Supporting Information

Method Development for On-Site Monitoring of Volatile Organic Compounds via Portable TD-GC-MS: Evaluation of the Analytical Performances of HAPSITE® ER Instrumentation and Thermal Desorption Sampling Media

Michael E. Smith, Emily Westbrook, Angela L. Stastny, Robert P. Streicher, and Michael G. Elliott *

*Michael G. Elliott

Email: michael.elliott@hq.doe.gov

Contents

Table S1. Concentrations of compounds within the 19-compound gas standard. All compounds are balanced in N_2 and have \pm 5% analytical uncertainty
Table S2. Volumes and masses of compounds injected onto TD tubes for the MS detector saturation study for analytes collected on Carbopack TM B
Figure S1. Illustration of the TD tube desorption temperature (black trace, left ordinate y-axis) and GC temperature (red trace, right ordinate y-axis) profiles used for the MS detector saturation study using Carbopack TM B sorbent media. TD tubes were desorbed for a total of 5 minutes from 40 to 300 °C with a ramp rate of 1.5 °C/second. The GC temperature profile started at 60 °C and was held for 1 minute followed by a 6.0 °C/minute ramp for 3 minutes and 20 seconds, a 12.0 °C/min ramp for 3 minutes and 20 seconds, then a 26.0 °C/minute ramp for 2 minutes and 20 seconds; constituting a 10-minute gas chromatography – mass spectrometry (GC-MS) run time
Table S3. Volumes and masses of compounds injected onto TD tub es for the MS detector saturation study for analytes collected on Tenax® TA
Figure S2. Illustration of the TD tube desorption temperature (black trace, left ordinate y-axis) and GC temperature (blue trace, right ordinate y-axis) profiles used for the various studies on Tenax® TA sorbent media including MS detector saturations, calibration curves, LOD/LOQ studies, carryover, and relative response factor repeatability. TD tubes were desorbed for a total of 8 minutes from 40 to 300 °C with a ramp rate of 1.5 °C/second. The GC temperature profile started at 50 °C and was held for 2.5 minutes followed by a 30.0 °C/minute ramp up to 70 °C with a hold for 2 minutes, then a 30.0 °C/minute ramp up to 180 °C; constituting an 8-minute and 50-second gas chromatography – mass spectrometry (GC-MS) run time
Figure S3. Results of the MS saturation study on Carbopack [™] B sorbent (n=1 for each spike level). Plots of TIC maximum vs. analyte mass (ng) for (A) chloroform, (B) benzene, (C) trichloroethylene, (D) heptane, (E) toluene, (F) tetrachloroethylene, (G) ethylbenzene, (H) <i>p</i> -xylene, (I) <i>o</i> -xylene, (J) mesitylene. Black-square data points indicate signals within the limit of the MS detector range while red-circular data points were instances where ER IQ software reported a saturated MS signal. Linear equations were fit to all data, indicated by black lines. Grey regions indicate the approximate MS detector saturation range
Figure S4. Results of the MS saturation study on Tenax® TA sorbent (n=1 for each spike level). Plots of TIC maximum vs. analyte mass (ng) for (A) chloroform, (B) benzene, (C) trichloroethylene, (D) heptane, (E) toluene, (F) tetrachloroethylene, (G) ethylbenzene, (H) <i>p</i> -xylene, (I) <i>o</i> -xylene, (J) mesitylene. Black-square data points indicate signals within the limit of the MS detector range while red-circular data points were instances where ER IQ software reported a saturated MS signal. Linear equations were fit to all data, indicated by black lines. Grey regions indicate the approximate MS detector saturation range

Contents continued

Figure S5. Illustration of the TD tube desorption temperature (black trace, left ordinate y-axis) and GC temperature (green trace, right ordinate y-axis) profiles used for the various studies on Carbopack TM B sorbent media including generation of calibration curves, LOD/LOQ studies, carryover, and relative response factor repeatability studies. TD tubes were desorbed for a total of 8 minutes from 40 to 330 °C with a ramp rate of 1.5 °C/second. The GC temperature profile started at 50 °C and was held for 2.5 minutes followed by a 30.0 °C/minute ramp up to 70 °C with a hold for 2 minutes, then a 30.0 °C/minute ramp up to 180 °C; constituting an 8-minute and 50-second gas chromatography – mass spectrometry (GC-MS) run time
Table S4. Equations, symbol definitions, and acceptance criteria for parameters from calibration data. 1,2 S-15
Table S5. Volumes and masses of compounds injected onto TD tubes containing Carbopack™ B sorbent for LOD and LOQ studies. S-15
Table S6. Volumes and masses of ethylbenzene injected onto TD tubes containing Carbopack TM B sorbent for LOD and LOQ studies. S-16
Table S7. Volumes and masses of compounds injected onto TD tubes containing Tenax® TA sorbent for LOD and LOQ studies. S-16
Figure S6. Calibration curves for analytes collected on Carbopack™ B sorbent. TRIS was used an internal standard in plot (A) while BPFB was used as the internal standard in plots (B). These calibration curves were used for the carryover and relative response factor repeatability studies. S-17
Table S8. Summary of the slopes, y-intercepts, R^2 values, \overline{RRF}_x , and $\%RSD_{RRF}$ from the analyte calibration data in Figures S6A and S6B using Carbopack TM B
Figure S7. Calibration curves for analytes collected on Tenax® TA sorbent. TRIS was used an internal standard in plot (A) while BPFB was used as the internal standard in plot (B). These calibration curves were used for the LOD and LOQ studies
Table S9. Summary of the slopes, y-intercepts, R^2 values, \overline{RRF}_x , and $\%RSD_{RRF}$ from the analyte calibration data in Figures S7A and S7B using Tenax® TA sorbent
Table S10. Summary of CCV data for all experiments using Carbopack™ B sorbent. The acceptance criteria in Table 5 were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Table S10 - CCV summaries". See electronic file for data

