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Abstract

Background: Wildfires are increasing in magnitude, frequency, and severity. Populations in 

the wildland-urban interface and in downwind communities are at increased risk of exposure 

to elevated concentrations of fine particulate matter (PM2.5) and other harmful components 

of wildfire smoke. We conducted this analysis to evaluate the use of modeled predictions of 

wildfire smoke to create county-level measures of smoke exposure for public health research and 

surveillance.

Methods: We evaluated four years (2015–2018) of grid-based North American Mesoscale 

(NAM)-derived PM2.5 forecasts from the U.S. Forest Service BlueSky modeling framework 

with monitoring data from the Environmental Protection Agency Air Quality System (AQS), 

the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Western Regional 

Climate Center (WRCC), and the Interagency Real Time Smoke Monitoring (AIRSIS) programs. 
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To assess relationships between model-derived estimates and monitor-based observations, we 

assessed Spearman’s correlations by spatial (i.e., county, level of urbanization, states in the 

western United States impacted by major wildfires, and climate regions) and temporal (i.e., month 

and wildfire activity periods) characteristics. We then generated county-level smoke estimates and 

examined spatial and temporal patterns in total and person-days of smoke exposure.

Results: Across all counties in the coterminous United States and for all days, the correlation 

between county-level model- and monitor-derived PM2.5 estimates was 0.14 (p < 0.001). 

Correlations were stronger using data from temporary monitors and for areas and days impacted 

by high wildfire smoke, especially in the western United States. Correlations between county-level 

model- and monitor-derived estimates in non-metropolitan counties, and at higher concentrations 

ranged from 0.25 to 0.54 (p < 0.001).

Conclusions: In general, public health practitioners and health researchers need to consider the 

pros and cons associated with modeled data products for conducting health analyses. Our results 

support the use of model-derived smoke estimates to identify communities impacted by heavy 

smoke events, especially during emergency response and for communities located near wildfire 

episodes.
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1. Introduction

Wildfires produce smoke plumes that impact local, regional, and global air quality. The 

extant scientific literature confirms an association between exposure to smoke, specifically 

fire-related PM, and all-cause mortality and respiratory morbidity (Alman et al., 2016; 

Liu et al., 2015, 2017; Zu et al., 2016). Effective characterization of exposed populations 

and understanding health risks associated with exposure to wildfire-related PM require 

the availability of reliable environmental data that describe the geographic location of 

wildfire events, pollutant concentrations observed, and the duration of exposure. Currently, 

the characterization of ground-level smoke concentrations across the United States is 

achieved by a combination of permanent air quality monitoring networks and temporarily 

deployed air quality monitors. However, these monitoring networks are not designed to 

track population-level exposures at continuous spatiotemporal scales, with studies indicating 

an inability of permanent monitors to adequately characterize population smoke exposure, 

especially in rural areas (Jaffe et al., 2020).

To fill this data gap, satellite retrievals and atmospheric models are used to estimate ambient 

PM ≤ 2.5 μm in aerodynamic diameter (PM2.5) levels in areas with no direct measurements. 

Additionally, researchers have developed and evaluated smoke forecasting systems that 

couple fire detection systems, fuel characteristics from land cover data, and emissions 

modeling to estimate current and short-term smoke forecasts (Draxier and Hess, 1998; 

Herron-Thorpe et al., 2012; Larkin et al., 2009; Stein et al., 2015; Vaughan et al., 2004; 

Castrillón et al., 2011; Ferreira et al., 2020). However, little work has been done to assess the 

use of these forecast systems for public health surveillance and research.
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This paper describes the evaluation of North American Mesoscale (NAM)-based modeled 

predictions of surface PM2.5 concentrations from the U.S. Forest Service (USFS) BlueSky 

modeling framework using existing observation data from the Environmental Protection 

Agency Air Quality System (AQS), the Interagency Monitoring of Protected Visual 

Environments (IMPROVE), the Western Regional Climate Center (WRCC), and the 

Interagency Realtime Smoke Monitoring program (AIRSIS) monitoring programs. In the 

following sections, we briefly describe the BlueSky smoke data product, discuss methods 

used to retrieve and process the smoke data, describe methods for the generation of 

population-level smoke exposure metrics, and evaluate model-derived estimates using PM2.5 

measurements from the AQS, IMPROVE, WRCC, and AIRSIS observation networks. 

