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Abstract

Background: Wastewater monitoring data can be used to estimate disease trends to inform 

public health responses. One commonly estimated metric is the rate of change in pathogen 

quantity, which typically correlates with clinical surveillance in retrospective analyses. However, 

the accuracy of rate of change estimation approaches has not previously been evaluated.
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Objectives: We assessed the performance of approaches for estimating rates of change in 

wastewater pathogen loads by generating synthetic wastewater time series data for which rates of 

change were known. Each approach was also evaluated on real-world data.

Methods: Smooth trends and their first derivatives were jointly sampled from Gaussian processes 

(GP) and independent errors were added to generate synthetic viral load measurements; the range 

hyperparameter and error variance were varied to produce nine simulation scenarios representing 

different potential disease patterns. The directions and magnitudes of the rate of change estimates 

from four estimation approaches (two established and two developed in this work) were compared 

to the GP first derivative to evaluate classification and quantitative accuracy. Each approach was 

also implemented for public SARS-CoV-2 wastewater monitoring data collected January 2021 – 

May 2023 at 25 sites in North Carolina, USA.

Results: All four approaches inconsistently identified the correct direction of the trend given by 

the sign of the GP first derivative. Across all nine simulated disease patterns, between a quarter 

and a half of all estimates indicated the wrong trend direction, regardless of estimation approach. 

The proportion of trends classified as plateaus (statistically indistinguishable from zero) for the 

North Carolina SARS-CoV-2 data varied considerably by estimation method but not by site.

Discussion: Our results suggest that wastewater measurements alone might not provide 

sufficient data to reliably track disease trends in real-time. Instead, wastewater viral loads could 

be combined with additional public health surveillance data to improve predictions of other 

outcomes.
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1 Introduction

The use of wastewater surveillance to monitor infectious disease expanded dramatically 

during the global coronavirus disease 2019 (COVID-19) pandemic, with thousands of 

monitoring sites active across dozens of countries by early 2023.1 Wastewater monitoring 

offers attractive features for augmenting surveillance of a wide range of pathogens and 

other population health-relevant targets, such as toxic metals and endogenous biomarkers, 
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and may be particularly well-suited as an early warning system for outbreaks of 

novel pathogens and variants.2–7 However, assessing disease trends using wastewater 

surveillance faces an inherent challenge of interpretation: unlike traditional population 

metrics derived from counts of infected, symptomatic, or hospitalized individuals, the 

quantity of pathogen markers (e.g., gene targets) measured in wastewater cannot be used 

directly as a proxy for community disease burden. The loads of pathogen markers present 

in wastewater are broadly proportional to the number of infected individuals shedding 

the pathogen in their feces—demonstrated for SARS-CoV-2 by widely reported positive 

associations between wastewater viral loads and reported COVID-19 cases—but numerous 

biological, environmental, and site-specific factors can differentially impact measurements 

of wastewater pathogen loads at any given place and time.8–13

A common strategy for interpreting wastewater pathogen loads is to estimate traditional 

disease metrics like incidence rate or effective reproduction number.12,14–18 Such metrics 

are typically estimated by exploiting statistical associations between wastewater pathogen 

loads and reported cases, hospitalizations, etc. at a given site or by constructing 

mechanistic models of fecal shedding to estimate the number of community infections 

required to produce the pathogen loads measured in the community’s wastewater. These 

strategies require additional assumptions and data to implement, such as geographically 

and temporally aligned population surveillance data or pathogen-specific fecal shedding 

distributions. Such data, however, are often unavailable for novel pathogens and are subject 

to change unpredictably over the course of an outbreak or pandemic.18–20

An alternative strategy for interpreting wastewater pathogen loads is to assess trends over 

time by comparing the loads measured at different time points within the same location. 

Because assessing trends within-site helps to control for site-specific factors that influence 

pathogen load measurements, an increasing trend in wastewater measurements should 

correspond to an increase in infections in the community. Useful information about the 

direction and speed at which community infection trends are changing may therefore be 

inferred solely on the basis of wastewater measurements by estimating the slope of the 

wastewater trend at specific times, where the sign and magnitude of the slope provide the 

direction and rate of change, respectively.21 As within-site analyses do not account for 

time-varying factors like dilution or population mobility, the consistent use of validated 

pathogen quantification methods with appropriate processing controls is essential for 

assessing temporal trends in wastewater monitoring data.22–25

During the COVID-19 pandemic, the United States Centers for Disease Control and 

Prevention (CDC) described a simple regression-based approach for estimating the rate 

of change in SARS-CoV-2 wastewater trends over small subsets of wastewater viral load 

data.26,27 A refinement of this approach was suggested that uses reported daily COVID-19 

case counts to impute wastewater viral loads on unmonitored days before applying linear 

regression to estimate rates of change.21 Both approaches produce estimated slopes (the 

rate of change) and associated standard errors that can be used for trend classification: 

a positive and statistically significant slope means the trend is increasing, a negative and 

significant slope means the trend is decreasing, and a slope that is not statistically significant 