Contents continued

Table S11. Summary of CCV data for all experiments using Tenax® TA sorbent. The acceptance criteria in Table 5 were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Table S11 - CCV summaries". See electronic file for data
Figure S8. Plots of area counts vs analyte mass (ng) for the LOD/LOQ studies using (A) Carbopack™ B, and (B) Tenax® TA sorbents
Table S12. Summary of the slopes, y-intercepts, and values of $SE(y)$, R^2 , and $\% RSD_{RF_x}$ from the LOD/LOQ data in Figure S8A using Carbopack TM B sorbent
Table S13. Summary of the slopes, y-intercepts, and values of $SE(y)$, R^2 , and $\%RSD_{RF_x}$ from the LOD/LOQ data in Figure S8B using Tenax® TA sorbent
Figure S9. LOD/LOQ study. Plots of area ratio vs concentration for analytes using (A and B) Carbopack™ B, and (C, and D) Tenax® TA sorbents. Plots (A) and (B) represent the use of TRIS as the internal standard while plots (C) and (D) represent use of BPFB as the internal standard
Table S14. Average percent recoveries for analytes desorbed from Carbopack TM B and Tenax® TA sorbents during the LOD/LOQ study (n=2 at each spike level)
Table S15. Summary of the instances in which CCV data either met, indicated by "Y", or failed, indicated by "N "the acceptance criteria in which $-40\% < \%D_{RRF} < 40\%, -40\% < \%B < 40\%$, and $-30\% < \%P < 30\%$
Table S16. Summary of CCV data for all experiments using Carbopack TM B sorbent. The acceptance criteria in which $-40\% < \%D_{RRF} < 40\%, -40\% < \%B < 40\%,$ and $-30\% < \%P < 30\%$ were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Carbopack B CCV summaries – extended criteria". See electronic file for data
Table S17. Summary of CCV data for all experiments using Tenax® TA sorbent. The acceptance criteria in which $-40\% < \%D_{RRF} < 40\%, -40\% < \%B < 40\%, and -30\% < \%P < 30\% were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Tenax CCV summaries – extended criteria". See electronic file for data$
References S-26

Table S1. Concentrations of compounds within the 19-compound gas standard. All compounds are balanced in N_2 and have \pm 5% analytical uncertainty.

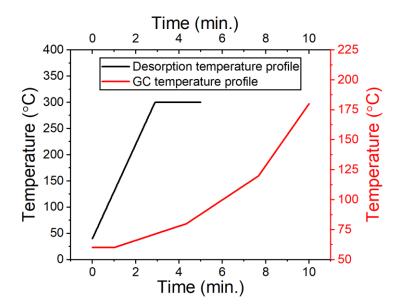

Compound	Concentration in gas
	standard (ppmv)
Chloroform	1.03
Benzene	1.00
Trichloroethylene	0.97
Heptane	1.02
Toluene	1.00
Tetrachloroethylene	1.00
Ethylbenzene	0.98
<i>p</i> -xylene	0.94
o-xylene	1.02
Mesitylene	0.99
1,2-Dichloroethane	1.05
Benzyl chloride	0.92
Carbon tetrachloride	1.04
Hexane	1.03
Methyl ethyl ketone	1.00
Methyl isobutyl ketone	0.97
Styrene	1.04
1,1,1-Trichloroethane	1.03
Tetrahydrofuran	0.96

Table S2. Volumes and masses of compounds injected onto TD tubes for the MS detector saturation study for analytes collected on CarbopackTM B.

			Analyte mass (ng)								
	150	167	487	795	637	574	1034	649	622	675	742
	100	511	325	530	425	383	689	433	415	450	495
	0.06	460	292	477	382	345	620	389	373	405	445
	80.0	409	260	424	340	306	551	346	332	360	396
ne (mL)	70.0	358	227	371	297	268	482	303	290	315	346
n volum	0.09	307	195	318	255	230	413	260	249	270	297
Injection volume (mL)	50.0	256	162	265	212	191	345	216	207	225	247
I	30.0	153	97.4	159	127	115	207	130	124	135	148
	20.0	102	64.9	106	85.0	76.6	138	86.5	83.0	90.0	6.86
	15.0	76.7	48.7	79.5	63.7	57.4	103	64.9	62.2	67.5	74.2
	10.0	51.1	32.5	53.0	42.5	38.3	68.9	43.3	41.5	45.0	49.5
Concentration	in gas standard (ppmv)	1.03	1.00	0.97	1.02	1.00	1.00	0.98	0.94	1.02	66.0
	Analyte	Chloroform	Benzene	Trichloroethylene	Heptane	Toluene	Tetrachloroethylene	Ethylbenzene	<i>p</i> -xylene	o-xylene	Mesitylene

All analyte masses were calculated assuming a pressure of 760 torr and temperature of 293.2 K.