Finally, we discuss the applicability of archived smoke forecasts for creating population-

level exposure metrics at the county level.

2. Materials and methods

2.1. BlueSky modeling framework

BlueSky is a modular framework for modeling the emissions, transport, and chemistry of 

smoke from wildland fires (Larkin et al., 2009). The BlueSky framework links together 

several models describing fire information (e.g., fire location, fire size, fire type), fuel 

loading (e.g., fuel type and amount), fuel consumption, speciated emissions, emissions 

dispersion, and emissions trajectories. Three-dimensional gridded meteorological data 

required for trajectory and dispersion calculations are provided by a variety of models 

including the National Center for Atmospheric Research Mesoscale Meteorological model, 

and the more recent Weather Research and Forecasting model. Simulations of trajectories 

are performed using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. 

Details about the overall modeling framework, the component models, and how they are 

linked together are described in Larkin et al. (2009). Daily BlueSky predictions of surface 

PM2.5 concentrations from wildfires are available across the coterminous United States 

through the USFS in support of the Interagency Wildland Fire Air Quality Response 

Program.

For our evaluation, we downloaded BlueSky daily archived model forecasts from AirFire’s 

FTP server (U.S. Forest Service, 2020) for the years 2015 through 2018. The data 

have a spatial resolution of 4 km and a temporal resolution of 1 h. The daily forecast 

records contain either 24 h, 48 h, or 72 h of forecast smoke data. We selected the most 

recent forecast data hour from the daily forecast records for all analyses performed here. 

Additionally, we used forecast dispersion records that incorporated carry-over smoke, that 

is, predictions of smoke leftover from the previous forecast period carried into the current 

forecast period. The hourly resolved arrays were adjusted for local standard time, then 

aggregated to create daily county-level summaries of mean surface PM2.5 concentration for 

the coterminous United States over the period January 1, 2015 through December 31, 2018.

2.2. Surface observation data

To evaluate the model-derived data, we used measurements from permanent monitors in 

the AQS and IMPROVE monitoring networks and temporary monitors in the WRCC 
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and AIRSIS monitoring programs. For the permanent network data, we downloaded 24-h 

average PM2.5 observations, using records from January 1, 2015 through December 31, 

2018. For the IMPROVE data, we used the observed elemental carbon fraction of total 

PM2.5 mass to evaluate the forecast data. The AQS and IMPROVE monitoring networks 

are maintained by state environmental agencies and the data are publicly available (U.S. 

Environmental Protection Agency, 2019; IWFQRP, 2020) For the temporary network data, 

we obtained hourly averaged PM2.5 observations, which were adjusted for local standard 

time and aggregated to create county-level daily summaries of mean PM2.5 concentrations. 

The WRCC is one of six regional climate centers in the United States, is administered 

by National Oceanic and Atmospheric Administration (WRCC, 2000), and the AIRSIS 

program is administered through the U.S. Forest Service (U.S. Forest Service, 2013).

2.3. Generation of county-level smoke estimates

We used a population-weighted county centroid containment approach to map grid cells 

to counties and assign daily summaries of grid-level PM2.5 forecast to the county level 

(Vaidyanathan et al., 2013). Hourly smoke forecasts from the model are available at 

a 4 km-by-4km grid resolution. We used the hourly forecast data in a multi-stage geo--

imputation procedure to convert grid-level smoke forecast data to county-level estimates. 

We first assigned each U.S. Census block centroid to a forecast-derived grid cell based 

on a containment relationship and created block-level estimates of hourly smoke forecasts. 

Using block-level population as weights, we then calculated a population-weighted average 

of daily 24-h mean smoke predictions by U.S. Census tracts. From this Census tract-level 

data product, we created average county-level estimates of daily 24-h mean smoke forecasts 

using tract population as weights.