(regardless of the sign) indicates the trend is not meaningfully changing and is classified 
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as a plateau.19 Rate of change estimates from both approaches have been compared with 

population-based metrics (e.g., reported cases) but, to the best of our knowledge, the 

estimation performance and trend classification accuracy of either approach has not yet 

been evaluated.19,21

We developed a simulation-based approach to evaluate rate of change estimates using 

synthetic time series data for which the underlying smooth trends and their rates of change 

were known exactly. We sampled from Gaussian processes (GP) to jointly simulate smooth 

wastewater viral load trends and their first derivatives.28–30 Independent random errors 

were introduced to the simulated trends to generate synthetic measurements of wastewater 

viral loads, varying the smoothness of the trends and the magnitude of the errors to 

represent a range of potential infectious disease patterns. We evaluated four rate of change 

estimation approaches: the linear regression approach described by CDC, the multivariate 

imputation approach proposed by Al-Faliti et al. (2022), a modified univariate imputation 

approach requiring only wastewater measurements, and a continuous smoothing approach 

using generalized additive models (GAM) with numerical approximation to estimate the 

smooth trend and its first derivative.21,26,31,32 These candidate approaches were applied to 

the synthetic wastewater data and evaluated by comparing their rate of change estimates to 

the simulated GP derivatives. Finally, all four approaches were applied to public wastewater 

monitoring data from 25 North Carolina sewersheds to assess the impact of estimation 

method on the interpretation of trends in a real-world context.

2 Methods

2.1 Rate of Change Estimation Approaches

All analyses were performed in R version 4.2.2.33,34 R packages used are denoted by italics.

2.1.1 Rolling Regressions by Sampling Event—CDC National Wastewater 

Surveillance System (NWSS) recommends analyzing trends in measured wastewater viral 

loads by fitting simple linear regression models to a minimum of the three most-recent 

wastewater samples for a given location. These models use log-transformed viral load (log10 

gene copies/day) as the response variable and date as the predictor variable.21,26,27 When 

fit to three observations of weekly wastewater samples or five observations of twice-weekly 

samples, the regression coefficient corresponds to the slope of the trend—the average daily 

change in viral load—over the preceding ~15 days.26 The estimated rate of change can also 

be expressed as percent daily change (PDC), enabling more direct comparison with trends 

in other metrics.26 We estimated the rate of change on each day of sample collection by 

fitting rolling linear models to wastewater viral loads measured on the estimation day and 

the preceding four sampling events (five observations total).26,35 For event i of N sampling 

events, let yi = [yi−4, …, yi]T denote the log10-transformed wastewater viral loads and zi = 

[zi−4, …, zi]T denote the sampling dates. The rate of change estimate is given by β in

yi = β0 + ziβ + ϵi,

(1)
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where we assume independent, normally distributed residuals εi = [εi−4, …, εi]T.

2.1.2 Rolling Regressions on Imputed Daily Observations

2.1.2.1 Multivariate Imputation: While clinical and syndromic surveillance of infectious 

disease outcomes (e.g., incident cases, hospitalizations, and deaths) are generally reported 

at daily resolution, wastewater surveillance programs typically sample less frequently, often 

once or twice a week.27,36 Rate of change estimates based on small subsets of wastewater 

observations are subject to substantial uncertainty and temporal variability.19,37 To address 

the temporal sparsity of wastewater data, Al-Faliti et al. used daily reported cases to impute 

wastewater viral loads on unsampled days.21 Daily rates of change were estimated using 

rolling linear models applied over 21- or 28-day subsets of the imputed daily wastewater 

viral loads. Following the approach of Al-Faliti et al., we constructed five complete daily 

viral load datasets using the mice package to implement multivariate imputation using 

chained equations (MICE) with random forest models.38 We used log10 wastewater viral 

loads and a 7-day moving average of daily cases as inputs to MICE. We modified the 

original approach slightly by log-transforming the averaged cases for computational stability 

and specifying a consistent 20 iterations of the MICE algorithm for each dataset we 

imputed.39 From the five resulting complete daily datasets, we selected the realization 

demonstrating the highest Spearman rank correlation between 7-day average cases and 

the imputed daily wastewater viral loads for downstream analyses, as specified by the 

method developers. For the selected multivariate-imputed daily dataset, we estimated the 

rate of change on each original sampling day by applying the rolling linear model approach 

described previously to the 21 daily observations ending on the estimation day.

