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Abstract

Background: Primary congenital glaucoma (PCG) affects approximately 1 in 10,000 live born 

infants in the United States (US). PCG has a autosomal recessive inheritance pattern, and variable 

expressivity and reduced penetrance have been reported. Likely causal variants in the most 

commonly mutated gene, CYP1B1, are less prevalent in the US, suggesting that alternative genes 

may contribute to the condition. This study utilized exome sequencing to investigate the genetic 

architecture of PCG in the US and to identify novel genes and variants.

Methods: We studied 37 family trios where infants had PCG and were part of the National Birth 

Defects Prevention Study (births 1997–2011), a US multicenter study of birth defects. Samples 

underwent exome sequencing and sequence reads were aligned to the human reference sample 

(NCBI build 37/hg19). Variant filtration was conducted under de novo and Mendelian inheritance 

models using GEMINI.

Results: Among candidate variants, CYP1B1 was most represented (5 trios, 13.5%). Twelve 

probands (32%) had potentially pathogenic variants in other genes not previously linked to 

PCG but important in eye development and/or to underlie Mendelian conditions with potential 

phenotypic overlap (e.g., CRYBB2, RXRA, GLI2).

Conclusion: Variation in the genes identified in this population-based study may help to further 

explain the genetics of PCG.
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Introduction

Primary congenital glaucoma (PCG) is most often diagnosed in the first 12 months of life 

and often occurs without overt structural eye defects(Lewis, Hedberg-Buenz, DeLuca, Stone, 

Alward, & Fingert, 2017). Children present with raised intraocular pressure (IOP), loss of 

corneal transparency, photophobia, and enlargement of the eye(deLuise & Anderson, 1983). 

Raised IOP in this context is thought to be a result of reduced flow of aqueous humor out 

of the anterior chamber of the eye through the trabecular meshwork, a porous structure of 

tissues(Abu-Hassan, Acott, & Kelley, 2014).

The prevalence of PCG is approximately 1 in 10,000 live births in the United States 

(US)(Alanazi, Song, Mousa, Morales, Al Shahwan, Alodhayb, Al Jadaan, Al-Turkmani, 
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& Edward, 2013; deLuise & Anderson, 1983), but has been reported to be as high as 1 in 

1,250 in communities with high consanguinity4,(AK & PA, 2006). Historically, PCG was 

considered to be inherited as an autosomal recessive trait; however, this model of inheritance 

has been recently challenged by reports of transmission in successive generations, unequal 

sex distribution among affected individuals, and lower-than-expected numbers of affected 

siblings in familial cases(Demenais, Bonaiti, Briard, Feingold, & Frezal, 1979; Elder, 1969; 

Francois, 1980; François, 1961; Gencik, Gencikova, & Gerinec, 1980; M. & N., 1978).

Pathogenic variants in several genes underlie some cases of PCG. The most commonly 

mutated gene reported in the literature is Cytochrome P450 Family 1 Subfamily B 

Member 1 (CYP1B1). Frequencies of specific pathogenic variants in CYP1B1 causing 

PCG vary, with reports of founder alleles explaining 90–100% of cases among Slovakian 

Roma Gypsies, 50% of cases from Brazil, 44% of cases from India, and 20% of cases 

from Japan(Lim, Tran-Viet, Yanovitch, Freedman, Klemm, Call, Powell, Ravichandran, 

Metlapally, Nading, Rozen, & Young, 2013; Mashima, Suzuki, Sergeev, Ohtake, Tanino, 

Kimura, Miyata, Aihara, Tanihara, Inatani, Azuma, Iwata, & Araie, 2001; Plasilova, 

Ferakova, Kadasi, Polakova, Gerinec, Ott, & Ferak, 1998). Despite the high prevalence of 

PCG in some populations, pathogenic variants have only been found in 16–25% of families 

from the US(Lim, Tran-Viet, Yanovitch, Freedman, Klemm, Call, Powell, Ravichandran, 

Metlapally, Nading, Rozen, & Young, 2013; Reis, Tyler, Weh, Hendee, Kariminejad, 

Abdul-Rahman, Ben-Omran, Manning, Yesilyurt, McCarty, Kitchner, Costakos, & Semina, 

2016). Variants in other genes, such as Latent-Transforming Growth Factor Beta-Binding 

Protein 2 (LTBP2) and Myocilin (MYOC), have been found in consanguineous families 

affected by PCG, but studies in families from the US failed to find pathogenic variants 

in these genes(Lim, Tran-Viet, Yanovitch, Freedman, Klemm, Call, Powell, Ravichandran, 

Metlapally, Nading, Rozen, & Young, 2013). Together, these findings suggest that additional 

genes underlying PCG remain to be found.