The 19-compound gas standard was used for this study. All compounds are balanced in N_2 and have \pm 5% analytical uncertainty.

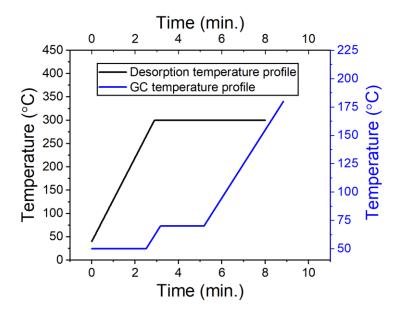
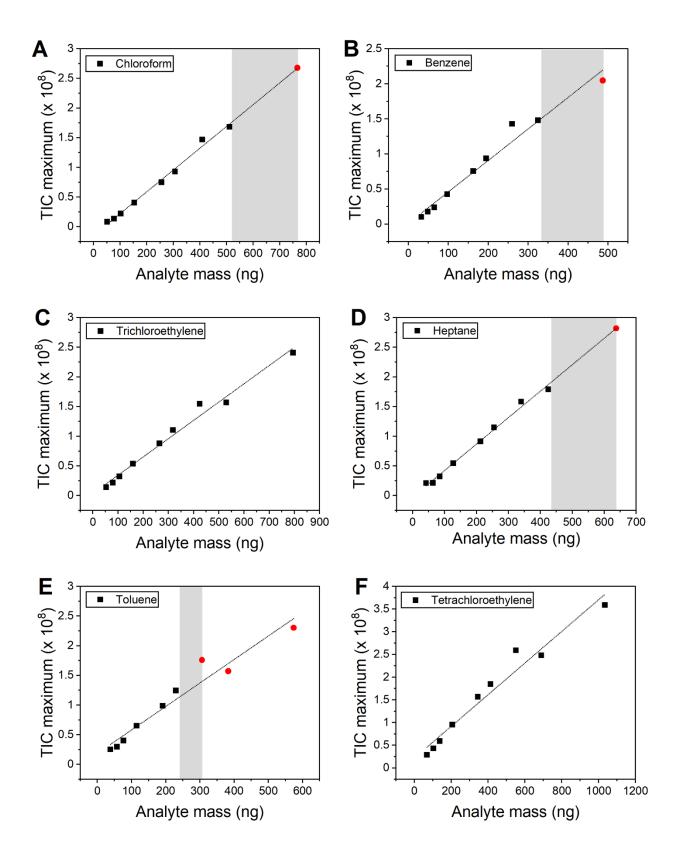
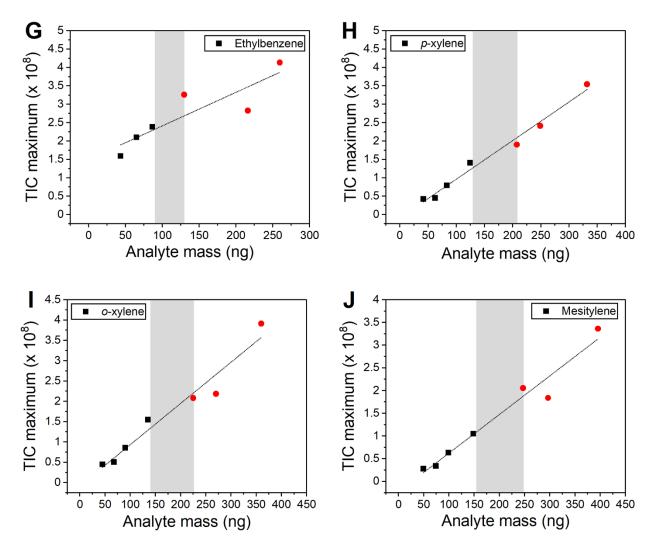
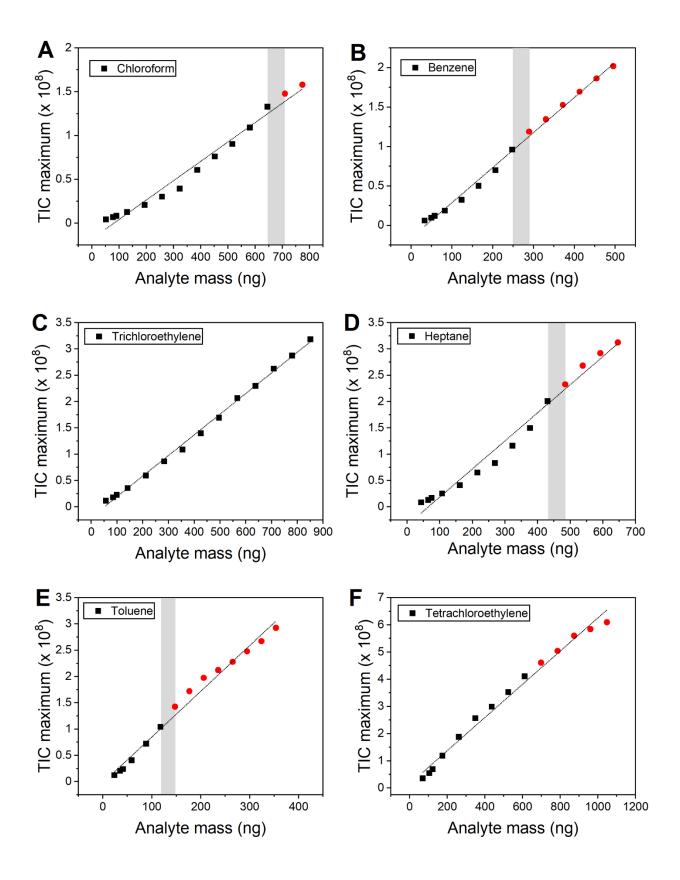


