

HHS Public Access

Author manuscript

Infect Control Hosp Epidemiol. Author manuscript; available in PMC 2024 August 01.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Published in final edited form as:

Infect Control Hosp Epidemiol. 2022 October ; 43(10): 1492–1494. doi:10.1017/ice.2021.220.

Sampling efficiency of *Candida auris* from healthcare surfaces: culture and nonculture detection methods

William A. Furin, MS^{1,2}, Lisa H. Tran, BS^{1,2}, Monica Y. Chan, MS¹, Amanda K. Lyons, MS¹, Judith Noble-Wang, PhD¹, Laura J. Rose, MS¹

¹Division of Healthcare Quality Promotion, Clinical and Environmental Microbiology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia

²Oak Ridge Institute for Science and Education (ORISE), Department of Energy, Oak Ridge, Tennessee

Abstract

Sponges and swabs were evaluated for their ability to recover *Candida auris* dried 1 hour on steel and plastic surfaces. Culture recovery ranged from <0.1% (sponges) to 8.4% (swabs), and cells detected with an esterase activity assay revealed >50% recovery (swabs), indicating that cells may enter a viable but nonculturable state.

Candida auris has emerged as an often-misdiagnosed multidrug-resistant organism causing mortality rates of 30%–60% in hospitalized patients.^{1–3} It has been shown to persist on surfaces 2 weeks.^{4,5} Transmission via fomites within healthcare facilities has been reported^{1,2} but standard sampling methods are lacking. We evaluated the influence of sampling devices, mucin in organic matrix, and drying time on cell recovery efficiency of 2 *C. auris* strains from steel and plastic surfaces. We also compared the detection of recovered cells using culture (colony forming units, CFU) and an alternate viability assay.

Methods

Steel coupons (S-180 grade, T-304; Stewart Stainless Supply, Suwanee, GA) and plastic coupons (0.80 in. thickness, P1 haircell texture, Kydex-T, Bloomsburg, PA) (322 cm²) were cleaned with a nonantimicrobial detergent, rinsed with ultrapure water, then rised with 70% ethanol. Steel was autoclaved at 121°C for 20 minutes and plastic was sterilized with ultraviolet (UV) light for 1 hour.

We obtained 2 *C. auris* isolates from the Centers for Disease Control and Prevention (CDC); B11103 (clade I) and AR0385 (clade IV). Yeast colonies were cultured on Sabouraud dextrose agar (SDA) for 48 hours at 37°C then suspended in a body fluid simulant; artificial test soil (ATS), or ATS with mucin (ATS-M) (Healthmark Industries, Fraser, MI). Coupons were inoculated with 500 µL cell suspension (10⁵ CFU/mL), spread, and dried for 1 hour at

Author for correspondence: Laura J. Rose, lmr8@cdc.gov.

Conflicts of interest. All authors report no conflict of interests relevant to this article.

ambient temperature and humidity in a closed BSC (light and fan off). Evaluations were also conducted by sampling 0, 20, and 40 minutes after inoculation.

Coupons were sampled across the entire surface with either a cellulose sponge (cellulose) (3M Sponge-stick, St Paul, MN) or a polyurethane sponge (polyurethane) (Hygiena, Camarillo, CA), both moistened with neutralizing buffer, using a standard method⁶ modified to 322 cm² sample area. Sponges were held 1 hour at ambient temperature to simulate transport time and were then transferred to a stomacher bag containing 45 mL PBS with 0.02% Tween 80 (PBST) for processing. Cells were eluted from sponges using a Stomacher 400 Circulator (Seward Ltd, Worthing, UK) at 260 rpm for 1 minute. The eluate was concentrated by centrifugation, and the final volume was recorded and then cultured on SDA (48–72 hours, 37°C).

To determine the portion of cells remaining on the coupons after sampling, and to investigate the presence of viable but non-culturable cells, smaller steel coupons (26 cm²) were inoculated as described above using 100 µL 5×10⁶ CFU/mL inoculum in ATS-M and sampled with a foam swab (swab) (Puritan; Guilford, ME). The swab was vortexed in 5 mL PBST, the coupon was sonicated in 15 mL PBST, and both eluates were cultured on SDA. Using a solid phase cytometer (ScanRDI, bioMerieux, Durham, NC) and the instrument's standard protocol,⁷ 1 mL of each swab and coupon eluate was analyzed for cells exhibiting metabolic esterase activity. Cells with esterase activity cleave a fluorophore creating fluorescent events that can be detected by the solid-phase cytometer and verified visually by fluorescent microscopy.

Percent recovery (%R) was calculated relative to inoculum CFU or cell count via ScanRDI. Significance was determined using the Student *t* test, with significance set at *P*<.05. Solid-phase cytometry fluorescent events were verified visually by fluorescent microscopy as viable cells per swab or coupon and were compared to CFU per swab or coupon.

