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Abstract

Background: Wildfires are increasing in magnitude, frequency, and severity. Populations in
the wildland-urban interface and in downwind communities are at increased risk of exposure

to elevated concentrations of fine particulate matter (PM, s) and other harmful components

of wildfire smoke. We conducted this analysis to evaluate the use of modeled predictions of
wildfire smoke to create county-level measures of smoke exposure for public health research and
surveillance.

Methods: We evaluated four years (2015-2018) of grid-based North American Mesoscale
(NAM)-derived PM, 5 forecasts from the U.S. Forest Service BlueSky modeling framework

with monitoring data from the Environmental Protection Agency Air Quality System (AQS),

the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Western Regional
Climate Center (WRCC), and the Interagency Real Time Smoke Monitoring (AIRSIS) programs.
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To assess relationships between model-derived estimates and monitor-based observations, we
assessed Spearman’s correlations by spatial (i.e., county, level of urbanization, states in the
western United States impacted by major wildfires, and climate regions) and temporal (i.e., month
and wildfire activity periods) characteristics. We then generated county-level smoke estimates and
examined spatial and temporal patterns in total and person-days of smoke exposure.

Results: Across all counties in the coterminous United States and for all days, the correlation
between county-level model- and monitor-derived PM, 5 estimates was 0.14 (p < 0.001).
Correlations were stronger using data from temporary monitors and for areas and days impacted
by high wildfire smoke, especially in the western United States. Correlations between county-level
model- and monitor-derived estimates in non-metropolitan counties, and at higher concentrations
ranged from 0.25 to 0.54 (p < 0.001).

Conclusions: In general, public health practitioners and health researchers need to consider the
pros and cons associated with modeled data products for conducting health analyses. Our results
support the use of model-derived smoke estimates to identify communities impacted by heavy
smoke events, especially during emergency response and for communities located near wildfire
episodes.
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Introduction

Wildfires produce smoke plumes that impact local, regional, and global air quality. The
extant scientific literature confirms an association between exposure to smoke, specifically
fire-related PM, and all-cause mortality and respiratory morbidity (Alman et al., 2016;

Liu et al., 2015, 2017; Zu et al., 2016). Effective characterization of exposed populations
and understanding health risks associated with exposure to wildfire-related PM require

the availability of reliable environmental data that describe the geographic location of
wildfire events, pollutant concentrations observed, and the duration of exposure. Currently,
the characterization of ground-level smoke concentrations across the United States is
achieved by a combination of permanent air quality monitoring networks and temporarily
deployed air quality monitors. However, these monitoring networks are not designed to
track population-level exposures at continuous spatiotemporal scales, with studies indicating
an inability of permanent monitors to adequately characterize population smoke exposure,
especially in rural areas (Jaffe et al., 2020).

To fill this data gap, satellite retrievals and atmospheric models are used to estimate ambient
PM < 2.5 um in aerodynamic diameter (PM> 5) levels in areas with no direct measurements.
Additionally, researchers have developed and evaluated smoke forecasting systems that
couple fire detection systems, fuel characteristics from land cover data, and emissions
modeling to estimate current and short-term smoke forecasts (Draxier and Hess, 1998;
Herron-Thorpe et al., 2012; Larkin et al., 2009; Stein et al., 2015; Vaughan et al., 2004;
Castrillon et al., 2011; Ferreira et al., 2020). However, little work has been done to assess the
use of these forecast systems for public health surveillance and research.
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This paper describes the evaluation of North American Mesoscale (NAM)-based modeled
predictions of surface PM, 5 concentrations from the U.S. Forest Service (USFS) BlueSky
modeling framework using existing observation data from the Environmental Protection
Agency Air Quality System (AQS), the Interagency Monitoring of Protected Visual
Environments (IMPROVE), the Western Regional Climate Center (WRCC), and the
Interagency Realtime Smoke Monitoring program (AIRSIS) monitoring programs. In the
following sections, we briefly describe the BlueSky smoke data product, discuss methods
used to retrieve and process the smoke data, describe methods for the generation of
population-level smoke exposure metrics, and evaluate model-derived estimates using PM; 5
measurements from the AQS, IMPROVE, WRCC, and AIRSIS observation networks.
Finally, we discuss the applicability of archived smoke forecasts for creating population-
level exposure metrics at the county level.

