Emerg Infect DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention18044044273845107-004910.3201/eid1305.070049Letters to the EditorRecombinant Sapovirus Gastroenteritis, JapanRecombinant Sapovirus Gastroenteritis, JapanHansmanGrant S.*IshidaSetsukoYoshizumiShimaMiyoshiMasahiroIkedaTetsuyaOkaTomoichiro*TakedaNaokazu*National Institute of Infectious Diseases, Tokyo, JapanHokkaido Institute of Public Health, Hokkaido, JapanAddress for correspondence: Grant S. Hansman, Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan; email: ghansman@nih.go.jp52007135786788Keywords: Sapovirusgenogroupgenotyperecombinantpolymerase genecapsid proteinJapanletter

To the Editor: Sapovirus and norovirus are causative agents of gastroenteritis in children and adults. Norovirus is the most important cause of outbreaks of gastroenteritis, whereas only a few outbreaks of sapovirus have been reported (1,2). On the basis of complete capsid gene sequences, sapovirus can be divided into 5 genogroups, among which GI, GII, GIV, and GV infect humans, whereas sapovirus GIII infects porcine species.

We report 2 outbreaks of gastroenteritis in Hokkaido, Japan. The first outbreak (A) occurred at a college from May 29 to June 2, 2000. A total of 12 persons (11 students and 1 teacher) reported symptoms of gastroenteritis (nausea, vomiting, stomachache, diarrhea, and fever); 11 stool specimens were collected from days 1 to 7 after onset of illness (Table). These specimens were negative for norovirus (data not shown), but 5 were positive for sapoviruslike viruses by electron microscopy (Table).

Analysis of 18 stool specimens for sapovirus during 2 outbreaks of gastroenteritis, Japan*
Outbreak, specimenDate of illness onsetEMNested RT-PCRReal-time PCR (cDNA copies/g stool)
A
  Yak1Jun 2, 2000+7.47 × 109
  Yak2May 29, 2000
  Yak3May 30, 2000
  Yak4May 31, 2000++6.55 × 109
  Yak5Jun 1, 2000+9.38 × 108
  Yak6Jun 1, 2000+1.30 × 108
  Yak7May 29, 2000+1.46 × 109
  Yak8May 29, 2000++2.78 × 1010
  Yak9Jun 1, 2000++3.00 × 109
  Yak10Jun 1, 2000++2.05 × 109
  Yak11Jun 1, 2000++5.36 × 105
B
  Nay1Feb 17, 2005NT+1.65 × 1010
  Nay2Feb 14, 2005NT+1.82 × 109
  Nay3Feb 18, 2005NT+1.14 × 109
  Nay4Feb 17, 2005NT+5.41 × 1010
  Nay5Feb 16, 2005NT+5.26 × 1010
  Nay6Feb 18, 2005NT+2.50 × 1010
  Nay7Feb 17, 2005NT+2.38 × 1010

*EM, electron microscopy; RT-PCR, reverse transcription–PCR; NT, not tested.

The 11 specimens were then examined for sapovirus by using nested reverse transcription–PCR (RT-PCR) as described (3). A total of 9 (82%) of 11 specimens were positive for sapovirus. Sequence analysis showed that these 9 viruses had 100% nucleotide identity and likely represented the same sapovirus strain (termed Yak2 strain, GenBank accession no. AB046353). To determine the number of cDNA copies per gram of stool, we performed real-time RT-PCR as described (4). The number of sapovirus cDNA copies ranged from 5.36 × 105 to 7.47 × 109/g stool (median 5.49 × 109 copies/g stool) (Table).

The second outbreak (B) occurred at a kindergarten from February 1 to 22, 2005. A total of 23 persons (15 children and 8 adults) reported symptoms of gastroenteritis (nausea, vomiting, stomachache, diarrhea, and fever); 7 stool specimens were collected (Table). These specimens were negative for norovirus (data not shown), but all were positive for sapovirus by nested RT-PCR. The 7 sequences from this outbreak had 100% nucleotide identity and likely represented the same sapovirus strain (termed Nay1 strain, GenBank accession no. EF213768). The number of sapovirus cDNA copies ranged from 1.14 × 109 to 5.41 × 1010/g stool (median 2.50 × 1010 copies/g stool) (Table).

One positive sapovirus specimen from each outbreak was subjected to further sequence analysis in which a single overlapping PCR fragment covering the partial polymerase gene and capsid gene was amplified. The Yak2 and Nay1 sequences shared ≈71% nucleotide identity for this fragment and likely represented different sapovirus strains. The Yak2 sequence closely matched sapovirus GIV Ehime1107 and SW278 sequences (GenBank accession nos. DQ058829 and AY237420, respectively) and had 98% and 97% nucleotide identity for the entire fragment, respectively (5). The Nay1 sequence closely matched the sapovirus GII C12 sequence (AY603425) and had 91% nucleotide identity for the entire fragment.