Herein, we describe CYP1B1 variants identified using whole-exome sequencing (WES) data 

of complete trios (unaffected mother, unaffected father, and PCG-affected child) from the 

National Birth Defects Prevention Study (NBDPS), a population-based case-control study 

that has been shown to be representative of the US population(Cogswell, Bitsko, Anderka, 

Caton, Feldkamp, Hockett Sherlock, Meyer, Ramadhani, Robbins, Shaw, Mathews, Royle, 

Reefhuis, & National Birth Defects Prevention, 2009). In addition, we sought to identify 

candidate genes for PCG based on WES analyses in families without a CYP1B1 variant.

Methods

Study Population

The NBDPS is a large multicenter population-based case-control study of over 30 major 

structural birth defects in the US. Detailed methods have been reported previously(Reefhuis, 

Gilboa, Anderka, Browne, Feldkamp, Hobbs, Jenkins, Langlois, Newsome, Olshan, Romitti, 

Shapira, Shaw, Tinker, Honein, & National Birth Defects Prevention, 2015). Briefly, case 

infants were identified through birth defects surveillance systems in 10 states and were 

diagnosed up to two years after delivery. Clinical geneticists at each study center reviewed 

abstracted medical records to confirm that identified cases met eligibility criteria (ICD-9 
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codes 743.200–743.204). Cases were then systematically reviewed again by a study-wide 

clinician to perform further classification according to study protocols(Rasmussen, Olney, 

Holmes, Lin, Keppler-Noreuil, Moore, & National Birth Defects Prevention, 2003). The 

centralized review process employed a stepwise approach that included: 1) confirmation 

of case definition criteria; 2) examination of indications for a single-gene condition or 

chromosomal abnormality previously diagnosed; 3) presence of multiple major defects and 

pathogenic relationship; and 5) suspicion of a syndrome of known etiology. The NC center 

clinical geneticist re-reviewed the records for cases that harbored variants in genes that 

are known to be important in eye development or are known to cause other Mendelian 

conditions with phenotypic overlap, multiple defects, or evidence of the syndromes 

linked to our candidate genes. Cases with defects of known etiology, including single-

gene disorders and chromosomal abnormalities were excluded. Other exclusions included: 

isolated microcornea with normal ocular size; iris coloboma and choroid or optic coloboma, 

without any other anterior chamber defect; cases with anencephaly, holoprosencephaly or 

anterior encephaloceles; and cases with amniotic bands.

This analysis included WES data from PCG cases born during 1997–2011 from Arkansas, 

California, Georgia, Iowa, Massachusetts, New York, North Carolina, Texas and Utah. 

Infants conceived using donor egg or donor sperm were excluded, resulting in 38 complete 

trios (mother-father-child). The NBDPS was approved by the Institutional Review Boards at 

the Centers for Disease Control and Prevention and each study center.

Buccal Cell Collection and DNA Isolation

Mothers completed a telephone interview between six weeks and 24 months after delivery 

and were subsequently mailed a buccal cell collection kit, which included documents for 

informed consent, six cytobrushes (two per eligible family member), instructions for use, 

and a postage-paid return mailer. DNA was extracted from one of the cytobrushes using 

either a phenol-chloroform method or Gentra Puregene® (Qiagen®)(Gallagher, Sturchio, 

Smith, Koontz, Jenkins, Honein, & Rasmussen, 2011). DNA quantity was assessed by 

quantitative real-time polymerase chain reaction (PCR) targeting the human RNaseP gene 

and short tandem repeat (STR) markers. Quality control standards included ≥0.1 ng/uL 

DNA, successful PCR amplification after at least two attempts with at least one STR marker, 

and genotypes consistent with the reported family relationship(Reefhuis, Gilboa, Anderka, 

Browne, Feldkamp, Hobbs, Jenkins, Langlois, Newsome, Olshan, Romitti, Shapira, Shaw, 

Tinker, Honein, & National Birth Defects Prevention, 2015).