2.1.2.2 Univariate Imputation: The multivariate imputation approach relied on daily 

reported case data but a key motivation for estimating rates of change in wastewater 

surveillance data is to enable identification and interpretation of infectious disease trends 

using only wastewater surveillance data (i.e., when reported case data are unavailable or 

inadequate). We therefore also implemented a univariate time series imputation approach 

that used only the measured wastewater viral loads to impute viral loads on unmonitored 

days. Univariate imputation was conducted by Kalman smoothing on structural time series 

models using the imputeTS package.40 Kalman smoothing has previously been shown to 

flexibly estimate smooth trends in wastewater viral loads on both synthetic and various real-

world wastewater surveillance data.37 However, as a discrete-time autoregressive approach 

that assumes equal-sized time steps, Kalman smoothing does not provide a direct way to 

estimate the rate of change and corresponding uncertainty of the modeled trend. As such, 

we used Kalman smoothing trend estimates to impute wastewater viral loads on unsampled 

days, then estimated the rate of change on each original sampling day by applying 21-day 

window rolling linear models to the imputed dataset.

2.1.3 First Derivatives of Smooth Functions of Time—Substantial fluctuations 

over short timescales in both measured wastewater viral loads and reported infections have 

motivated the use of a variety of smoothing approaches to better characterize infectious 

disease trends from noisy surveillance data.21,31,41 Many common smoothing techniques, 

including simple moving averages and locally weighted scatterplot smoothing (LOESS), 
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use the values of neighboring observations within a user-defined window to estimate 

smoothed values.18,19,21,42 Such techniques are entirely data-dependent and do not have 

simple mathematical representations like those from the methods previously presented. 

Common time series approaches like Kalman smoothing assume equally spaced time steps 

and can only provide smooth estimates at discrete time points.43,44 By contrast, approaches 

that estimate continuous, smooth functions of time from the observed data can be evaluated 

at any arbitrary time point to obtain the corresponding estimate of the smooth trend. This 

feature provides a straightforward means of estimating the rate of change in the smooth 

trend at any moment during the monitoring period using finite differences to numerically 

approximate the first derivative.43

We used generalized additive models to estimate smoothed wastewater viral loads as 

continuous functions of time (see Supplemental Material). GAMs are a flexible extension of 

the generalized linear model that have previously been shown to provide accurate estimates 

of wastewater SARS-CoV-2 viral loads.31,32,45 We used the mgcv package to estimate 

GAMs by restricted maximum likelihood (REML) using log10 wastewater viral load as 

the response and study date as a smooth predictor term. We specified a cubic regression 

spline basis and the lesser of 100 or half the number of observations as the maximum basis 

dimension.32,46,47 Daily first derivatives and their corresponding pointwise 95% confidence 

intervals (CI) were estimated from GAM fits using the gratia package.48

2.2 Simulating Differentiable Time Series

2.2.1 Simulating Smooth Trends with Known Rates of Change—We simulated 

wastewater trends and corresponding rates of change by sampling from Gaussian processes 

with squared exponential kernel covariance functions. A GP represents a distribution over 

all the possible smooth functions of a continuous domain (e.g., time) and is defined by its 

covariance function k(zi, zj) that relates any pair of time points zi, zj on that domain.28,43,49 

The time-derivative of a GP is also a GP with a covariance kernel function k′(zi, zj) equal 

to the derivative of the original covariance function with respect to times zi and zj.29,30 This 

feature enables us to simulate both a smooth trend and its instantaneous rate of change at any 

finite set of time points by jointly sampling from the GP and its derivative, which follow a 

multivariate normal distribution (see Supplemental Material).30,50

The squared exponential kernel covariance function is given by

k zi, zj ∣ α, ρ = α2exp − 1
2

zi − zj
ρ

2
,

(2)

where α is the marginal standard deviation, a scale hyperparameter that controls the 

magnitude of the covariance.30 The rate at which correlation decays with increasing distance 

between times zi and zj is controlled by the range hyperparameter ρ. Smaller values of 

ρ indicate that correlation decays more quickly, so that each observation provides less 

information about observations at other time points. The result is a more rapidly changing, 

“wiggly” function. Conversely, larger values of ρ mean each observation offers greater 
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information about its temporal neighbors, producing a more slowly changing, or smoother, 

trend. We implemented the squared exponential kernel and its derivatives (see Supplemental 

Material) as R functions and jointly sampled trend observations and derivatives using the 

mvnfast package.50,51

2.2.2 Generating Synthetic Wastewater Measurements—Synthetic wastewater 

viral load time series data (in log10 copies/day) were generated by jointly sampling a 

smooth trend and its first derivative from a GP at 1000 sequential integer locations to 

represent a 1000-day monitoring period with daily trend realizations. Independent random 

errors ϵt
ww N 0, σ2  with standard deviation σ were independently sampled on each day t 

and added to the corresponding trend value xt to simulate the daily wastewater log10 viral 

load measurement yt
ww = xt + ϵt

ww. We down-sampled the synthetic wastewater measurements 

by selecting every third, then fourth, observation in an alternating pattern to represent a 

typical twice-weekly wastewater sampling frequency, denoted yi
ww, obs = yt[i]

ww for the ith of N 

simulated sampling events.52 Although our primary aim was estimating rates of change 

using wastewater measurements alone, implementing the multivariate imputation approach 