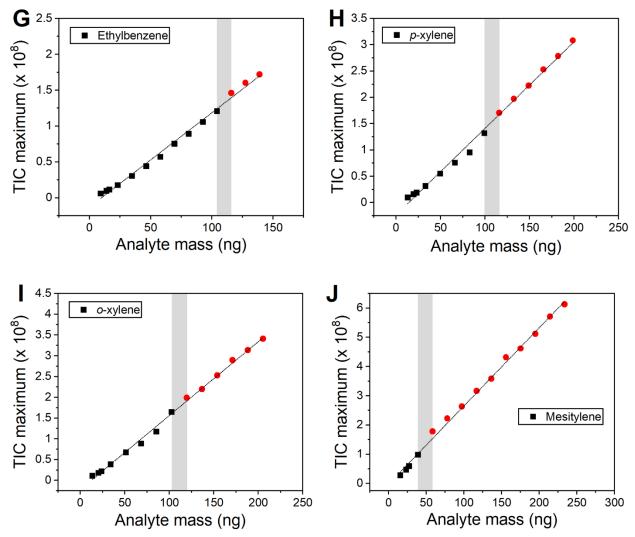
Figure S1. Illustration of the TD tube desorption temperature (black trace, left ordinate y-axis) and GC temperature (red trace, right ordinate y-axis) profiles used for the MS detector saturation study using Carbopack™ B sorbent media. TD tubes were desorbed for a total of 5 minutes from 40 to 300 °C with a ramp rate of 1.5 °C/second. The GC temperature profile started at 60 °C and was held for 1 minute followed by a 6.0 °C/minute ramp for 3 minutes and 20 seconds, a 12.0 °C/min ramp for 3 minutes and 20 seconds, then a 26.0°C/minute ramp for 2 minutes and 20 seconds; constituting a 10-minute gas chromatography − mass spectrometry (GC-MS) run time.


Table S3. Volumes and masses of compounds injected onto TD tubes for the MS detector saturation study for analytes collected on Tenax® TA.


			Analyte mass (ng)								
	30.0	774	496	850	646	354	1048	139	199	205	234
	27.5	710	454	779	592	324	961	127	182	188	214
	25.0	645	413	709	538	295	873	116	166	171	195
(22.5	581	372	638	484	265	786	104	149	154	175
Injection volume (mL)	20.0	516	330	567	431	236	669	92.7	132	137	156
n volur	17.5	452	289	496	377	206	611	81.1	116	120	136
njectio	15.0	387	248	425	323	177	524	69.5	99.3	103	117
	12.5	323	207	354	269	147	437	57.9	82.8	85.5	97.4
	10.0	258	165	283	215	118	349	46.3	66.2	68.4	77.9
	7.50	194	124	213	161	88.4	262	34.8	49.7	51.3	58.5
	5.00	129	82.6	142	108	59.0	175	23.2	33.1	34.2	39.0
Concentration	m standard (ppmv)	5.20	5.09	5.19	5.17	3.08	5.07	1.05	1.50	1.55	1.56
,	Analyte	Chloroform	Benzene	Trichloroethylene	Heptane	Toluene	Tetrachloroethylene	Ethylbenzene	<i>p</i> -xylene	o-xylene	Mesitylene

All analyte masses were calculated assuming a pressure of 760 torr and temperature of 293.2 K. The 10-compound gas standard was used for this study. All compounds are balanced in N_2 and have \pm 5% analytical uncertainty.




Figure S2. Illustration of the TD tube desorption temperature (black trace, left ordinate y-axis) and GC temperature (blue trace, right ordinate y-axis) profiles used for the various studies on Tenax® TA sorbent media including MS detector saturations, calibration curves, LOD/LOQ studies, carryover, and relative response factor repeatability. TD tubes were desorbed for a total of 8 minutes from 40 to 300 °C with a ramp rate of 1.5 °C/second. The GC temperature profile started at 50 °C and was held for 2.5 minutes followed by a 30.0 °C/minute ramp up to 70 °C with a hold for 2 minutes, then a 30.0 °C/minute ramp up to 180 °C; constituting an 8-minute and 50-second gas chromatography – mass spectrometry (GC-MS) run time.

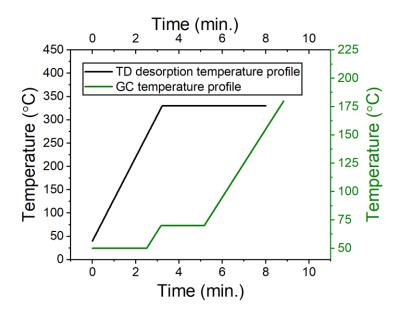


Figure S3. Results of the MS saturation study on Carbopack[™] B sorbent (n=1 for each spike level). Plots of TIC maximum vs. analyte mass (ng) for (A) chloroform, (B) benzene, (C) trichloroethylene, (D) heptane, (E) toluene, (F) tetrachloroethylene, (G) ethylbenzene, (H) *p*-xylene, (I) *o*-xylene, (J) mesitylene. Black-square data points indicate signals within the limit of the MS detector range while red-circular data points were instances where ER IQ software reported a saturated MS signal. Linear equations were fit to all data, indicated by black lines. Grey regions indicate the approximate MS detector saturation range.