2. Materials and methods

2.1. BlueSky modeling framework

BlueSky is a modular framework for modeling the emissions, transport, and chemistry of
smoke from wildland fires (Larkin et al., 2009). The BlueSky framework links together
several models describing fire information (e.g., fire location, fire size, fire type), fuel
loading (e.g., fuel type and amount), fuel consumption, speciated emissions, emissions
dispersion, and emissions trajectories. Three-dimensional gridded meteorological data
required for trajectory and dispersion calculations are provided by a variety of models
including the National Center for Atmospheric Research Mesoscale Meteorological model,
and the more recent Weather Research and Forecasting model. Simulations of trajectories
are performed using the Hybrid Single-Particle Lagrangian Integrated Trajectory model.
Details about the overall modeling framework, the component models, and how they are
linked together are described in Larkin et al. (2009). Daily BlueSky predictions of surface
PM, 5 concentrations from wildfires are available across the coterminous United States
through the USFS in support of the Interagency Wildland Fire Air Quality Response
Program.

For our evaluation, we downloaded BlueSky daily archived model forecasts from AirFire’s
FTP server (U.S. Forest Service, 2020) for the years 2015 through 2018. The data

have a spatial resolution of 4 km and a temporal resolution of 1 h. The daily forecast
records contain either 24 h, 48 h, or 72 h of forecast smoke data. We selected the most
recent forecast data hour from the daily forecast records for all analyses performed here.
Additionally, we used forecast dispersion records that incorporated carry-over smoke, that
is, predictions of smoke leftover from the previous forecast period carried into the current
forecast period. The hourly resolved arrays were adjusted for local standard time, then
aggregated to create daily county-level summaries of mean surface PM, 5 concentration for
the coterminous United States over the period January 1, 2015 through December 31, 2018.

2.2. Surface observation data

To evaluate the model-derived data, we used measurements from permanent monitors in
the AQS and IMPROVE monitoring networks and temporary monitors in the WRCC
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and AIRSIS monitoring programs. For the permanent network data, we downloaded 24-h
average PM,, s observations, using records from January 1, 2015 through December 31,
2018. For the IMPROVE data, we used the observed elemental carbon fraction of total
PM5 5 mass to evaluate the forecast data. The AQS and IMPROVE monitoring networks
are maintained by state environmental agencies and the data are publicly available (U.S.
Environmental Protection Agency, 2019; IWFQRP, 2020) For the temporary network data,
we obtained hourly averaged PM, 5 observations, which were adjusted for local standard
time and aggregated to create county-level daily summaries of mean PM, 5 concentrations.
The WRCC is one of six regional climate centers in the United States, is administered

by National Oceanic and Atmospheric Administration (WRCC, 2000), and the AIRSIS
program is administered through the U.S. Forest Service (U.S. Forest Service, 2013).

2.3. Generation of county-level smoke estimates

We used a population-weighted county centroid containment approach to map grid cells

to counties and assign daily summaries of grid-level PM, 5 forecast to the county level
(Vaidyanathan et al., 2013). Hourly smoke forecasts from the model are available at

a 4 km-by-4km grid resolution. We used the hourly forecast data in a multi-stage geo--
imputation procedure to convert grid-level smoke forecast data to county-level estimates.
We first assigned each U.S. Census block centroid to a forecast-derived grid cell based

on a containment relationship and created block-level estimates of hourly smoke forecasts.
Using block-level population as weights, we then calculated a population-weighted average
of daily 24-h mean smoke predictions by U.S. Census tracts. From this Census tract-level
data product, we created average county-level estimates of daily 24-h mean smoke forecasts
using tract population as weights.