2.4. Analysis: evaluation of county-level estimates

To compare the temporal variability in county-level estimates for the datasets, we created 

time series of the daily summaries of population-weighted county-level concentrations for 

our domain, aggregating the summaries by year, month, and wildfire activity periods. We 

defined wildfire activity periods as March 1–June 30 and July 1–October 31. We evaluated 

the model-derived estimates against PM2.5 observations from the monitoring networks 

over the period 2015 through 2018. Specifically, we calculated Spearman (ρ) correlation 

coefficients to assess and compare the strength and consistency of the relationships between 

the daily model-derived estimates, and AQS, IMPROVE, WRCC and AIRSIS observation 

network data for the coterminous United States. We assessed correlations between the 

measurement and model data for location of monitor sites, and the following timescales: 

yearly, monthly, and wildfire activity periods. We stratified the model-derived and monitor-

derived estimates of daily PM2.5 concentrations into bins of <35 μg/m3, 35–70 μg/m3, and 

>70 μg/m3 PM2.5 to assess the strength of the associated between the estimates over a 

wide-range of smoke concentrations. We classified Arizona, California, Colorado, Idaho, 

Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming as “high wildfire 

impact states,” aggregated the monitor- and model-derived estimates for counties in these 

states, and assessed correlations between the monitor- and model-derived estimates. We 

used the Center for Disease Control and Prevention National Center for Health Statistics 

(NCHS) Urban-Rural Classification Scheme for Counties (Ingram and Franco, 2014) to 
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estimate urban-rural differences in smoke impacts. For this analysis, we reclassified the 

2013 NCHS urban-rural classifications from six categories to three, by grouping large 

central metropolitan counties and large fringe metropolitan counties together as large 

metropolitan counties, medium metropolitan counties and small metropolitan counties as 

medium metropolitan or small metropolitan counties, and micropolitan counties and non-

core counties as non-metropolitan counties. We aggregated the counties into climatically 

consistent regions using the National Center for Environmental Information (NCEI) United 

States climate region classification (Karl and Koss, 1984) and examined spatial trends in the 

monitor networks, and model-derived estimates. Finally, we calculated county-level number 

of high PM2.5 days and person-days of exposure. We defined a high PM2.5 day as a day with 

daily mean PM2.5 concentration above 35 μg/m3 and calculated person-days of exposure 

as the sum of high PM2.5 days multiplied by the county population. We used county-level 

population data from the U.S. Census Bureau (2020) to calculate county-level person-days 

of exposure. Data analysis was performed using SAS version 9.4 (SAS Institute, Inc., Cary, 

North Carolina) and R software [R version 4.0.0 (2020-04-24), (R.Core Team, 2020).

3. Results

3.1. Descriptive statistics

AQS monitoring sites are predominantly located in large and medium metropolitan or 

small metropolitan counties, while IMPROVE, WRCC, and AIRSIS monitors are located in 

non-metropolitan counties (Fig. 1, panels a and b, Table 1). A similar spatial distribution 

is observed in the percentage of active monitoring days for permanent monitors in the 

coterminous United States across all observation years (Fig. 1, panel d). Overall, the 

west, southwest, and northeast regions had a greater porportion of counties that reported 

60% or more active monitoring days over the observation period. The highest number of 

permanent monitors were observed in the west, central, southeast, and northeast regions 

of the domain, closely aligning with areas of high population density. Temporary monitors 

were predominantly located in the western regions, specifically northwest (Table 1).

3.2. Spatio-temporal trends in county-level PM2.5 concentrations

When assessed spatially for years 2015–2018, counties with comparatively large numbers 

of high PM2.5 days were predominantly located in the west and southwest regions (in the 

northwest, and Northern and Southern California), highlighting contributions from large 

wildfire events in the region over the interval (Fig. 4 and S2). When aggregated temporally 

by wildfire activity periods, higher county-level high PM2.5 days and person-days were 

observed during the interval July 1–October 31 when compared the other intervals, and 

higher numbers of high PM2.5 days in the southwest and northwest regions (Fig. 2, panels 

c and d, and Fig. S1). We observed fewer high PM2.5 days in counties classified as large 

metropolitan, a larger number of county-level high PM2.5 days from counties classified as 

medium metropolitan or small metropolitan, with the largest contribution of county-level 

high PM2.5 days from counties classified as non-metropolitan (Fig. 2, panels e and f). 

