in fecal samples (10). Because 3 HBoV-positive infants had diarrhea in addition to bronchiolitis, knowing prevalence of HBoV in fecal specimens from asymptomatic New Zealand children and in those with acute gastroenteritis would be of interest.

Suggested citation for this article: Redshaw N, Wood C, Rich F, Grimwood K, Kirman JR. Human bocavirus in infants, New Zealand [letter]. Emerg Infect Dis [serial on the Internet]. 2007 Nov [date cited]. Available from http://www.cdc.gov/eid/content/13/11/1797.htm

Acknowledgments

We thank Dr Tobias Allander of the Karolinska Institute, Sweden, for providing a plasmid encoding the HBoV (NP-1) gene. We are also grateful to the staff of Ward 19 and the diagnostic laboratories at Wellington Hospital for assistance in obtaining clinical samples.

This study was funded by the New Zealand Lottery Health Grants Board, the Child Health Research Foundation of New Zealand, and the Wellington Medical Research Foundation.

ReferencesAllander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102:128916 10.1073/pnas.050466610216118271El-Radhi AS, Barry W, Patel S Association of fever and severe clinical course in bronchiolitis. Arch Dis Child. 1999;81:2314 10.1136/adc.81.3.23110451396Matheson JW, Rich FJ, Cohet C, Grimwood K, Huang QS, Penny D, Distinct patterns of evolution between respiratory syncytial virus subgroups A and B from New Zealand isolates collected over thirty-seven years. J Med Virol. 2006;78:135464 10.1002/jmv.2070216927286Esper F, Martinello RA, Boucher D, Weibel C, Ferguson D, Landry ML, A 1-year experience with human metapneumovirus in children aged <5 years. J Infect Dis. 2004;189:138896 10.1086/38248215073675Yamada A, Lam LY, Tam JS Typing and subtyping of influenza viruses and respiratory syncytial viruses by multiplex RT–PCR. Int Congr Ser. 2004;1263:3815 10.1016/j.ics.2004.02.057Ma X, Endo R, Ishiguro N, Ebihara T, Ishiko H, Agriga T, Detection of human bocavirus in Japanese children with lower respiratory tract infections. J Clin Microbiol. 2006;44:11324 10.1128/JCM.44.3.1132-1134.200616517912Sloots TP, McErlean P, Speicher DJ, Arden KE, Nissen MD, Mackay IM Evidence of human coronavirus HKU1 and human bocavirus in Australian children. J Clin Virol. 2006;35:99102 10.1016/j.jcv.2005.09.00816257260Foulongne V, Rodiere M, Segondy M Human bocavirus in children. Emerg Infect Dis. 2006;12:862316710957Kesebir D, Vazquez M, Weibel C, Shapiro ED, Ferguson D, Landry ML, Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. J Infect Dis. 2006;194:127682 10.1086/50821317041854Vicente D, Cilla G, Montes M, Pérez-Yarza EG, Pérez-Trallero E Human bocavirus, a respiratory and enteric virus. Emerg Infect Dis. 2007;13:6367 10.3201/eid1304.06150117553287