Results

The mean %R CFU varied with sampling device, surface type, and inoculum matrix, although %R for *C. auris* B11103 was consistently <1% (Table 1), and for AR0385 was <3%. Using cellulose for sampling, the %R was significantly greater when *C. auris* was suspended in ATS-M compared to ATS (*P*<.01) from both surfaces (Table 1). All subsequent studies used the ATS-M formula. The sampling mean %R was significantly higher using polyurethane than cellulose, regardless of surface type. Combining data for steel and plastic using B11103 in ATS-M, the mean %R for polyurethane was 0.41% (SD, 0.32%) and for cellulose was 0.15% (SD, 0.12%). For directly inoculated cellulose and polyurethane (positive controls), the %R ranged between 46% and 82% with significantly higher %R from polyurethane (*P*<.01). The mean %R decreased with increased drying time from both surfaces. When sampled with cellulose at 0, 20, and 40 minutes, mean %R from steel and plastic dropped from ~50% to <1%, representing a CFU decrease of 2.5–3 log₁₀. Furthermore, the variability in %R was also significant (*P*<.01) between the 2 strains evaluated on plastic surfaces using cellulose (Table 1). When examining eluates from swabs using ScanRDI, 1 log₁₀ more *C. auris* cells were detected than by culture (Table 2).

Although the %R was higher for swabs than for sponges, the surface area sampled was much smaller (26 cm²) and the results were much more variable (higher SD).

Discussion

Candida auris has been found on surfaces in healthcare facilities^{1,3,5} and has shown persistence extending 2 weeks.^{4,5} We found recovery by traditional culture methods to be low after only 40 minutes drying time, yet patient shedding and/or fomite contamination can occur throughout the day² and can continue drying on surfaces for much longer than 1 hour. Our findings suggest that the actual contamination on surfaces may be 1–2 log₁₀ greater than what is reflected by CFU counts. The mean %R by CFU from directly inoculated sponges was >60%, indicating that neither sampling device nor processing method influenced CFU or induced viable but nonculturable cells in *C. auris*. We also noted that the directly inoculated polyurethane yielded a higher mean %R than cellulose, indicating less cellular adherence to polyurethane, also noted by West-Deadwyler et al.⁸ Furthermore, %R improved slightly from both steel and plastic surfaces using the polyurethane sponge, indicating better recovery of *C. auris*. The CDC recommends using swabs for sampling surface areas <26 cm² and sponges for 645 cm².⁶

Although %R varied between *C. auris* strains, the low %R for both strains was unanticipated because the same methods applied to antimicrobial-resistant bacterial pathogens yielded higher %R, ranging from 7.7% (SD, 5.2%) for carbapenemase-producing *Klebsiella pneumoniae* to 58.9% (SD, 12.7%) for *Clostridium difficile*.⁹

Background particle fluorescence from sponge materials prevented ScanRDI assay comparison to culture, but from swabs, we observed almost 50% cell recovery by esterase activity and only 9% by culture. Thus, although many cells are recovered, they are nonculturable. These results support previous findings that yeasts may become viable but nonculturable,^{4,10} though surprisingly, this occurred after only 1 hour of drying. If this holds true for other *C. auris* isolates, contamination on environmental surfaces could be 1 log₁₀ higher than detected by culture and culture could mis-represent actual contamination by 2–3 log₁₀. The question of cell resuscitation potential and subsequent transmission from healthcare surfaces is worth investigating. We are not aware of published evidence supporting *C. auris* resuscitation, though it has been reported in other yeasts.¹⁰

This study was limited to 2 *C. auris* strains, 2 simulated body fluids, and 3 sampling devices, and each of these can influence recovery efficiency. However, the data presented here contribute to creating a standard method for *C. auris* surface sampling and to interpreting results obtained in the context of an outbreak investigation or in evaluating environmental infection control interventions.

Acknowledgments.

We acknowledge our colleagues Anastasia Litvintseva, Joseph Sexton, and Rory Welsh of the Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US government.

Financial support.

This project was supported in part by an appointment to the Science Education Programs at National Institutes of Health (NIH), administered by ORAU through the US Department of Energy Oak Ridge Institute for Science and Education.