Figure S4. Results of the MS saturation study on Tenax® TA sorbent (n=1 for each spike level). Plots of TIC maximum vs. analyte mass (ng) for (A) chloroform, (B) benzene, (C) trichloroethylene, (D) heptane, (E) toluene, (F) tetrachloroethylene, (G) ethylbenzene, (H) *p*-xylene, (I) *o*-xylene, (J) mesitylene. Black-square data points indicate signals within the limit of the MS detector range while red-circular data points were instances where ER IQ software reported a saturated MS signal. Linear equations were fit to all data, indicated by black lines. Grey regions indicate the approximate MS detector saturation range.

Figure S5. Illustration of the TD tube desorption temperature (black trace, left ordinate y-axis) and GC temperature (green trace, right ordinate y-axis) profiles used for the various studies on Carbopack™ B sorbent media including generation of calibration curves, LOD/LOQ studies, carryover, and relative response factor repeatability studies. TD tubes were desorbed for a total of 8 minutes from 40 to 330 °C with a ramp rate of 1.5 °C/second. The GC temperature profile started at 50 °C and was held for 2.5 minutes followed by a 30.0 °C/minute ramp up to 70 °C with a hold for 2 minutes, then a 30.0 °C/minute ramp up to 180 °C; constituting an 8-minute and 50-second gas chromatography − mass spectrometry (GC-MS) run time.

Table S4. Equations, symbol definitions, and acceptance criteria for parameters from calibration data. ^{1,2}

Parameter	Equation	Symbol definitions	Acceptance criteria
Relative retention times (RRT)	$RRT = \frac{RT_x}{RT_{IS}}$	RT_x = Analyte retention time (min.) RT_{IS} = Internal standard retention time (min.)	± 0.06 RRT units of the mean RRT for the compound at each calibration level
Area response of internal standard (%A _{IS})	$\%A_{IS} = \frac{Y}{\overline{Y}} \times 100$	Y = Area response for the quantitative ion for the internal standard \overline{Y} = Mean area response for the quantitative ion for the internal standard	± 40% (for blanks and calibration standards)
Retention time shift of the internal standard (RT_{shift})	$RT_{shift} = RT_{IS} - \overline{RT}_{IS}$	RT_{IS} = Internal standard retention time (min.) \overline{RT}_{IS} = Mean internal standard retention time (min.)	± 20 seconds of the \overline{RT}_{IS} over the initial calibration range for each internal standard

Table S5. Volumes and masses of compounds injected onto TD tubes containing Carbopack $^{\text{TM}}$ B sorbent for LOD and LOQ studies.

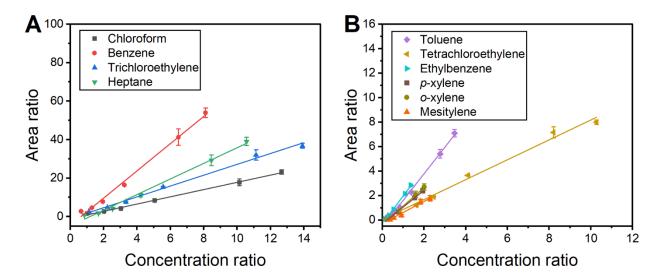

Analyte	Concentration in standard	Injec			
	(ppmv)	50	100	200	
Chloroform	5.20	1.29	2.58	5.16	V
Benzene	5.09	0.83	1.65	3.30	na
Trichloroethylene	5.19	1.42	2.83	5.67	llyte (ng)
Heptane	5.17	1.08	2.15	4.31	
Toluene	3.08	0.59	1.18	2.36	mass
Tetrachloroethylene	5.07	1.75	3.49	6.99	Š

Table S6. Volumes and masses of ethylbenzene injected onto TD tubes containing CarbopackTM B sorbent for LOD and LOQ studies.

Analyte	Concentration in standard	Injec			
	(ppmv)	250	500	750	
Ethylbenzene	1.05	1.16	2.32	3.48	Analyte mass (ng)

Table S7. Volumes and masses of compounds injected onto TD tubes containing Tenax® TA sorbent for LOD and LOQ studies.