WES and sequence alignment

Samples were prepared for sequencing at the National Institutes of Health Intramural 

Sequencing Center using 100 ng of genomic DNA and the Accel-NGS 2S Plus DNA Library 

Kit. Modifications to the library kit protocol included modified PCR cycling conditions 

to improve recovery of GC-rich regions and swapping a polymerase at the post-capture 

library amplification step. The Nimblegen SeqCap EZ Exome + UTR Library (version 

3.0) was used for WES. Samples were then pooled and sequenced on an Illumina HiSeq 

2500 instrument. Image analysis and base calling were performed using Illumina Genome 

Analyzer Pipeline software (version 1.18.64.0) with default parameters. Sequence reads 
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were aligned to the human reference sequence (NCBI build 37/hg19) using the Illumina 

aligner “ELAND” (Efficient Large-scale Alignment of Nucleotide Databases). When ≥ 1 

read in a pair mapped to a unique location in the genome, the pair of reads were then 

subjected to more accurate alignment with Novoalign v3.02.07. The aligned lane BAM files 

were merged, sorted, and indexed. Sequenced bases with a probability of an incorrect base 

call of 1 in 100(“Illumina. Quality Scores for Next-Generation Sequencing,”), or a phred 

quality score less than 20, were excluded from analysis.

Candidate variant and gene prioritization

The University of Washington Center for Mendelian Genomics reviewed the WES data 

and pedigree files and confirmed the sex of all participants and the relationships reported 

within trios. Detailed methods are published elsewhere(Jenkins, Almli, Pangilinan, Chong, 

Blue, Shapira, White, McGoldrick, Smith, Mullikin, Bean, Nembhard, Lou, Shaw, Romitti, 

Keppler-Noreuil, Yazdy, Kay, Carter, Olshan, Moore, Nascone-Yoder, Finnell, Lupo, 

Feldkamp, Program, University of Washington Center for Mendelian, Nickerson, Bamshad, 

Brody, Reefhuis, & National Birth Defects Prevention, 2019). Briefly, variant filtration was 

conducted under de novo and Mendelian inheritance models using GEMINI 0.20.2(Paila, 

Chapman, Kirchner, & Quinlan, 2013). Variant filters included FILTER flags of either 

PASS or SBFilter to allow for mosaic variation, depth ≥ 6, genotype quality of ≥ 20, 

alternative allele ≤ 0.005 across any single population within reference databases (ExAC 

v0.3(Lek, Karczewski, Minikel, Samocha, Banks, Fennell, O’Donnell-Luria, Ware, Hill, 

Cummings, Tukiainen, Birnbaum, Kosmicki, Duncan, Estrada, Zhao, Zou, Pierce-Hoffman, 

Berghout, Cooper, Deflaux, DePristo, Do, Flannick, Fromer, Gauthier, Goldstein, Gupta, 

Howrigan, Kiezun, Kurki, Moonshine, Natarajan, Orozco, Peloso, Poplin, Rivas, Ruano-

Rubio, Rose, Ruderfer, Shakir, Stenson, Stevens, Thomas, Tiao, Tusie-Luna, Weisburd, 

Won, Yu, Altshuler, Ardissino, Boehnke, Danesh, Donnelly, Elosua, Florez, Gabriel, Getz, 

Glatt, Hultman, Kathiresan, Laakso, McCarroll, McCarthy, McGovern, McPherson, Neale, 

Palotie, Purcell, Saleheen, Scharf, Sklar, Sullivan, Tuomilehto, Tsuang, Watkins, Wilson, 

Daly, MacArthur, & Exome Aggregation, 2016), Exome Sequencing Project 6200 (v2), 1000 

Genomes (phase 3), or the UK10K 2016-02-15 release(Consortium, Walter, Min, Huang, 