Overall, counties in the northwest, south, west, and west north central climate regions 

accounted for over 70% of county-level high PM2.5 days and person-days of exposure (see 

Fig. 3).
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3.3. Correlational analysis

When compared across all counties in the coterminous United States, and for all days, 

the relationship between daily county-level AQS- and model-derived estimates was positive 

but weak (ρ = 0.14, p < 0.001) (Table 2). A slightly stronger relationship was observed 

when comparing the model-derived estimates with IMPROVE-derived estimates (ρ 0.19, 

p < 0.001). When stratified by level of urbanization, correlations between the model- and 

AQS-derived estimates were positive but weak overall, increasing with decreasing levels 

of urbanization. This observation was also true when comparing model-derived estimates 

with IMPROVE-derived estimates, however, the relationship was slightly stronger for 

non-metropolitan counties (ρ = 0.23, p < 0.001). Correlations between the model- and 

IMPROVE-derived estimates showed a weak but positive relationship that increased with 

increasing PM2.5 concentrations. When aggregated by month, we observed stronger positive 

relationships over the months March–October and weaker positive relationships over the 

months November–February for both AQS- and IMPROVE-derived estimates (Table S1).

Correlations between model-derived and AQS- and IMPROVE-derived estimates of PM2.5 

for counties in “high wildfire impact states” were positive, and overall displayed stronger 

relationships across all stratifications (level of urbanization, concentration ranges), and 

temporal aggregations (wildfire activity period, year, month) (Table 2 and S1). For example, 

stronger positive correlations were observed between model-derived and IMPROVE-derived 

estimates for counties in “high wildfire impact states” during August (ρ = 0.47, p < 

0.001), as compared to all other months. Similarly, yearly and monthly comparisons for 

this region were relatively better (Table S1) and stratifying by concentration thresholds 

and levels of urbanization generated similar trends, but with relatively better correlations 

with the IMPROVE-derived than the AQS-derived estimates. Correlations were stronger 

across all spatial and temporal aggregations when the model-derived estimates were assessed 

with WRCC- and AIRSIS-derived estimates, compared to estimates from the permanent 

monitoring networks (Table 2). For example, the correlation between the model-derived 

estimates and the monitor-derived estimates for non-metropolitan counties increased when 

going from permanent to temporary networks (AQS: ρ = 0.25, IMPROVE: ρ = 0.29, WRCC: 

ρ = 0.47, AIRSIS: ρ = 0.54). Correlations between daily county-level model-derived, 

and AQS- and IMPROVE-derived estimates of PM2.5, resolved temporally for wildfire 

activity and spatially for counties in “high wildfire impact states,” improved slightly from 

the correlation observed for all counties in the coterminous United States (Table 2). The 

increase in the strength of the correlations was greater when comparing with the temporary 

monitoring network. Overall, stronger relationships were observed during July 1 to October 

31 wildfire activity period, as compared to the March 1 to June 30 wildfire activity period. 

Finally, when stratified by levels of urbanization, we observed positive correlations between 

model- and monitor-derived PM2.5 estimates in “high wildfire impact states”, specifically in 

non-metropolitan counties.

4. Discussion

Overall, we observed relatively stronger positive correlations between county-level model- 

and monitor-derived estimates of PM2.5 concentrations in non-metropolitan areas and 
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at higher concentration thresholds, and poorer performance for dense urban areas and 

lower concentration thresholds. This was especially true when compared with estimates 

from the temporary monitoring network which are primarily situated in non-metropolitan 

areas. Relatively stronger correlations were observed between model- and monitor-derived 

estimates for the temporary network when compared to the permanent network across all 

stratifications (level of urbanization, concentration), and temporal aggregations (wildfire 

activity period, year, month). This result highlights the inability of the permanent monitors 

to adequately characterize population exposure to wildfire smoke, especially in non-

metropolitan counties, and was reported elsewhere (Larkin 2019; Jaffe et al., 2020).

The model data adequately describe the spatial distribution of the county-level PM2.5 

concentrations, especially when assessed using temporary network data. County-level high 

PM2.5 days and person-days of exposure across all spatial and temporal aggregations 

displayed similar trends in the model-derived data as seen in the monitoring network data. 

