Twenty percent prevalence of West Nile virus antibody was found in free-ranging medium-sized Wisconsin mammals. No significant differences were noted in antibody prevalence with regard to sex, age, month of collection, or species. Our results suggest a similar route of infection in these mammals.
In 1999, West Nile virus (WNV) was detected for the first time in the United States in dead American crows (
We obtained samples from a part of south-central Wisconsin (Dane and Iowa Counties) recently identified as an area where white-tailed deer (Odocoileus virginianus) had chronic wasting disease infection (
Blood samples from the carcasses were collected by absorbtion into Nobuto strips (Toyo Roshi Kaisha, Ltd, Tokyo, Japan), labeled, air dried, and stored at ambient temperature until submitted to the National Wildlife Health Center (NWHC). A 1:20 serum dilution was prepared in the laboratory by following the manufacturer's instructions for extraction from the Nobuto strip. The dilution was stored at 0°C until it was tested.
Before testing, serum samples were heat inactivated (56°C for 30 min) to eliminate any nonspecific virus inhibitors. Serum controls were included for each sample to determine whether any individual serum sample was toxic to the cell culture used. The samples were screened for WNV antibody against 100 PFU by using the plaque reduction neutralization test (PRNT) (
In 2001 the Wisconsin Department of Health and Family Services (DHFS) reported the first isolation of WNV from a crow (DHFS, unpub. data), and surveillance for the virus was initiated throughout Wisconsin. By 2003, WNV was detected throughout Wisconsin (including our sampling area); most positive corvid cases coincided with our sampling period from late summer to fall. The Wisconsin Department of Natural Resources reported (
Our data indicate that the mammals tested in 2003 and 2004 were more likely to be exposed to WNV than to other flaviviruses. Of the 228 medium-sized mammals tested, 70 (31%) (
| Species | No. tested | Virus antibody present | |
|---|---|---|---|
| Flavivirus, n (%) | WNV specific, n (%) | ||
| Raccoons | 78 | 19 (24) | 15 (19) |
| Opossums | 71 | 27 (38) | 14 (20) |
| Coyote | 59 | 22 (37) | 16 (27) |
| Red fox | 7 | 1 (14) | 1 (14) |
| Skunk | 6 | 0 | 0 |
| Feral cat | 5 | 1 (20) | 0 |
| Badger | 2 | 0 | 0 |
| Total | 228 | 70 (31) | 46 (20) |
We found similar serologic prevalence to WNV regardless of sex (χ2 = 1.329, degrees of freedom [df] = 1, p = 0.26), age (χ2 = 1.31, df = 1, p = 0.25), species (χ2 = 3.64, df = 2, p = 0.16), or month of collection after September (occurrence of WNV in avian species) (χ2 = 1.42, df = 1, p = 0.23). During our sampling period, the prevalence of WNV antibody was 27% (16/59) in coyotes, 20% (14/71) in opossums, and 19% (15/78) in raccoons. WNV antibody was found in 19 (18%) of 105 male animals compared with 26 (25%) of 103 female animals, and in 37 (21%) of 178 adults compared with 9 (30%) of 30 young of the year.
Mosquito transmission of WNV seems most likely in Wisconsin during August through September and less likely after frequent October frosts reduce the general mosquito population. In addition to mosquitoes, WNV may be transmitted by predation or scavenging (
A relatively high proportion of medium-sized mammals appear to have been infected with WNV. Whether these species play a role in maintenance and transmission of WNV needs to be determined. Whether raccoons, opossums, and coyotes can be indicators of WNV transmission or potential WNV reservoirs for subsequent transmission to avian, domestic animal, or human hosts is not known. Further research is needed to understand the role these species play in the epidemiology and epizootiology of WNV and the effect of the virus infection on specific populations of free-ranging mammals.
We thank J. Hann and E. Berkley for assistance with sample collection and preparation.
Support was provided by the Wisconsin Trappers Association, Wisconsin Department of Natural Resources, Wisconsin Veterinary Diagnostics Laboratory, and the US Geological Survey NWHC.
Dr Docherty is diagnostic virologist emeritus for the US Department of the Interior, US Geologic Survey, NWHC. His primary duties consist of preparing manuscripts for publication and consulting on wildlife diagnostics and research.