Crooks, Memari, McCarthy, Perry, Xu, Futema, Lawson, Iotchkova, Schiffels, Hendricks, 

Danecek, Li, Floyd, Wain, Barroso, Humphries, Hurles, Zeggini, Barrett, Plagnol, Richards, 

Greenwood, Timpson, Durbin, & Soranzo, 2015)), and a predicted medium to high impact 

on the gene/protein. Three approaches were undertaken to further narrow focus on gene 

variants which could result in PCG phenotypes. The first was to prioritize variants in genes 

underlying PCG and related disorders: CYP1B1, FOXC1, LTBP2, and MYOC (Ling, Zhang, 

Zhang, Sun, Du, & Li, 2020). The second approach prioritized variants cosegregating with 

PCG with evidence of conservation or potential pathogenicity, defined as phred-scaled 

Combined Annotation Dependent Depletion (CADD)(Rentzsch, Witten, Cooper, Shendure, 

& Kircher, 2019) scores >20 and Genomic Evolutionary Rate Profiling (GERP) scores 

>5(Cooper, Stone, Asimenos, Program, Green, Batzoglou, & Sidow, 2005). The third 

approach taken was a biologic plausibility approach in which we focused on those genes in 

which variants are known to underlie other Mendelian conditions with phenotypic overlap, 

genes with roles in eye development, or those which are in the same pathways as genes in 
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which variants have been reported in PCG cases or other anterior segment defects of the 

eye(Chakrabarti, Kaur, Rao, Mandal, Kaur, Parikh, & Thomas, 2009).

Results

WES was performed on samples from 38 complete trios with a PCG-affected proband. 

The 38 probands were generally demographically similar to the entire set of PCG cases 

in the NBDPS (n=136), though a few differences were apparent (Table 1). The PCG trios 

with WES included fewer mothers who identified as Hispanic, and both maternal and 

paternal age at delivery were slightly higher relative to other NBDPS participants, along 

with slight differences in the proportion of samples from each NBDPS center. There was 

one discrepancy on the sex of the affected child in one of the families. Due to our inability 

to resolve this through a review of collected clinical and interview data, we excluded that 

family from further analysis, leaving a total sample size of 37 trios. Two families had 

high levels of contamination (freemix(Jun, Flickinger, Hetrick, Romm, Doheny, Abecasis, 

Boehnke, & Kang, 2012)=0.035 and 0.09) and are included but identified as such.

Variants in two genes previously linked to congenital glaucoma may explain the phenotype 

for six of the 37 families within our study (Table 2, Supplemental Table 1). Five of 37 

families (13.5%) carried known CYP1B1 variants and one family carried a known FOXC1 
variant. Each CYP1B1 case had compound heterozygous genotypes which included variants 

that have been reported in children with PCG previously and were annotated as pathogenic 

or likely pathogenic in ClinVar. There were four frameshift changes, four missense variants, 

and two stop gains. Two variants were identified in more than one family: a 13-bp frameshift 

deletion (p.Arg355fs) was identified in families B1_10 and B1_33, while the missense 

variant p.Glu387Lys was identified in one non-Hispanic White and one non-Hispanic Black 

family, (families B1_12 and B1_13). In one family with no suspected pathogenic CYP1B1 
variants, the affected child had a de novo frameshift variant (c.1141dupG) in Forkhead Box 

C1 (FOXC1) which is predicted to lead to an early termination of the protein, removing 173 

of 553 amino acids. No rare coding change in LTBP2 or MYOC cosegregated with PCG in 

our sample.

Nine candidate variants in nine genes cosegregated with PCG in families without CYP1B1 
or FOXC1 variants and were prioritized for their evidence of conservation or potential 

pathogenicity (Table 3, Supplemental Table 2). All were missense variants, except for a 

splice donor variant in RELN. When assessing inheritance patterns, eight variants were 

identified through a de novo inheritance pattern and one was identified through an autosomal 

recessive inheritance pattern. Most of the genes identified using this approach, while known 

to be important in cellular and developmental processes, have not been previously linked 

to eye development, with the exception of CRYBB2 and POMT2(Driessen, Herbrink, 

Bloemendal, & de Jong, 1980; van Reeuwijk, Janssen, van den Elzen, Beltran-Valero de 

Bernabe, Sabatelli, Merlini, Boon, Scheffer, Brockington, Muntoni, Huynen, Verrips, Walsh, 

Barth, Brunner, & van Bokhoven, 2005).