Analyte	Concentration in standard	Injec	ction vo (µL)	lume	
-	(ppmv)	50	100	200	
Chloroform	5.20	1.29	2.58	5.16	
Benzene	5.09	0.83	1.65	3.30	_
Trichloroethylene	5.19	1.42	2.83	5.67	'n
Heptane	5.17	1.08	2.15	4.31	nalyte
Toluene	3.08	0.59	1.18	2.36	te 1
Tetrachloroethylene	5.07	1.75	3.49	6.99	mass
Ethylbenzene	1.05	0.23	0.46	0.93	
<i>p</i> -xylene	1.50	0.33	0.66	1.32	(ng)
o-xylene	1.55	0.34	0.68	1.37	
Mesitylene	1.56	0.39	0.78	1.56	

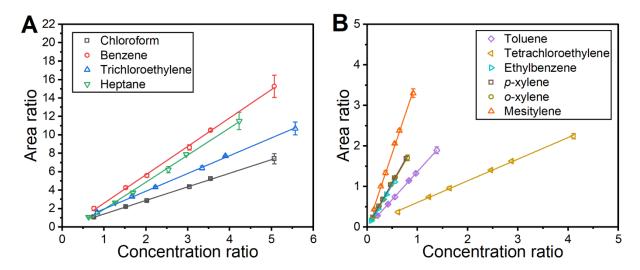

Figure S6. Calibration curves for analytes collected on CarbopackTM B sorbent. TRIS was used an internal standard in plot (A) while BPFB was used as the internal standard in plots (B). These calibration curves were used for the carryover and relative response factor repeatability studies.

Table S8. Summary of the slopes, y-intercepts, \overline{RRF}_x , and $\%RSD_{RRF}$ from the analyte calibration data in Figures S6A and S6B using CarbopackTM B sorbent.

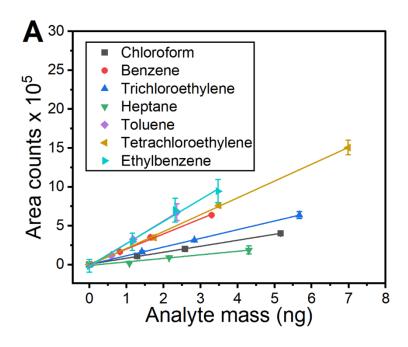
Analyte	Slope	y- intercept	\overline{RRF}_{χ}	$\%RSD_{RRF_x}$
Chloroform [†]	1.88 ± 0.03	-1.02 ± 0.20	1.58	12.8
Benzene [†]	7.08 ± 0.14	-4.53 ± 0.66	4.96	24.8
Trichloroethylene [†]	2.82 ± 0.07	-1.04 ± 0.55	2.48	12.8
Heptane [†]	4.06 ± 0.10	-4.79 ± 0.60	2.26	49.5
Toluene [‡]	2.17 ± 0.05	-0.57 ± 0.09	1.53	25.8
Tetrachloroethylene [‡]	0.81 ± 0.02	0.05 ± 0.14	0.82	8.65
Ethylbenzene [‡]	2.26 ± 0.05	-0.29 ± 0.04	1.42	39.2
<i>p</i> -xylene [‡]	1.36 ± 0.05	-0.29 ± 0.05	0.76	51.8
o-xylene [‡]	1.49 ± 0.06	-0.35 ± 0.07	0.81	53.7
Mesitylene [‡]	0.90 ± 0.05	-0.28 ± 0.06	0.43	67.1

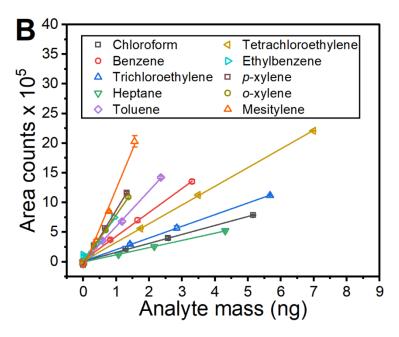
[†] and ‡ represent the use of TRIS or BPFB as the internal standard.

 $^{\%}RSD_{RF_{TRIS}} = 12.3$ and $\%RSD_{RF_{BPFB}} = 13.9$.

Figure S7. Calibration curves for analytes collected on Tenax® TA sorbent. TRIS was used an internal standard in plot (A) while BPFB was used as the internal standard in plot (B). These calibration curves were used for the LOD and LOQ studies.

Table S9. Summary of the slopes, y-intercepts, $\%RSD_{RF_{\chi}}$, and $\%RSD_{RRF}$ from the analyte calibration data in Figures S7A and S7B using Tenax® TA sorbent.


Analyte	Slope	y- intercept	\overline{RRF}_{x}	$\%RSD_{RRF_x}$
Chloroform [†]	1.48 ± 0.02	-0.06 ± 0.05	1.44	2.80
Benzene [†]	4.82 ± 0.06	-0.50 ± 0.12	4.43	5.22
Trichloroethylene [†]	1.93 ± 0.04	0.03 ± 0.13	1.94	3.67
Heptane [†]	2.94 ± 0.05	-1.02 ± 0.13	2.30	15.7
Toluene [‡]	1.37 ± 0.01	-0.01 ± 0.01	1.36	2.80
Tetrachloroethylene [‡]	0.53 ± 0.01	0.07 ± 0.02	0.58	5.37
Ethylbenzene [‡]	2.09 ± 0.02	-0.01 ± 0.01	2.05	3.66
<i>p</i> -xylene [‡]	2.19 ± 0.03	$ \begin{array}{c c} -1.10 \times 10^{-3} \\ \pm 0.01 \end{array} $	2.18	3.51
o-xylene [‡]	2.16 ± 0.02	-0.01 ± 0.01	2.12	4.33
Mesitylene [‡]	3.69 ± 0.05	-0.02 ± 0.03	3.58	5.99


[†] and ‡ represent the use of TRIS or BPFB as the internal standard.