required simulating daily reported case counts that shared an underlying trend with the 

simulated wastewater viral loads. We sampled daily cases from a Poisson distribution with 

the daily log-incidence rate given by the sum of the GP trend, independent Gaussian 

error, and a constant mean log-incidence rate determined mechanistically for an assumed 

sewershed population of 200,000 (see Supplemental Material).12

2.3 Evaluating Performance of Rate of Change Estimation Approaches

2.3.1 Simulation Scenarios—We evaluated the rate of change estimation performance 

for three values of ρ so as to have varying smoothness of trends, and three values of σ so 

as to control the magnitude of variation of synthetic observations around the trend. In total, 

we had nine simulation scenarios. Range hyperparameter values of ρ = 90, ρ = 30, and ρ 
= 15 days were selected to produce more smooth (slowly changing), moderately smooth, 

and less smooth (“wiggly”) trends, respectively.43 As ρ approximately corresponds to the 

timeframe during which a measurement provides information about the value of the trend at 

other times, the simulation scenarios represented disease trends that fluctuate over the course 

of seasons (ρ = 90 days), months (ρ = 30 days), and weeks (ρ = 15 days). The GP marginal 

standard deviation α = 1 was used for all simulations, such that the uncorrelated variance 

σ2 was a quarter of the autocorrelated trend variance α2 for the less-noisy condition σ = 

0.5; approximately half the trend variance for the moderate condition σ = 0.75; and equal to 

the trend variance for σ = 1. The absolute values of α and σ are arbitrary, as both are scale 

parameters that multiply the GP trend by a scalar, but their relative values are meaningful: 

when α and σ are equal, the variability of the measurements around the trend has the same 

magnitude as the fluctuations in the trend itself, corresponding to high relative measurement 

uncertainty. We generated 1000 synthetic datasets under each scenario and estimated the 

rate of change on each designated “sampling event” day (i.e., the third and seventh day of 

each seven-day period) by each of the four approaches (rolling linear models, multivariate 

imputation, univariate imputation, and generalized additive models).
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Implementing an estimation approach over the entire synthetic dataset corresponds to a 

retrospective analysis in which previously collected data are analyzed to characterize past 

trends. However, active wastewater monitoring programs are primarily concerned with 

identifying changes in infection trends in near real-time, updating estimates as new data 

become available.27 For the rolling linear model approach these analyses are identical, as 

only the five most recent observations are analyzed for each estimation day. By default, 

the imputation and GAM approaches make use of the entire set of observations, but in 

real-time analyses they would be limited to only the data collected up to each estimation 

time point. Accordingly, we also implemented a modified local GAM approach (“rolling 

GAM”) that refit the GAM to only the subset of data already observed by the day for 

which the rate of change was being estimated. Locally restricted rolling imputations were 

not implemented: multiple imputation was too computationally intensive to feasibly perform 

across all simulation scenarios and iterations, while for univariate imputation, the maximum 

likelihood estimation underpinning the Kalman smoothing too often failed to converge, 

halting the simulations. The global imputation approaches provide upper bounds on the 

performance of these approaches by incorporating future information into the imputations 

while only using a limited window of antecedent imputed observations to estimate the rate 

of change on a given day.

2.3.2 Performance Metrics—For each simulated 1000-day surveillance period, we 

estimated the rate of change by each approach on all days with a corresponding synthetic 

wastewater viral load measurement after the first 90 days (a three-month baseline data 

collection period to accommodate the different minimum sample sizes required by each 

approach), for a total of 260 estimates per approach. The rate of change estimate RCt[i]
k  for 

approach k was compared with the sampled GP first derivative xt[i]
′  on day t corresponding 

to viral load observation i to assess pointwise estimation performance. The pointwise 

performance indicators were summarized across all estimates for a given simulated time 

series to calculate performance metrics for each approach. Performance metric distributions 

were further characterized as the median, 2.5%, and 97.5% quantiles of each metric across 

all 1000 simulations of each simulation scenario. Quantitative accuracy was assessed by 

the root mean square error, RMSEk = 1
N ∑i = 1

N RCt[i]
k − xt[i]

′ 2.18 The 95% CI coverage (the 

proportion of 95% CIs containing the true rate of change) and average width (distance 

between the upper and lower 95% CI bounds) served as indicators of quantitative precision.