Probands in 12 families (32%) harbored variants in genes that are known to be important 

in eye development or are known to cause other Mendelian conditions with phenotypic 
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overlap. Information about functional changes, whether each variant has been previously 

identified in public databases, CADD, PolyPhen, and GERP scores of variants within 

these genes can be found in Table 4, while variant quality metrics are provided in 

Supplemental Table 3. De novo variants thought to result in changes to the protein structure 

were found in CRYBB2, RXRA, GLI2, POU4F1, PIEZO2, and B3GALT6. Among these, 

POU4F1 p.Ala237del, was flagged for relatively low genotype quality and excluded after 

variant review(Thorvaldsdottir, Robinson, & Mesirov, 2013). Under a recessive model, one 

homozygous POMT2 variant met our inclusion criteria, along with compound heterozygous 

changes in five probands, implicating ALDH3A2, CREBBP, USH2A, UGT1A8, and 

SLC4A11 in PCG.

Discussion

We showed that CYP1B1 is likely the main gene underlying PCG in families in the NBDPS. 

We also showed that CYP1B1 variants are less common among cases from the US (13.5% 

this study, Lim et al., 14.9%(Lim, Tran-Viet, Yanovitch, Freedman, Klemm, Call, Powell, 

Ravichandran, Metlapally, Nading, Rozen, & Young, 2013)) than has been previously 

reported in Japanese patients (20%)(Mashima, Suzuki, Sergeev, Ohtake, Tanino, Kimura, 

Miyata, Aihara, Tanihara, Inatani, Azuma, Iwata, & Araie, 2001). We identified one family 

with a pathogenic variant in FOXC1, which has previously been implicated in PCG26. It 

has previously been suggested that there may be other novel variants in genes which may 

underly PCG in more ethnically heterogeneous populations, such as our multiethnic sample. 

We described candidate variants in 12 genes which have not previously been investigated 

in association with PCG, but which are known to be important in eye development or 

are known to cause Mendelian conditions with phenotypic overlap, including CRYBB2, 
CREBBP, SLC4A11, POMT2, B3GALT6, PIEZO2, RXRA, GLI2, POU4F1, ALDH3A2, 
USH2A, and UGT1A8. Of note, there are some families (7, 20, 30) that had multiple 

candidate variants detected, which could be unrelated to phenotype or could suggest a 

digenic inheritance or complex interactions that have not been previously reported.

Variant in Crystallin Beta B2 (CRYBB2)

Beta-crystallins are major proteins of the vertebrate lens and are important for maintaining 

the transparency and refractory index of the lens(Ganguly, Favor, Neuhauser-Klaus, 

Sandulache, Puk, Beckers, Horsch, Schadler, Vogt Weisenhorn, Wurst, & Graw, 2008). The 

specific CRYBB2 variant (p.Trp59Arg) that we found has not been previously described, 

though it is predicted to be damaging by PolyPhen and CADD. CRYBB2 p.Trp59Arg occurs 

in exon 4 near the conversion of a β-sheet to an α-helix, an important region of the protein 

influencing protein folding(Zhao, Xu, Chen, Liu, Yao, & Yan, 2017). A similar variant 

(p.Trp59Cys) has been described in congenital cataracts, a condition where the lens becomes 

opaque(Santhiya, Kumar, Sudhakar, Gupta, Klopp, Illig, Soker, Groth, Platzer, Gopinath, & 

Graw, 2010).