 $^{\%}RSD_{RF_{TRIS}} = 5.01$ and $\%RSD_{RF_{BPFB}} = 4.63$.

Table S10. Summary of CCV data for all experiments using Carbopack™ B sorbent. The acceptance criteria in Table 5 were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Table S10 - CCV summaries". See electronic file for data.

Table S11. Summary of CCV data for all experiments using Tenax® TA sorbent. The acceptance criteria in Table 5 were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Table S11 - CCV summaries". See electronic file for data.

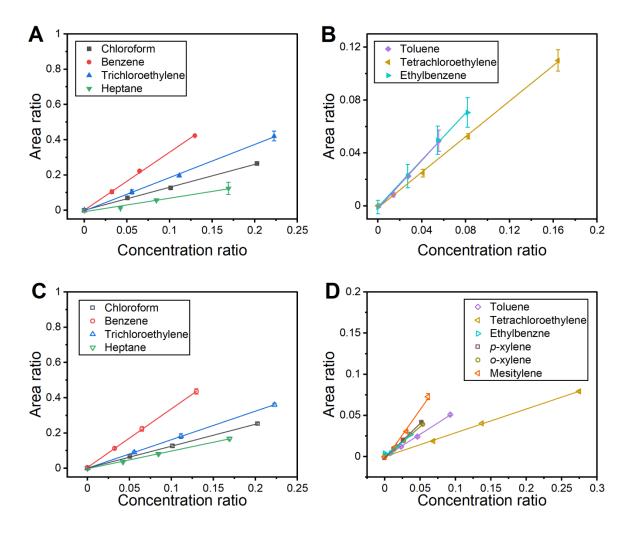

Figure S8. Plots of area counts vs analyte mass (ng) for the LOD/LOQ studies using (A) CarbopackTM B, and (B) Tenax® TA sorbents.

Table S12. Summary of the slopes, y-intercepts, and values of SE(y), and $\%RSD_{RF_{\chi}}$ from the LOD/LOQ data in Figure S8A using CarbopackTM B sorbent.

Analyte	Slope	y-intercept	SE(y)	$\%RSD_{RF_x}$
	7.70×10^4	5.27×10^3		
Chloroform	土	±	6.37×10^3	6.05
	1.18×10^3	3.49×10^{3}		
	1.95×10^5	7.99×10^3		
Benzene	±	±	1.86×10^4	5.49
	5.39×10^3	1.02×10^4		
	1.12×10^5	2.23×10^{3}		
Trichloroethylene	<u>±</u>	<u>±</u>	1.87×10^4	5.34
	3.16×10^3	1.03×10^4		
	4.56×10^4	-1.13×10^4		
Heptane	<u>±</u>	<u>±</u>	2.51×10^4	40.2
	5.58×10^{3}	1.38×10^4		
	2.92×10^{5}	-2.24×10^4		
Toluene	<u>±</u>	<u>±</u>	5.03×10^4	19.5
	2.04×10^4	2.75×10^4		
	2.16×10^5	-8.63×10^3		
Tetrachloroethylene	<u>±</u>	<u>±</u>	4.52×10^4	6.72
	6.18×10^3	2.48×10^4		
	2.88×10^{5}	-7.45×10^3		
Ethylbenzene	<u>±</u>	<u>±</u>	1.10×10^5	20.5
	3.01×10^4	6.53×10^4		

Table S13. Summary of the slopes, y-intercepts, and values of SE(y), and $\%RSD_{RF_{\chi}}$ from the LOD/LOQ data in Figure S8B using Tenax® TA sorbent.

Analyte	Slope	y-intercept	SE(y)	$\%RSD_{RF_x}$
	1.51×10^5	7.86×10^{3}		
Chloroform	±	<u>±</u>	1.37×10^4	5.49
	2.55×10^{3}	7.53×10^3		
	4.04×10^5	2.58×10^4		
Benzene	±	±	2.43×10^4	5.16
	7.04×10^5	1.33×10^4		
	1.97×10^5	8.49×10^{3}		
Trichloroethylene	±	±	2.00×10^4	5.20
	3.38×10^3	1.10×10^4		
	1.22×10^5	-4.67×10^3		
Heptane	±	±	8.19×10^3	4.43
	1.82×10^{3}	4.48×10^{3}		
	6.00×10^5	-3.39×10^3		
Toluene	±	±	2.05×10^4	3.36
	8.33×10^3	1.12×10^4		
	3.15×10^5	1.19×10^4		
Tetrachloroethylene	±	±	1.01×10^4	1.13
	1.38×10^3	5.51×10^3		
	7.27×10^5	3.36×10^4		
Ethylbenzene	± .	±	7.86×10^4	20.5
	8.10×10^4	4.30×10^4		
	9.16×10^5	-4.46×10^4		
<i>p</i> -xylene	± .	±	1.39×10^4	4.09
	1.00×10^4	7.59×10^3		
	7.96×10^5	-4.44×10^3		
o-xylene	±	± 2	1.72×10^4	4.45
	1.20×10^4	9.43×10^3		
	1.34×10^6	-1.08×10^5		
Mesitylene	±	±	9.29×10^4	16.4
	5.70×10^4	5.09×10^4		

Figure S9. LOD/LOQ study. Plots of area ratio vs concentration for analytes using (A and B) CarbopackTM B, and (C, and D) Tenax® TA sorbents. Plots (A) and (B) represent the use of TRIS as the internal standard while plots (C) and (D) represent use of BPFB as the internal standard.