The Nay1 sequence closely matched the C12 sequence, which was detected in Osaka, Japan, in 2001 (6), whereas the Yak2 sequence closely matched the Ehime1107 sequence, which was detected in Matsuyama, Japan, in 2002 (5) and the SW278 sequence, which was detected in Sweden in 2003 (1). We recently described the C12 strain as intragenogroup recombinant sapovirus strain (6), whereas the Ehime1107 and SW278 strains were described as intergenogroup recombinant sapovirus strains (5). Our results indicate that recombination sites in intragenogroup and intergenogroup recombinant sapovirus strains were at the polymerase and capsid junction (5,6). Sapovirus Sydney53 (DQ104360) and Sydney3 strains (DQ104357), which were detected in Australia from August 2001 to August 2004 (7), closely matched C12 and Ehime1107/SW278 sequences, respectively. These results showed that recombinant sapovirus strains are stable in the environment and may be globally distributed. Our findings also suggest a changing distribution of sapovirus-associated gastroenteritis in Hokkaido because different sapovirus GI strains were predominant sapovirus strains that caused causing outbreaks of gastroenteritis in Hokkaido (8,9).

In a recent study, the number of norovirus cDNA copies per gram of stool specimen was analyzed and a discrepancy was found between the different norovirus genogroups (10). Chan et al. found that noroviruses GI and GII showed medians of 8.4 × 105 and 3.0 × 108 copies/g of stool specimen, respectively, and speculated that increased viral loads were caused by higher transmissibility of norovirus GII strains (10). Our results showed that sapovirus GII Nay1 and GIV Yak2 strains showed higher viral loads than norovirus GII strains. These results suggest that a high degree of shedding of sapovirus GII Nay1 and GIV Yak2 strains may have caused the outbreak of gastroenteritis. However, to elucidate this suggestion, further studies are needed with other sapovirus strains.

Suggested citation for this article: Hansman GS, Ishida S, Yoshizumi S, Miyoshi M, Ikeda T, Oka T, et al. Recombinant sapovirus gastroenteritis, Japan [letter]. Emerg Infect Dis [serial on the Internet]. 2007 May [date cited]. Available from http://www.cdc.gov/eid/content/13/5/786.htm

This study was supported in part by a grant for Research on Emerging and Re-emerging Infectious Diseases from the Ministry of Health, Labor and Welfare of Japan, and a grant for Research on Health Science Focusing on Drug Innovation from The Japan Health Science Foundation.

ReferencesJohansson PJ, Bergentoft K, Larsson PA, Magnusson G, Widell A, Thorhagen M, A nosocomial sapovirus-associated outbreak of gastroenteritis in adults.Scand J Infect Dis 2005;37:2004 10.1080/0036554041002097415849053Sakai Y, Nakata S, Honma S, Tatsumi M, Numata-Kinoshita K, Chiba S Clinical severity of Norwalk virus and Sapporo virus gastroenteritis in children in Hokkaido, Japan.Pediatr Infect Dis J 2001;20:84953 10.1097/00006454-200109000-0000511734762Okada M, Yamashita Y, Oseto M, Shinozaki K The detection of human sapoviruses with universal and genogroup-specific primers.Arch Virol 2006;151:25039 10.1007/s00705-006-0820-116847552Oka T, Katayama K, Hansman GS, Kageyama T, Ogawa S, Wu FT, Detection of human sapovirus by real-time reverse transcription–polymerase chain reaction.J Med Virol 2006;78:134753 10.1002/jmv.2069916927293Hansman GS, Takeda N, Oka T, Oseto M, Hedlund KO, Katayama K Intergenogroup recombination in sapoviruses.Emerg Infect Dis 2005;11:19162016485479Katayama K, Miyoshi T, Uchino K, Oka T, Tanaka T, Takeda N, Novel recombinant sapovirus.Emerg Infect Dis 2004;10:1874615504283Hansman GS, Takeda N, Katayama K, Tu ET, McIver CJ, Rawlinson WD, Genetic diversity of sapovirus in children, Australia.Emerg Infect Dis 2006;12:141316494732Nakata S, Kogawa K, Numata K, Ukae S, Adachi N, Matson DO, The epidemiology of human calicivirus/Sapporo/82/Japan.Arch Virol Suppl 1996;12:263709015123Nakata S, Honma S, Numata KK, Kogawa K, Ukae S, Morita Y, Members of the family caliciviridae (Norwalk virus and Sapporo virus) are the most prevalent cause of gastroenteritis outbreaks among infants in Japan.J Infect Dis 2000;181:202932 10.1086/31550010837186Chan MC, Sung JJ, Lam RK, Chan PK, Lee NL, Lai RW, Fecal viral load and norovirus-associated gastroenteritis.Emerg Infect Dis 2006;12:12788016965715