2.4. Analysis: evaluation of county-level estimates

To compare the temporal variability in county-level estimates for the datasets, we created
time series of the daily summaries of population-weighted county-level concentrations for
our domain, aggregating the summaries by year, month, and wildfire activity periods. We
defined wildfire activity periods as March 1-June 30 and July 1-October 31. We evaluated
the model-derived estimates against PM5 5 observations from the monitoring networks

over the period 2015 through 2018. Specifically, we calculated Spearman (p) correlation
coefficients to assess and compare the strength and consistency of the relationships between
the daily model-derived estimates, and AQS, IMPROVE, WRCC and AIRSIS observation
network data for the coterminous United States. We assessed correlations between the
measurement and model data for location of monitor sites, and the following timescales:
yearly, monthly, and wildfire activity periods. We stratified the model-derived and monitor-
derived estimates of daily PM, 5 concentrations into bins of <35 ug/m3, 35-70 ug/m?3, and
>70 pg/m3 PM,, 5 to assess the strength of the associated between the estimates over a
wide-range of smoke concentrations. We classified Arizona, California, Colorado, Idaho,
Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming as “high wildfire
impact states,” aggregated the monitor- and model-derived estimates for counties in these
states, and assessed correlations between the monitor- and model-derived estimates. We
used the Center for Disease Control and Prevention National Center for Health Statistics
(NCHS) Urban-Rural Classification Scheme for Counties (Ingram and Franco, 2014) to
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estimate urban-rural differences in smoke impacts. For this analysis, we reclassified the
2013 NCHS urban-rural classifications from six categories to three, by grouping large
central metropolitan counties and large fringe metropolitan counties together as large
metropolitan counties, medium metropolitan counties and small metropolitan counties as
medium metropolitan or small metropolitan counties, and micropolitan counties and non-
core counties as non-metropolitan counties. We aggregated the counties into climatically
consistent regions using the National Center for Environmental Information (NCEI) United
States climate region classification (Karl and Koss, 1984) and examined spatial trends in the
monitor networks, and model-derived estimates. Finally, we calculated county-level number
of high PM> 5 days and person-days of exposure. We defined a high PM, 5 day as a day with
daily mean PM, 5 concentration above 35 pg/m3 and calculated person-days of exposure

as the sum of high PM, 5 days multiplied by the county population. We used county-level
population data from the U.S. Census Bureau (2020) to calculate county-level person-days
of exposure. Data analysis was performed using SAS version 9.4 (SAS Institute, Inc., Cary,
North Carolina) and R software [R version 4.0.0 (2020-04-24), (R.Core Team, 2020).

3. Results

3.1. Descriptive statistics

AQS monitoring sites are predominantly located in large and medium metropolitan or
small metropolitan counties, while IMPROVE, WRCC, and AIRSIS monitors are located in
non-metropolitan counties (Fig. 1, panels a and b, Table 1). A similar spatial distribution

is observed in the percentage of active monitoring days for permanent monitors in the
coterminous United States across all observation years (Fig. 1, panel d). Overall, the

west, southwest, and northeast regions had a greater porportion of counties that reported
60% or more active monitoring days over the observation period. The highest number of
permanent monitors were observed in the west, central, southeast, and northeast regions

of the domain, closely aligning with areas of high population density. Temporary monitors
were predominantly located in the western regions, specifically northwest (Table 1).

3.2. Spatio-temporal trends in county-level PM, 5 concentrations

When assessed spatially for years 2015-2018, counties with comparatively large numbers
of high PM> 5 days were predominantly located in the west and southwest regions (in the
northwest, and Northern and Southern California), highlighting contributions from large
wildfire events in the region over the interval (Fig. 4 and S2). When aggregated temporally
by wildfire activity periods, higher county-level high PM> 5 days and person-days were
observed during the interval July 1-October 31 when compared the other intervals, and
higher numbers of high PM, 5 days in the southwest and northwest regions (Fig. 2, panels
c and d, and Fig. S1). We observed fewer high PM>, 5 days in counties classified as large
metropolitan, a larger number of county-level high PM, 5 days from counties classified as
medium metropolitan or small metropolitan, with the largest contribution of county-level
high PM>, 5 days from counties classified as non-metropolitan (Fig. 2, panels e and f).
Overall, counties in the northwest, south, west, and west north central climate regions
accounted for over 70% of county-level high PM, 5 days and person-days of exposure (see
Fig. 3).
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3.3. Correlational analysis

When compared across all counties in the coterminous United States, and for all days,

the relationship between daily county-level AQS- and model-derived estimates was positive
but weak (p = 0.14, p < 0.001) (Table 2). A slightly stronger relationship was observed
when comparing the model-derived estimates with IMPROVE-derived estimates (p 0.19,

p < 0.001). When stratified by level of urbanization, correlations between the model- and
AQS-derived estimates were positive but weak overall, increasing with decreasing levels

of urbanization. This observation was also true when comparing model-derived estimates
with IMPROVE-derived estimates, however, the relationship was slightly stronger for
non-metropolitan counties (p = 0.23, p < 0.001). Correlations between the model- and
IMPROVE-derived estimates showed a weak but positive relationship that increased with
increasing PM> 5 concentrations. When aggregated by month, we observed stronger positive
relationships over the months March—October and weaker positive relationships over the
months November—February for both AQS- and IMPROVE-derived estimates (Table S1).