Variant in CREB Binding Protein (CREBBP)

During eye development, CREBBP is upregulated along with αA-crystallins as the 

primary lens fibers differentiate(Yang, Wolf, & Cvekl, 2007). The CREBBP protein has 
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intrinsic histone acetyltransferase activity allowing for transcriptional activation(Q. Chen, 

Dowhan, Liang, Moore, & Overbeek, 2002), and it can also act as a sort of scaffold 

to stabilize proteins of the transcription complex(Goodman & Smolik, 2000). Variants in 

CREBBP underlie Rubinstein-Taybi syndrome (RSTS) which is characterized by distinctive 

dysmorphic features, short stature, and moderate to severe intellectual disability(Hennekam, 

2006; Menke, van Belzen, Alders, Cristofoli, Study, Ehmke, Fergelot, Foster, Gerkes, 

Hoffer, Horn, Kant, Lacombe, Leon, Maas, Melis, Muto, Park, Peeters, Peters, Pfundt, van 

Ravenswaaij-Arts, Tartaglia, & Hennekam, 2016). In the last 50 years, there have been two 

reports of glaucoma in children diagnosed with RSTS; one with juvenile glaucoma36 and 

one with congenital glaucoma(McKusick, 1968).

Variant in Solute Carrier Family 4 Member 11 (SLC4A11)

There are multiple molecular actions proposed for the SLC4A11 protein, including effects 

on ion channels and potential aquaporin activities(Patel & Parker, 2015). While SLC4A11 
is present in the corneal endothelium, there are no reports of expression in the trabecular 

meshwork or aqueous outflow pathways(Patel & Parker, 2015). Dysfunction in this gene 

has been strongly linked to congenital hereditary endothelial dystrophy (CHED), a rare 

disorder of the corneal endothelium in which opacification of the cornea may be present 

at birth(Patel & Parker, 2015). There are only a few published case reports of glaucoma 

in patients diagnosed with CHED(Mullaney, Risco, Teichmann, & Millar, 1995; Patel & 

Parker, 2015). Alsaif et al.(Alsaif, Khan, Patel, Alkuraya, Hashem, Abdulwahab, Ibrahim, 

Aldahmesh, & Alkuraya, 2019) recently published WES analyses of CYP1B1-variant 

negative children with CHED from Saudi Arabia where they reported one family with a 

SLC4A11 variant which they determined had been misdiagnosed as primary congenital 

glaucoma. The homozygous variant (SLC4A11 c.748G>T) reported resulted in an amino 

acid change in a different region of the protein than the variants we observed (SLC4A11 
p.Met856Lys/p.Arg730*). A case study of a patient with Harboyan syndrome who received 

an initial diagnosis of congenital glaucoma reported the presence of the p.Arg730* 

variant in SLC4A11(Liskova, Dudakova, Tesar, Bednarova, Kidorova, Jirsova, Davidson, 

& Hardcastle, 2015). However, no changes in endothelial cell morphology or density were 

observed in the heterozygous daughter of the reported case.

Variant in Protein O-mannosyltransferase 2 (POMT2)

The protein encoded by POMT2 is part of the O-mannosyltransferase (POMT) enzyme 

complex, which plays a role in glycosylation of α-dystroglycan(“MedlinePlus Genetics: 

POMT2 gene.,”). This enzyme complex is present in many tissues, but is especially high 

in the skeletal muscles, testes, and fetal brain41. The homozygous variant found in one 

family from our sample (POMT2 p.Arg659Gln) has been predicted to be likely pathogenic 

based on two reports of muscular dystrophy-dystroglycanopathy (congenital brain and eye 

anomalies), type A2. Variants in POMT2 have been reported in individuals affected by 

Walker-Warburg syndrome, or congenital muscular dystrophies that affect the muscles, 

brain, and anterior portion of the eye(Bouchet, Gonzales, Vuillaumier-Barrot, Devisme, 

Lebizec, Alanio, Bazin, Bessieres-Grattagliano, Bigi, Blanchet, Bonneau, Bonnieres, Carles, 

Delahaye, Fallet-Bianco, Figarella-Branger, Gaillard, Gasser, Guimiot, Joubert, Laurent, 

Liprandi, Loget, Marcorelles, Martinovic, Menez, Patrier, Pelluard-Nehme, Perez, Rouleau-
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Dubois, Triau, Laquerriere, Encha-Razavi, & Seta, 2007; van Reeuwijk, Janssen, van den 

Elzen, Beltran-Valero de Bernabe, Sabatelli, Merlini, Boon, Scheffer, Brockington, Muntoni, 

Huynen, Verrips, Walsh, Barth, Brunner, & van Bokhoven, 2005). Eye abnormalities include 

microphthalmia (small eyes), buphthalmos (enlarged eyes), cataracts, and problems with the 

optic nerve(Vajsar & Schachter, 2006).