Each estimate was also classified as increasing or decreasing according to the sign of the 

point estimate (positive or negative, respectively, as the point estimate was never exactly 

zero).19 The rate of change estimate at observation i was considered a true positive (TP) 

when both the point estimate and true rate of change were positive (RCt[i]
k > 0 and xt[i]

′ > 0); a 

true negative (TN) for RCt[i]
k < 0 and xt[i]

′ < 0; a false positive (FP) for RCt[i]
k > 0 but xt[i]

′ < 0; and 

a false negative (FN) for RCt[i]
k < 0 but xt[i]

′ > 0. We assessed binary classification performance 

by sensitivity, the proportion of true increasing trends correctly classified as increasing, and 

specificity, the proportion of true decreasing trends correctly classified as decreasing:
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senstivityk = TPk

TPk + FNk

specificityk = TNk

TNk + FPk

(3)

CDC suggests a third class, plateau, corresponding to low rates of change that may not 

warrant a response.19,26 In practice, however, plateaus are classified on the basis of a 

statistical test and identify trends with rates of change that the estimator cannot confidently 

differentiate from zero. Because the simulated true trend and its rate of change are 

known exactly, there is no directly equivalent definition available to classify true plateaus 

for evaluating multiclass performance. We instead incorporated the concept of varying 

confidence in class predictions by considering the probability that the trend was increasing. 

We estimated the probability of an increasing trend by computing the proportion of a 

rate of change estimate’s 95% CI that was greater than zero. A CI that covered only 

positive rates of change was assigned a 100% probability of belonging to the increasing 

class, while a CI that included only negative rates of change was considered to have a 

0% probability of increasing. For a CI that included zero, we computed the probability of 

an increasing trend by dividing the rate of change value at the CI’s upper bound by the 

width of the CI. We performed receiver operating characteristic (ROC) curve analysis with 

the yardstick package to incorporate trend class probability into the binary classification 

performance assessment.53 Sensitivity and specificity were calculated using each observed 

class probability as the threshold for classifying an increasing trend, which generated an 

ROC curve tracing the sensitivity-specificity trade-off across probability thresholds. We used 

the area under the curve (AUC) to assess classification performance when treating the rate of 

change estimation approach as a probabilistic classifier.54

2.4 Application: North Carolina SARS-CoV-2 Wastewater Viral Loads

We obtained publicly available data on wastewater SARS-CoV-2 per-capita viral loads and 

COVID-19 cases for 25 North Carolina sewersheds from the NC Department of Health 

and Human Services (NCDHHS) COVID-19 Wastewater Monitoring Dashboard.55 Sample 

collection, laboratory analysis, and data processing procedures were consistent across sites 

and are described elsewhere.52,56 Ten sewersheds began reporting viral loads in January 

2021, with nine sewersheds added in June 2021, five more in October–November 2021, and 

a single addition in March 2022. We analyzed data collected through 24 May 2023, when 

COVID-19 case reporting ended statewide. The publicly available data listed a count of 2 

for any day with 1 – 4 cases to protect privacy and no value (missing) for days with no 

new cases, with COVID-19 incidence reported as daily new cases per 10,000 sewershed 

population. We scaled by the reported sewershed population and rounded to the nearest 

integer to recover daily case counts, substituting 0 for missing counts and a random integer 

from 1 – 4 with equal probability for any recovered counts of 2. Wastewater per-capita viral 

loads were log10-transformed for all analyses, yielding units of log10 copies/person/day; 

data were provided with imputed values already substituted for non-detects, as described 

previously.52,56
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For each sewershed, we estimated the rate of change on the date of each wastewater sample 

(after an initial 90-day baseline monitoring period) via the four estimation approaches and 

classified each estimate as increasing, decreasing, or plateau.26 We compared rate of change 

estimates to the first derivative of the global trend estimated by the GAM fit to the full 

dataset for each sewershed (“global GAM”). Agreement between the global GAM estimates 

and the four local estimation approaches informed only by antecedent observations was 

assessed using the same metrics as for the simulation study.

2.5 Approval and Availability Statement

No human participants were involved in this research. All analyses were performed on 

synthetic or publicly available, aggregated data and did not require ethical approval. The 

code and data to perform these analyses are freely available in a permanent online repository 

at https://doi.org/10.17605/OSF.IO/BPGN4 (see Supplemental Material). The original NC 

sewershed monitoring data may be accessed at https://covid19.ncdhhs.gov/dashboard/data-

behind-dashboards.

3 Results

3.1 Simulation Study

3.1.1 Scenarios—Figure 1 presents examples of the synthetic wastewater viral load data 

we generated for each simulation scenario. As expected, the ρ = 90 days, σ = 0.5 log10 

copies/day scenario produced the smoothest trend and least noisy observations, whereas 

the ρ = 15 days, σ = 1 log10 copies/day scenario produced the most “wiggly” trend 

with the noisiest observations. The trend first derivatives, corresponding to the rate of 

change, were influenced only by the value of ρ (Figure 1b). The smoothest scenarios (ρ = 

90) produced rates of change with the smallest magnitudes, while the “wigglier” ρ = 15 

scenarios produced much larger magnitude rates of change.