Table S14. Average percent recoveries for analytes desorbed from CarbopackTM B and Tenax® TA sorbents during the LOD/LOQ study (n=2 at each spike level).

		ent Recover	•		ent Recove	•
	Ca	rbopack TM			Tenax® TA	
Analyte	Low	Mid	High	Low	Mid	High
	level	level	level	level	level	level
	spike	spike	spike	spike	spike	spike
Chloroform	106 ±	94.9 ±	99.4 ±	102 ±	98.9 ±	98.6 ±
Chioroform	11.8	0.06	13.0	5.65	2.27	0.85
Dangana	97.5 ±	104 ±	98.6 ±	101 ±	101 ±	98.1 ±
Benzene	13.0	1.96	0.98	6.41	1.90	0.32
Trichlonoothylono	101 ±	96.0 ±	103 ±	99.7 ±	101 ±	99.7 ±
Trichloroethylene	16.4	1.39	5.98	8.86	3.80	2.87
Hantono	51.2 ±	119 ±	130 ±	92.1 ±	103 ±	105 ±
Heptane	2.80	7.14	37.5	5.95	4.25	5.47
Tolyona	79.0 ±	106 ±	115 ±	97.8 ±	98.9 ±	103 ±
Toluene	8.91	4.10	13.9	5.27	4.58	0.08
Totacoblomoothylono	94.6 ±	100 ±	105 ±	96.6 ±	103 ±	101 ±
Tetrachloroethylene	1.11	2.45	2.54	2.07	0.76	0.94
Ethylhanzana	95.5 ±	105 ±	99.5 ±	72.2 ±	106 ±	121 ±
Ethylbenzene	40.6	21.2	19.1	6.09	4.87	4.07
n vylono				92.6 ±	102 ±	105 ±
<i>p</i> -xylene				6.28	1.01	0.26
o vylono				93.0 ±	102 ±	105 ±
o-xylene				5.96	3.98%	3.26
Magitylana				79.3 ±	101 ±	120 ±
Mesitylene				6.07	0.00	4.35

indicated by "N" the acceptance criteria in which $-40\% < \%D_{RRF} < 40\%, -40\% < \%B < 40\%,$ **Table S15.** Summary of the instances in which CCV data either met, indicated by "Y", or failed, and -30% < %P < 30%.

		C	arbop	Carbopack tm B					Tena	Tenax® TA		
Analyte	LOD/LOQ study	.0Q st	,udy	Carı relati rep	Carryover and relative response factor repeatability	and ponse lity	rod/	LOD/LOQ study	tudy	Carryover and relative response factor repeatability study	Carryover and relative response actor repeatability study	and ponse ability
	$\%D_{RRF}$	%B	d%	$\%D_{RRF}$	<i>8</i> %	d%	$\%D_{RRF}$	%B	d%	$\%D_{RRF}$	8%	%P
Chloroform	Ā	Y	Ā	Y	Ā	Ā	Y	Ā	Ā	Ā	Ā	Y
Benzene	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	7
Trichloroethylene	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	7
Heptane	Y	Y	Y	ŀ	1	1	Y	Y	Y	Y	Y	Y
Toluene	Ā	Y	Ā	-			Y	Ā	Ā	Ā	Ā	Y
Tetrachloroethylene	Z	Z	Ā	Z	Z	Y	Y	Y	Y	Y	Y	Y
Ethylbenzene	Y	Y	Ā	1	-		Y	Y	Ā	Y	Ā	Y
p-xylene	1	-		-			Ā	Ā	Ā	Ā	Ā	Y
o-xylene	:	-		-			Ā	Ā	Ā	Ā	Ā	Y
Mesitylene	:	-		-			Ā	Ā	Ā	Ā	Ā	Y
"" Denotes instances where the calibration curve was unacceptable.	ere the ca	libratio	on cur	ve was u	naccer	otable.						

Table S16. Summary of CCV data for all experiments using CarbopackTM B sorbent. The acceptance criteria in which $-40\% < \%D_{RRF} < 40\%$, -40% < %B < 40%, and -30% < %P < 30% were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Carbopack B CCV summaries – extended criteria". See electronic file for data.

Table S17. Summary of CCV data for all experiments using Tenax® TA sorbent. The acceptance criteria in which $-40\% < \%D_{RRF} < 40\%$, -40% < %B < 40%, and -30% < %P < 30% were applied to the data. Instances where the acceptance criteria were not met are indicated by a red box with "FALSE" text. Instances where acceptance criteria were met are indicated by a white box with "TRUE" text. Refer to the excel file titled "Tenax CCV summaries – extended criteria". See electronic file for data.

REFERENCES

- (1) United States Environmental Protection Agency (U.S. EPA): Method 325B Volatile Organic Compounds from Fugitive and Area Sources: Sampler Preparation and Analysis https://www.epa.gov/emc/method-325b-volatile-organic-compounds-fugitive-and-area-sources-sampler-preparation-and (accessed Feb 18, 2020).
- (2) McClenny, W. A.; Holdren, M. W. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Compendium Method TO-15; Cincinnati, OH; U.S. Environmental Protection Agency (EPA); Report No.: EPA/625/R-96/010b: 1-32, 1999.