Correlations between model-derived and AQS- and IMPROVE-derived estimates of PM> 5
for counties in “high wildfire impact states” were positive, and overall displayed stronger
relationships across all stratifications (level of urbanization, concentration ranges), and
temporal aggregations (wildfire activity period, year, month) (Table 2 and S1). For example,
stronger positive correlations were observed between model-derived and IMPROVE-derived
estimates for counties in “high wildfire impact states” during August (p = 0.47, p <

0.001), as compared to all other months. Similarly, yearly and monthly comparisons for

this region were relatively better (Table S1) and stratifying by concentration thresholds

and levels of urbanization generated similar trends, but with relatively better correlations
with the IMPROVE-derived than the AQS-derived estimates. Correlations were stronger
across all spatial and temporal aggregations when the model-derived estimates were assessed
with WRCC- and AIRSIS-derived estimates, compared to estimates from the permanent
monitoring networks (Table 2). For example, the correlation between the model-derived
estimates and the monitor-derived estimates for non-metropolitan counties increased when
going from permanent to temporary networks (AQS: p = 0.25, IMPROVE: p = 0.29, WRCC:
p = 0.47, AIRSIS: p = 0.54). Correlations between daily county-level model-derived,

and AQS- and IMPROVE-derived estimates of PM, 5, resolved temporally for wildfire
activity and spatially for counties in “high wildfire impact states,” improved slightly from
the correlation observed for all counties in the coterminous United States (Table 2). The
increase in the strength of the correlations was greater when comparing with the temporary
monitoring network. Overall, stronger relationships were observed during July 1 to October
31 wildfire activity period, as compared to the March 1 to June 30 wildfire activity period.
Finally, when stratified by levels of urbanization, we observed positive correlations between
model- and monitor-derived PM, 5 estimates in “high wildfire impact states”, specifically in
non-metropolitan counties.

4. Discussion

Overall, we observed relatively stronger positive correlations between county-level model-
and monitor-derived estimates of PM5 5 concentrations in non-metropolitan areas and
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at higher concentration thresholds, and poorer performance for dense urban areas and
lower concentration thresholds. This was especially true when compared with estimates
from the temporary monitoring network which are primarily situated in non-metropolitan
areas. Relatively stronger correlations were observed between model- and monitor-derived
estimates for the temporary network when compared to the permanent network across all
stratifications (level of urbanization, concentration), and temporal aggregations (wildfire
activity period, year, month). This result highlights the inability of the permanent monitors
to adequately characterize population exposure to wildfire smoke, especially in non-
metropolitan counties, and was reported elsewhere (Larkin 2019; Jaffe et al., 2020).

The model data adequately describe the spatial distribution of the county-level PM> 5
concentrations, especially when assessed using temporary network data. County-level high
PM, 5 days and person-days of exposure across all spatial and temporal aggregations
displayed similar trends in the model-derived data as seen in the monitoring network data.
We did observe that the model data were unable to accurately estimate county-level PM, 5
concentrations, especially at higher concentration, measured by monitoring data. Following
their validation of the BlueSky modeling framework, Larkin et al. (2009) reported that

the model adequately reproduces plume shape and long-range transport, but underpredicts
near-field ground concentrations such as those within 100 km, and this observation aligns
with the spatial trends and relationships shown in our analysis. It must be noted that

the model-derived PM, 5 smoke estimates only include information regarding wildfire
emissions. When compounded with the meteorological processes governing smoke transport
to observation sites, we expect the correlations between the model-derived estimates and the
monitor-derived estimates to be underestimated at higher concentrations.