3.1.2 Rate of Change Estimates—Under the moderate ρ = 30 days, σ = 0.75 log10 

copies/day simulation scenario, the global GAM approach generally produced smooth 

estimates that largely tracked both the simulated trend (Figure 2a) and its rate of change 

(Figure 2b). By contrast, the four local estimation approaches yielded more disjointed 

estimates that broadly oscillated around the true rate of change, with the rolling GAM 

and univariate imputation point estimates appearing to track the truth more closely and 

the rolling linear model swinging more dramatically between estimates. The rolling linear 

model estimates also exhibited the highest uncertainty, with the widest 95% CIs on 

average (Table S1); univariate imputation estimates typically had the narrowest CIs, which 

frequently did not include the true rate of change given by the GP derivative. Both the global 

and rolling GAM estimates generally covered the true rate of change with their 95% CIs. 

The rolling GAM estimates had greater uncertainty. This uncertainty resulted because each 

estimate was made at the extreme of the range of the observed data without the benefit 

of future observations to the right of the estimation point that were available to the global 

GAM (except for the final observation, for which the approaches, as expected, converged 

to identical estimates).45 Both imputation approaches and the rolling GAM also appeared to 
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lag somewhat during periods of more rapid change in the trend, observable in Figure 2b as 

the right-ward shift in the estimated rate of change relative to the GP derivative.

3.1.3 Estimation Performance—Across all nine scenarios, the global GAM—which 

utilized more data than an ongoing, real-time wastewater monitoring program would have 

access to—consistently produced the most accurate estimates, as indicated by lowest RMSE 

(Figure 3a). For the smoothest scenarios (ρ = 90 days), the rolling GAM exhibited similarly 

high accuracy regardless of the magnitude of the noise parameter σ, followed by the 

univariate imputation approach, multivariate imputation, and finally by the rolling linear 

model approach, which was considerably less accurate and more impacted by increasing 

noise variance. However, the differences in accuracy between approaches diminished for 

less-smooth trends as RMSE increased, such that the RMSE distributions were similar 

across all four local estimation approaches (median RMSE: 0.06 – 0.08 Δlog10 copies/day) 

for the least-smooth (ρ = 15) scenarios with low (σ = 0.5) and moderate (σ = 0.75) noise 

variance.

Although the rolling linear model estimates generally had the widest 95% CIs (Figure 2b), 

they also most consistently included the true rate of change in about 95% of intervals, the 

target coverage proportion (Figure 3b). The uncertainty of global GAM estimates, while 

much narrower than for the rolling linear model, was overly conservative, with median 

coverage >95% for the smoother and less noisy scenarios. Univariate imputation had 

coverage proportions appreciably <95% for all but the smoothest scenarios. The multivariate 

imputation approach also generally had coverage proportions that were <95%. The median 

95% CI coverage of rolling and global GAM estimates remained relatively high across all 

scenarios, but both approaches demonstrated large variability in interval coverage across 

iterations of the more challenging (less smooth, noisier) scenarios. GAMs appear to be 

susceptible to estimating inappropriately smooth trends under such conditions, as observed 

in the essentially flat trend with narrow 95% CIs estimated by the global GAM for the ρ = 

30, σ = 1 scenario in Figure S4.31 Such over-smoothing appears to occur more frequently 

when GAMs are fit to high-variance (relative to α) synthetic measurements generated 

from “wiggly” trends, which can produce an essentially uniform cloud of observations that 

envelop and obscure the trend (ρ = 30, σ = 1 scenario in Figure 1a).

The relative performance of each approach at correctly classifying the trend as increasing 

or decreasing was consistent across the nine simulation scenarios (Figure 3c). The global 

GAM consistently demonstrated the highest median AUC, although AUCs were more 

variable across iterations of the “wigglier” and noisier scenarios. Under the smoothest 

trend scenarios (ρ = 90), the rolling GAM estimates had the highest median AUC among 

the local estimation approaches, but also greater variability in AUC. Rolling linear models 

exhibited the lowest median AUC at just over 50%—only slightly better than chance. 

Intriguingly, the AUC of rolling linear models improved as trend smoothness decreased 

and the AUC of all other approaches degraded; for the “wiggliest” scenarios (ρ = 15), 

the rolling linear model median AUC was equal to or greater than any of the other local 

models. The rolling GAM approach provided the least accurate trend classifications in the 

least smooth, most noisy scenario, likely related to the propensity for GAMs to over-smooth 

under such conditions.31 By contrast, the univariate imputation approach performed fairly 
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consistently across less-smooth scenarios, regardless of the noise variance, potentially due 

to the overly precise estimates providing more weight when the sign was correct (as was 

the case for the majority of estimates). However, no local estimation approach consistently 

achieved median sensitivities, specificities, or AUCs above 80% for any scenario (Table 

S1), indicating that none of these approaches would reliably classify pandemic trends as 

increasing or decreasing in near real-time as part of an ongoing wastewater monitoring 

program.

3.2 SARS-CoV-2 Trends in North Carolina Sewersheds

The 25 NC sewersheds that we analyzed served populations ranging from 3500 – 550,000 

people and were monitored over periods of 431 – 871 days, with SARS-CoV-2 viral loads 

reported for 121 – 245 wastewater samples at each site (Table S2). The lowest median 

per-capita viral loads were observed in the Wilmington sewershed, at 3.7 million copies/

person/day (interquartile range [IQR] 7.6 million copies/person/day), with the highest viral 

loads observed at the Cary 3 site (median (IQR): 36.8 (44.3) million copies/person/day). 