We did observe that the model data were unable to accurately estimate county-level PM2.5 

concentrations, especially at higher concentration, measured by monitoring data. Following 

their validation of the BlueSky modeling framework, Larkin et al. (2009) reported that 

the model adequately reproduces plume shape and long-range transport, but underpredicts 

near-field ground concentrations such as those within 100 km, and this observation aligns 

with the spatial trends and relationships shown in our analysis. It must be noted that 

the model-derived PM2.5 smoke estimates only include information regarding wildfire 

emissions. When compounded with the meteorological processes governing smoke transport 

to observation sites, we expect the correlations between the model-derived estimates and the 

monitor-derived estimates to be underestimated at higher concentrations.

Furthermore, climate change significantly affects the occurrence and severity of wildfires 

(Abatzoglou and Williams, 2016; De Groot et al., 2013; Westerling et al., 2006; Westerling 

and Bryant, 2008), the length of fire seasons (De Groot et al., 2013; Flannigan et al., 2013), 

and the total area burned (Gillett et al., 2004). Westerling et al. (2006) examined associations 

between climate-related temperature increases and changes in wildfire frequency in the 

western United States and found strong correlations between regional temperatures and 

interannual variability in wildfire frequency during early and peak wildfire seasons. 

According to Westerling et al. (2006), the average length of the wildfire season increased 

by 64% between 1987 and 2003 when compared to the average over the period 1970 to 

1986. This increase in the frequency and magnitude of wildfire episodes underscores the 

importance of smoke forecast products to characterize wildfire exposures in communities, 

especially those residing in the wildland-urban interface.

Consideration should be given to certain limitations that exist for smoke forecast products, 

particularly around their inputs, which can significantly affect the forecasts generated. 

Studies have shown that difficulties in characterization of emissions, plume rise, chemistry, 

transport, coupled atmosphere and smoke mechanisms, and the choice of fire information 

are major drivers of uncertainties the models (Larkin et al., 2009, Jaffe et al., 2020; Larkin 

et al., 2012; Raffuse et al., 2012). Studies assessing the performance of smoke forecasting 

system have reported large model overestimation bias attributed to chemistry representation 

(Baker et al., 2016), and significant sensitivity to small errors in geolocation of fires and 
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vertical distribution of emissions (Garcia-Menendez et al., 2014). While these limitations 

exist in the ability of forecast products to accurately assess ground-level concentrations, 

these predictions have utility in identifying areas and populations exposed to wildfire smoke. 

However, the concentration levels at which populations are exposed might be misrepresented 

and may lead to misclassification of smoke exposure in these populations.

5. Conclusions

The development of effective strategies to minimize adverse effects of wildfire smoke 

requires the availability of data that can reliability identify wildfires, characterize PM2.5 

smoke concentrations at adequate spatio-temporal scales, and assess population-level 

exposures and health risks to wildfire-related PM. Our findings suggest that the model-

derived data are better suited to identify communities that are impacted by heavy smoke 

events, especially during emergency response and for communities located near wildfire 

episodes; however, public health practitioners and health researchers need to consider the 

limitations associated with modeled data products before using these predictions to conduct 

epidemiologic research, especially for assessments that require a more rigorous smoke 

exposure characterization before, during, and after heavy smoke events.
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Fig. 1. 
Distributions of monitors (panel a), counties in NCHS urban-rural classification categories 

(panel b), county-level numbers of AQS and IMPROVE monitors (panel c), and active PM2.5 

monitoring days across the coterminous United States and over the 2015–2018 study period. 

Active monitoring days do not include measurements from temporary monitors (AIRSIS and 

WRCC).
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Fig. 2. 
County-level model-derived high PM2.5 days (grey bars) and person-days of exposure 

(red bars) in high-wildfire impact states (AZ, CA, CO, ID, MT, NM, NV, OR, UT, WA, 

WY), by year (panels a and b), wildfire activity period (panel c and d), and level of 

urbanization (panel e and f). Large = large metropolitan counties, Medium = medium or 

small metropolitan counties, and Non-metro = Non-metropolitan counties.
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Fig. 3. 
Estimates of model-derived person-days of exposure and high PM2.5 days, by NCEI climate 

region.
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Fig. 4. 
County-level estimates of the number of high PM2.5 days, defined as days when the daily 

mean PM2.5 concentration >35 μg/m3, for all counties for 2015 (panel a), 2016 (panel b), 

2017 (panel c), 2018 (panel d).
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