References

1. Chowdhary A, Sharma C, Meis JF. *Candida auris*: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. *PLoS Pathog* 2017;13(5):e1006290. [PubMed: 28542486]
2. Adams E, Quinn M, Tsay S, et al. *Candida auris* in healthcare facilities, New York, USA, 2013–2017. *Emerg Infect Dis* 2018;24:1816–1824. [PubMed: 30226155]
3. Vallabhaneni S, Kallen A, Tsay S, et al. Investigation of the first seven reported cases of *Candida auris*, a globally emerging invasive, multidrug-resistant fungus—United States, May 2013–August 2016. *Morb Mortal Wkly Rep* 2016;65:1234–1237.
4. Welsh RM, Bentz ML, Shams A, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast *Candida auris* on a plastic healthcare surface. *J Clin Microbiol* 2017;55:2996–3005. [PubMed: 28747370]
5. Piedrahita CT, Cadnum JL, Jencson AL, Shaikh AA, Ghannoum MA, Donskey CJ. Environmental surfaces in healthcare facilities are a potential source for transmission of *Candida auris* and other *Candida* species. *Infect Control Hosp Epidemiol* 2017;38:1107–1109. [PubMed: 28693657]
6. National Institutes for Occupational Safety and Health. Emergency response resources: surface sampling procedures for *Bacillus anthracis* spores from smooth, nonporous surfaces. Centers for Disease Control and Prevention website. <https://www.cdc.gov/niosh/topics/emres/surface-sampling-bacillus-anthracis.html>. Revised April 26, 2012. Accessed May 5, 2021.
7. Costanzo SP, Borazjani RN, McCormick PJ. Validation of the scan RDI for routine microbiological analysis of process water. *J Pharm Sci Technol* 2002;56:206–219.
8. West-Deadwyler RM, Moulton-Meissner HA, Rose LJ, Noble-Wang JA. Elution efficiency of healthcare pathogens from environmental sampling tools. *Infect Control Hosp Epidemiol* 2020;41:226–228. [PubMed: 31813410]
9. Houston H, Rose L, West-Deadwyler R, Noble-Wang J. Recovery of four healthcare associated organisms from hospital surfaces using sponge-sticks. Presented at the American Society for Microbiology conference. Boston, MA; June 2016. Poster 4264.
10. Mills DA, Johannsen EA, Cocolin L. Yeast diversity and persistence in botrytis-affected wine fermentations. 2002;68:4884–4893.

Percent Recovery of *C. auris* From 322 cm² Steel and Plastic Coupons as Determined by Culture (CFU)^a

Table 1.

Surface	Isolate	Drying Time (min)	Sampling Tool	Matrix	No. of Coupons Inoculated ^b	Mean %R (SD)	P Value
Steel	B11103	60	CS	ATS	9	0.04 (0.05)	<.01
			CS	ATS-M	9	0.16 (0.11)	
Plastic	B11103	60	CS	ATS	9	0.13 (0.09)	<.01
			CS	ATS-M	9	0.26 (0.2)	
Steel	B11103	60	CS	ATS-M	9	0.11 (0.08)	<.01
			PS	ATS-M	9	0.43 (0.37)	
Plastic	B11103	60	CS	ATS-M	6	0.24 (0.12)	<.05
			PS	ATS-M	6	0.37 (0.22)	
Plastic	B11103	60	CS	ATS-M	6	0.65 (0.31)	<.01
	AR0385		CS	ATS-M		2.27 (0.81)	
Steel and Plastic	B11103	60	CS	ATS-M	12	0.15 (0.12)	...
			PS	ATS-M	12	0.41 (0.32)	
Steel	B11103	0	CS	ATS-M	4	47.11 (6.28)	...
		20	CS	ATS-M	4	1.82 (1.42)	
Plastic	B11103	40	CS	ATS-M	4	0.75 (0.68)	...
		40	CS	ATS-M	4	0.58 (0.42)	
Directly inoculated sampling tools	N/A		CS	ATS-M	7	55.28 (8.82)	<.01
		N/A	PS	ATS-M	7	69.36 (11.9)	

Note. SD, standard deviation; CS, cellulose sponge; PS, polyurethane sponge; ATS, artificial test soil; ATS-M, artificial test soil with mucin (both formulations contain hemoglobin, proteins, carbohydrates, albumin, lipids, and vitamins to simulate body fluids).

^aVariables tested were isolate, dry time, sampling tools and suspension matrix. Percent recovery was calculated relative to the inoculum (~5 log/coupon).

^bExperiments conducted on 2 or 3 independent days.

Table 2.Recovery of *C. auris* From 26 cm² Steel Coupon^a

Sample Type	CFU (SD)	%R CFU (SD)	ScanRDI Cell Counts (SD) ^b	%R ScanRDI (SD) ^c
Inoculum ^d	4.52 × 10 ⁵	NA	3.62 × 10 ⁵	NA
	(8.42 × 10 ⁴)		(1.47 × 10 ⁵)	
Swab eluate	3.77 × 10 ⁴	8.94	1.78 × 10 ⁵	49.97
	(5.40 × 10 ⁴)	(12.17)	(7.04 × 10 ⁴)	(27.80)
Coupon eluate	1.28 × 10 ³	0.26	5.16 × 10 ³	1.87
	(2.21 × 10 ³)	(0.43)	(4.06 × 10 ³)	(1.74)

Note. CFU, colony-forming units; SD, standard deviation; NA, not available.

^aCells detected by culture (CFU) and esterase activity (ScanRDI) from the inoculum suspension, from swabs after sampling the coupon, or from the coupon after sampling. Data represents mean of n=18 replicates.

^bScanRDI indicates the cells determined as viable by metabolic esterase activity.

^c%R ScanRDI indicates the percent of viable cells determined by ScanRDI, relative to the ScanRDI inoculum.

^dTiter of inoculum placed on coupons: 100 µL of 4.52 × 10⁶/mL suspension.