Furthermore, climate change significantly affects the occurrence and severity of wildfires
(Abatzoglou and Williams, 2016; De Groot et al., 2013; Westerling et al., 2006; Westerling
and Bryant, 2008), the length of fire seasons (De Groot et al., 2013; Flannigan et al., 2013),
and the total area burned (Gillett et al., 2004). Westerling et al. (2006) examined associations
between climate-related temperature increases and changes in wildfire frequency in the
western United States and found strong correlations between regional temperatures and
interannual variability in wildfire frequency during early and peak wildfire seasons.
According to Westerling et al. (2006), the average length of the wildfire season increased
by 64% between 1987 and 2003 when compared to the average over the period 1970 to
1986. This increase in the frequency and magnitude of wildfire episodes underscores the
importance of smoke forecast products to characterize wildfire exposures in communities,
especially those residing in the wildland-urban interface.

Consideration should be given to certain limitations that exist for smoke forecast products,
particularly around their inputs, which can significantly affect the forecasts generated.
Studies have shown that difficulties in characterization of emissions, plume rise, chemistry,
transport, coupled atmosphere and smoke mechanisms, and the choice of fire information
are major drivers of uncertainties the models (Larkin et al., 2009, Jaffe et al., 2020; Larkin
et al., 2012; Raffuse et al., 2012). Studies assessing the performance of smoke forecasting
system have reported large model overestimation bias attributed to chemistry representation
(Baker et al., 2016), and significant sensitivity to small errors in geolocation of fires and
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vertical distribution of emissions (Garcia-Menendez et al., 2014). While these limitations
exist in the ability of forecast products to accurately assess ground-level concentrations,
these predictions have utility in identifying areas and populations exposed to wildfire smoke.
However, the concentration levels at which populations are exposed might be misrepresented
and may lead to misclassification of smoke exposure in these populations.

5. Conclusions

The development of effective strategies to minimize adverse effects of wildfire smoke
requires the availability of data that can reliability identify wildfires, characterize PM 5
smoke concentrations at adequate spatio-temporal scales, and assess population-level
exposures and health risks to wildfire-related PM. Our findings suggest that the model-
derived data are better suited to identify communities that are impacted by heavy smoke
events, especially during emergency response and for communities located near wildfire
episodes; however, public health practitioners and health researchers need to consider the
limitations associated with modeled data products before using these predictions to conduct
epidemiologic research, especially for assessments that require a more rigorous smoke
exposure characterization before, during, and after heavy smoke events.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Distributions of monitors (panel a), counties in NCHS urban-rural classification categories

(panel b), county-level numbers of AQS and IMPROVE monitors (panel c), and active PM 5
monitoring days across the coterminous United States and over the 2015-2018 study period.
Active monitoring days do not include measurements from temporary monitors (AIRSIS and
WRCC).
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County-level model-derived high PM, 5 days (grey bars) and person-days of exposure
(red bars) in high-wildfire impact states (AZ, CA, CO, ID, MT, NM, NV, OR, UT, WA,
WY), by year (panels a and b), wildfire activity period (panel ¢ and d), and level of
urbanization (panel e and f). Large = large metropolitan counties, Medium = medium or
small metropolitan counties, and Non-metro = Non-metropolitan counties.
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Estimates of model-derived person-days of exposure and high PM,.5 days, by NCEI climate
region.

Comput Geosci. Author manuscript; available in PMC 2024 August 02.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Michael et al.

a) 2015

Northwest Z ﬁ\'/\,& (J
= Nouheas(
West North Cenual as( North Cen(r 2
|

r \\~\‘J

§ Ry ’/ ‘WQ’;*\' Central
L / Southwest J L lL__’JL‘
?\k\ ;/\ _J' | '—41— Sotheast /
South
- \

s ol

c) 2017

A 3 IR
/ Nonhwesl%
-
e
\ i = mrus
\? ¥ West / }7 % Central
K‘\ L Sotuthwest R z{
Southeast
K\ L “‘”V\

High PM, 5 Days

< >
_/(Nonheas

West North Central ast North Cemr

Fig. 4.