The measured wastewater viral loads and global GAM-estimated trend, along with the 

corresponding rate of change estimates by each approach assessed in the simulation study, 

are presented separately for each sewershed in Figures S7 – S31. Concordance between the 

global GAM rate of change estimates and the local model estimates were similar between 

approaches except for rolling linear model estimates, which exhibited somewhat higher and 

more variable RMSE across the 25 sewersheds (Figure S6). As in the simulation study, the 

rolling linear model estimates had the widest 95% CIs but also included the mean global 

GAM estimate at approximately the target proportion of 95%. Likewise, the univariate 

imputation approach had the narrowest average 95% CIs, which failed to cover the majority 

of GAM estimates.

Under the three-class system, in which rate of change estimates are classified as increasing 

or decreasing only when their 95% confidence intervals exclude zero, the univariate 

imputation approach also consistently identified the highest proportion of estimates as 

clearly increasing or decreasing and the fewest as plateaus across all sites (Figure 4). 

The majority of estimates were classified as plateaus by each of the other approaches, 

while only one site (Roanoke Rapids) was majority plateau (53%) by the univariate 

imputation approach (Table S3). The proportion of estimates deemed plateaus was highest 

(often >90%) by either the rolling linear model or the rolling GAM approaches, except 

in Jacksonville, where the global GAM classified all but one estimate as plateau (Figure 

S20). Approximately three-quarters of global GAM estimates and two-thirds of multivariate 

imputation estimates were identified as plateaus. The relative frequency at which each 

estimation approach classified trends as plateaus matched between the NC data and the 

simulated data under the moderate (ρ = 30) and least smooth (ρ = 15) scenarios, although 

the global GAM produced fewer plateau calls than did the univariate imputation for 

the smoothest (ρ = 90) simulation scenarios (Figure S5). All approaches identified both 

increasing and decreasing trends at each site, but we observed appreciable variation between 

approaches in the ratio of increasing to decreasing trend classifications.
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4 Discussion

Approaches for classifying viral load trends and estimating their rates of change in 

wastewater monitoring programs have not, to our knowledge, previously been compared 

for accuracy and reliability. Because trends and their slopes are not directly measured, we 

generated synthetic wastewater viral load time series using Gaussian processes to simulate 

a range of potential patterns of disease trends with known first derivatives. We implemented 

four rate of change estimation approaches—two previously reported and two developed 

herein—representing routine trend assessments from a typical, twice-weekly wastewater 

monitoring program. Approaches were selected that could reasonably be broadly applied 

across jurisdictions without site-specific modifications requiring specialized statistical 

expertise. When applied to the synthetic time series data, all of the approaches showed only 

modest reliability in identifying the correct direction of the trend. The median agreement 

between the signs of the estimated and true rates of change typically ranged between 50% 

and 75%, corresponding to at least one out of every four trend assessments (i.e., once every 

two weeks) providing misleading conclusions about the direction of the trend. This result 

raises concerns about the ability to take appropriate action (e.g., issuing alerts in response to 

apparently increasing trends) informed by such trend classification approaches.

The addition of plateau-class trends in a three-class system partially addresses this 

modest reliability by requiring greater certainty before identifying trends as increasing or 

decreasing. As currently defined in wastewater surveillance applications, plateau status is 

not an inherent property of the trend but rather the product of a conventional decision 

criterion that the rate of change estimate was not significantly different from zero at the 

5% significance level.57 Both the magnitude of the estimate and the precision with which 

it was estimated affect whether statistical significance was achieved, meaning that trends 

classified as plateau may have been changing too slowly to warrant attention or that 

the rate of change estimate was too uncertain to confidently determine the direction of 

change. The choice of estimation approach consistently impacted the proportion of estimates 

deemed plateau, though these patterns appeared mostly related to the precision of the rate of 

change estimates, with the inappropriately precise imputation-based approaches identifying 

a larger proportion of non-plateau trends. The plateau concept implies a trade-off between 

making a potentially incorrect determination (e.g., classifying as decreasing a trend that is 

truly increasing) against failing to make a determination (i.e., classifying as plateau) when 

conditions are in fact meaningfully changing. However, by conflating two distinct concerns

—the magnitude of change and estimation uncertainty—the existing plateau definition does 

not directly address key questions of what is a meaningful rate of change to warrant further 

attention and how to balance the costs of incorrect action vs. inaction when meaningful 

changes in the trend are underway. Such considerations might be informally addressed 

by selecting more or less aggressive classification approaches, by varying the significance 

threshold, or by modifying the sampling frequency to increase or decrease uncertainty by 

varying the density of data available to inform trend estimates. Greater transparency would 

be afforded by explicitly specifying the threshold above which rates of change would be 

considered meaningful, as when Keshaviah et al. specified the doubling of wastewater viral 

quantities as a component of an algorithm to detect infection surges.41 As of December 
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2023, CDC NWSS similarly published fixed categories defined by the percent change in 

viral load over the previous 15 days to classify trends, with changes ≥ 100% considered 