Page 14

b) 2016

4 ‘\-~\7\\; T T Vb

)\jl:lonhwes! X TLAZA./\ /)
of

{ ] West North C;ntral 5 JTast North Cemrﬁ ifz/) Nor\heast;?
\\\‘/V\\L\‘ | ?’4) ‘.\

— sy

West / { " Central
rll ~ ol \ 7
outhwest A
= | FERE //
N T Southeast

Sou(h B

‘J L\%f”‘v\
J

High PM, 5 Days
B
0 10 20 30 40 50 60

d) 2018

i o
“’? West North Central Taﬁ North cm{ 3/
2 r
= |

Northwest

i
7

High PM, 5 Days
B
0 10 20 30 40 50 60

County-level estimates of the number of high PM,, 5 days, defined as days when the daily
mean PM, 5 concentration >35 pug/m3, for all counties for 2015 (panel a), 2016 (panel b),

2017 (panel c), 2018 (panel d).

Comput Geosci. Author manuscript; available in PMC 2024 August 02.



Page 15

Michael et al.

'S9YRIS PANUN UJBISAM 3U} Ul pa)edo] AJUo aJe SI0}IUOW 9Say} asnedaq SHI0MIBU SISHIY Pue DDHA ays Buisn suoibal syewifo awos 10} suostieduwiod ONj

'(S1S41V) BuLioluo xows awi] [eay >ocmm23c_x

(DDHM) siaua) arew|D uoibay 588>>m

'SyJ0M1au Buriojiuow Jusuewad Woly Joyuow auo 1sea| e Aq patanod uolebaibibe Jeireds ul uoiyejndod jo :o_ﬂ:ﬁ:u_\u

'si0)iuow Alelodwal Jo) JUNOIE JoU mmoou

“g]ep [pOW 81en[eAs 0} pasn ssew S CIAd 2101 JO UONORI) UOG.ED [ejuswald (IAOHJINI) SIUBLUIUOIIAUT [BNSIA Palasloid J0 BuLioluoln >ocwmm¢8c_q

"(SOV) wasAs Anpend Iy vd3,

0€ 8¢T 09 T¢ 18 [44 €9 162 [ejusd YHON 1S9\
06T [44 66 61 8y [44 €CT =7 1S9
e€ve 89¢ 98 6¢ LE 9€ 99 i 1samuyinos
9 ) 19 qT 90T 0¢ €T €19 1seayinos
- - s 0T PAS o7 08 899 ymnos
0ct Tee €L ST 6¢ 97 117 6TT 1SOMULION
- - 72 qT T0T 97 9T Sve 1seaylioN
- - 29 8 29 8 16 e |eljusd YHON Ise3
- - 29 8 LTT 8 8T 999 [enuey  uoifiay srewl|d I30N
6T6 607 LT 68 09T 96 €8T 8761 S913UNOD Uey|0do.}aL-UON
099 Tee 69 € ¢le 474 9.¢ Gg/  S8nunod ueyjodosaw [[ews Jo wnipan
LTV 6TT €8 91 9.7 0¢ G8¢ 9ty $91IUN0J Uejjododlow afse]  uoMezIURgIN JO [9A]
5 SISHIV  FgDOHM dI SOy qdWI eSOV

% ‘S I0}IUO N
sJonuo | A felodws | Ag paseno) uoire|ndoq  oJOHUONBUQ 15887 1V UNIM S8 Unoy SIONUON  S81IUN0D AJoBere) uoirebe BBy [eiteds  uoitefe BBy [eireds

"Uo1Ba alewIfo |IDN PUE UOIEZIUBGIN JO [9A3] AQ SHIOMISU SISHIV PUE ‘DDUM ‘TAOHINI ‘SOV JO sanstisloeseyd
T a1qeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Comput Geosci. Author manuscript; available in PMC 2024 August 02.



Page 16

Michael et al.

‘BUIIOAM = AM ‘UOIBUIYSEA = WA ‘UBIN = 1N ‘UoBaI0 = YO ‘epeAsN = AN ‘02IX8\l MBN = AN ‘BUBIUON = 1A ‘ouyep| = Al

's13)ua) arewi D uolbay uiIsoM,

“2Jep |8pOW 31eN[eAs 0} Pasn ssew S CAId 210 JO UONDeIY UogJed [ejuswsall (IAOUCINI) SIUSWUOIIAUT [BNsIA Pa1alold Jo Butioyuoly Aousbe-iau)

q

"(SOW) waisAs Anpend iy vd3,

“JueoaiyIubIs 10U = SN

‘0peI0j0D = 0D ‘BlUIOH[RD = VD BUOZIY = ZV

(1T00°0>) L¥'0 (1T00°0>) ¥5°0 (T00°0>) ¥€°0 (100°0>) 92°0 T€ 1840300 01 T AInp poLiag
(T00°0>) 22°0 (T00°0>) £2°0 (T00°0>) 020 (T00°0>) T2°0 0€ aung 01 T Yore ANAOY B1PIIM
(T00°0>) 22°0 SN SN (t00°0>) 22°0 ¢ -w brlo/<
SN SN (¥00=) 220 (900°0=) ST'0 ¢-w brlo/-g¢
(T00°0>) LE0 (T00°0>) 6€°0 (T00°0>) ¥2'0 (1T00°0>) 8T°0 ¢ -w brl ge> sulg uoneusou0D
(T00°0>) ¥5°0 (1T00°0>) L¥°0 (T00°0>) 62°0 (1T00°0>) 52°0 $911UN0J Uep|odossw-UoN
$91UN0J
(T00°0>) 62°0 (T00°0>) T7°0 (T000>) €20 (T00°0>) 22’0 uenjodonaw [[BwS 10 WNIpaiA
(T00°0>) 8T'0 (T00°0>) 80°0 (T00°0>) 0T'0 (T00°0>) TT'0 sanunod uepjodonaw abre]  uomezIURGIN JO [9AST] o
AM WM ‘LN ‘"0 ‘AN
(1T00°0>) €70 (1T00°0>) £7°0 (T00°0>) 52°0 (1T00°0>) 8T°0 suoneAIssqo IV ‘AN ‘LI ‘dl ‘0D ‘WO ‘ZV :serels joeduw| aiip|im ybiH
(T00°0>) T2°0 (100°0>) ST'0 T€ 1890100-T AIne
potiad
(T00°0>) T2°0 (1T00°0>) LT°0 0€ aunp-T Yyare RUAIOY BIPIIM
- - SN (T00'0>) T2°0 ¢-wbroz<
(500=) 020 (¥£0'0=) TT'0 ¢ -w brlo/-g¢
- - (T00°0>) 8T°0 (100°0>) €T°0 ¢ -w brl ge> sulg UoIeUsdU0D
- - (T00'0>) €2°0 (1T00°0>) 8T°0 $91UN0J Uep|odosW-UoN
S911UN0d
- - (T00°0>) LT'0 (T00°0>) 9T°0  UeNjodoIBW [[ews J0 WNIPaIA
- - (T00°0>) 80°0 (T00°0>) 0T'0 sanunod uepjodonaw abre]  uolezIURGIN JO [9AST]
- - (100°0>) 6T°0 (100°0>) ¥T°0 SUOITeAISSTO ||V S8]eIS PalluM SNOUIWISI0D
(enen-d) d (enpen-d) d
apSIsyHIv 99008 M (enen-d) d (enrea-d) d
SA PPOIN shppoy  qdWISABPOW ¢SOV SA PPOIN UOITEOLITR IS uoneBo IBBY [ereds

"SUOIBIIUBIUOD S TN JO SSIRLISE PAALIBP-SISHIY PUB -DDHM -IAOHINI -SOV PUB PaALIBP-]3pOW [9A3]-A1UNOD USBMISY UOIR[31I0D

Author Manuscript

¢ dlqeL

Author Manuscript

Author Manuscript

Author Manuscript

Comput Geosci. Author manuscript; available in PMC 2024 August 02.



Page 17

Michael et al.

'$91L1S PalIUM UJBISAM 8} Ul Pa1eao] AJUO aJe SI0JUOW 83y} 8sneasq SYI0MIBU SISHIY PUe DDA 8yl Buisn s81e1s paliun SNoulwalod ayj 0} suostieduwod ON,

‘BuLIO)IUON SYOWS awl] [eay >ocmmm§c_§

Author Manuscript Author Manuscript Author Manuscript

Author Manuscript

Comput Geosci. Author manuscript; available in PMC 2024 August 02.



	Abstract
	Introduction
	Materials and methods
	BlueSky modeling framework
	Surface observation data
	Generation of county-level smoke estimates
	Analysis: evaluation of county-level estimates

	Results
	Descriptive statistics
	Spatio-temporal trends in county-level PM2.5 concentrations
	Correlational analysis

	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1
	Table 2