“large” increases.58,59

Both quantitative and classification accuracy differed between approaches, but the 

differences were generally observed only for smoother trends. As trends oscillated more 

rapidly with decreasing ρ, method performance degraded such that all were essentially 

equally poor. This dependence on characteristics of the trend itself suggests that even highly 

performing approaches may not be suitable in all contexts and anticipated trend smoothness 

should be considered when selecting a rate of change estimation approach to apply at 

a given monitoring site and time. While trend smoothness may be directly characterized 

by estimating GP range hyperparameters from previously collected monitoring data, 

fitting GPs is non-trivial—particularly estimating the weakly identified covariance function 

hyperparameters—and may be generally infeasible outside academic settings.49,60,61 

Informal smoothness assessments may prove sufficient, for example by visually comparing 

global GAM-estimated trends to representative GP simulations across a range of ρ values. 

Both strategies rely on the assumption that future trends will be similar to those already 

observed, for which adequate data to characterize trend smoothness may be unavailable, 

particularly after the emergence of a novel pathogen.

To aid interpretability, we simulated wastewater trends using a simple GP with zero global 

mean and a squared exponential covariance function with constant marginal standard 

deviation α and a single temporal range hyperparameter ρ across the entire simulated 

monitoring period. These conditions do not fully reflect the real-world complexity of 

infectious disease trends. However, the flexibility of GPs readily allows extension of our 

simulation approach to represent smooth trends of far greater complexity. For example, 

the GP may be specified with multiple additive Matérn covariance functions (of which 

the squared exponential is a special case) to introduce fluctuations at multiple time scales, 

or with alternative covariance structures that represent specific physical processes (though 

non-Matérn functions may not be readily differentiable).28,49,52,62,63

The broad utility of wastewater surveillance, particularly in detecting emerging pathogen 

lineages, has been widely demonstrated.64–66 However, effectively leveraging wastewater 

measurements alone to estimate the rate of change of disease trends in real time (i.e., 

on the day of the most recent measurement) has proved particularly challenging. While 

retrospective estimation of temporal trends and their rates of change by global GAMs 

was reasonably accurate in our simulation study and credible when applied to observed 

SARS-CoV-2 viral loads in NC sewersheds, real-time estimates are made at the extreme 

range of the data where uncertainty is greatest (as illustrated by the rolling GAM’s much 

noisier estimates and wider CIs relative to the global GAM). Coupling the most recent 

viral load measurement with recent estimated trend values provides a good indication of 

the neighborhood of potential values the current trend may take, but is less informative 

about where the trend is heading.67 Rather than attempting to estimate instantaneous rates 

of change, relative metrics with more retrospective features, such as the more recently 

developed CDC NWSS Wastewater Viral Activity Level metric that compares current viral 

loads to a long-running, site-specific baseline value, may offer a more reliable basis for 
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understanding community disease burdens using only wastewater data.68 As wastewater 

surveillance data become increasingly relied on, any such wastewater-only metric must 

be thoroughly evaluated before being used to identify public health-relevant differences in 

community disease burden. We suggest that additional studies focus on using wastewater 

measurements in context with other public health metrics, such as hospitalizations or 

emergency department visits, to enhance predictions and updating current models to adapt to 

changing disease dynamics.69
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Wastewater surveillance is increasingly used to estimate population disease 

trends

• The accuracy of common trend estimation approaches has not been evaluated

• Synthetic wastewater time series were generated with known trend rates of 

change

• All approaches estimated the wrong trend direction on 25% or more days

• Wastewater measurements alone may not reliably track disease trends in real 

time
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Figure 1. 
Illustrative realizations of (a) simulated wastewater viral load trend (black line) and synthetic 

observations (blue points) and (b) first derivative of simulated wastewater viral load trend for 

nine scenarios with varying specifications of the Gaussian process (GP) range parameter ρ 
and independent random error standard deviation σ
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Figure 2. 
True (simulated) and estimated (a) viral load trend and (b) rate of change in viral load by 

each of the candidate estimation approaches for one realization of the moderately smooth, 

moderately noisy (ρ = 30, σ = 0.75) simulation scenario. The synthetic measurements used 

to fit all models are displayed as green points.
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Figure 3. 
Median and 2.5th – 97.5th percentiles of performance metrics for candidate rate of change 

estimation approaches across 1000 realizations of each of the nine simulation scenarios. 

Vertical dotted lines indicate the target performance for each metric.
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Figure 4. 
Percentage of estimates classified as decreasing (purple), increasing (mauve), or plateau 

(orange) trends by each rate of change estimation approach for 25 North Carolina 

Sewersheds.
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