Variant in Beta-1,3-Galactosyltransferase 6 (B3GALT6)

B3GALT6 encodes for an enzyme involved in biosynthesis of glycosaminoglycans (GAG), 

which are long chains of unbranched polysaccharides with a repeating disaccharide unit 

that are the most abundant heteropolysaccharide in the human eye(Pacella, Pacella, De 

Paolis, Parisella, Turchetti, Anello, & Cavallotti, 2015). GAGs are important for their ability 

to fill in space, including in the extracellular matrix between cells and to organize water 

molecules(Mattson, Turcotte, & Zhang, 2017). They also make up a portion of the cornea, 

where the transparency is due to uniform distribution of collagen fibrils which are regulated 

by proteoglycans(Maurice, 1967; Millodot, 2008). Human studies have demonstrated that 

GAGs play an important role in age-related diseases of the cornea(Pacella, Pacella, De 

Paolis, Parisella, Turchetti, Anello, & Cavallotti, 2015). B3GALT6 variants have been 

reported in spondyloepimetaphyseal dysplasia (SEMD), a group of skeletal disorders, 

some of which show mild craniofacial dysmorphism including prominent eyes(Nakajima, 

Mizumoto, Miyake, Kogawa, Iida, Ito, Kitoh, Hirayama, Mitsubuchi, Miyazaki, Kosaki, 

Horikawa, Lai, Mendoza-Londono, Dupuis, Chitayat, Howard, Leal, Cavalcanti, Tsurusaki, 

Saitsu, Watanabe, Lausch, Unger, Bonafe, Ohashi, Superti-Furga, Matsumoto, Sugahara, 

Nishimura, & Ikegawa, 2013). There have not been any reports of variants in B3GALT6 
in congenital glaucoma cases. The missense variant identified in our study (B3GALT6 
p.Thr266Phe) is not among those that have been reported in patients with SEMD.50

Variant in Piezo Type Mechanosensitive Ion Channel Component 2 (PIEZO2)

PIEZO2 encodes a large mechanically-activated cation channel with more than thirty 

transmembrane domains(“Gene Cards: PIEZO2 Gene. Human Gene Database.,” 2019). 

Variants have been reported in patients with Distal Arthrogryposis Type 5, Marden-

Walker syndrome, and Distal Arthrogryposis Type 3, all of which may present with 

ocular abnormalities(McMillin, Beck, Chong, Shively, Buckingham, Gildersleeve, Aracena, 

Aylsworth, Bitoun, Carey, Clericuzio, Crow, Curry, Devriendt, Everman, Fryer, Gibson, 

Giovannucci Uzielli, Graham, Hall, Hecht, Heidenreich, Hurst, Irani, Krapels, Leroy, 

Mowat, Plant, Robertson, Schorry, Scott, Seaver, Sherr, Splitt, Stewart, Stumpel, Temel, 

Weaver, Whiteford, Williams, Tabor, Smith, Shendure, Nickerson, University of Washington 

Center for Mendelian, & Bamshad, 2014). The majority of cases reported to date with 

pathogenic PIEZO variants have Distal Arthrogryposis Type 5 with dominant (Coste, 

Houge, Murray, Stitziel, Bandell, Giovanni, Philippakis, Hoischen, Riemer, Steen, Steen, 

Mathur, Cox, Lebo, Rehm, Weiss, Wood, Maas, Sunyaev, & Patapoutian, 2013), (McMillin, 

Beck, Chong, Shively, Buckingham, Gildersleeve, Aracena, Aylsworth, Bitoun, Carey, 

Clericuzio, Crow, Curry, Devriendt, Everman, Fryer, Gibson, Giovannucci Uzielli, Graham, 

Hall, Hecht, Heidenreich, Hurst, Irani, Krapels, Leroy, Mowat, Plant, Robertson, Schorry, 

Scott, Seaver, Sherr, Splitt, Stewart, Stumpel, Temel, Weaver, Whiteford, Williams, Tabor, 

Smith, Shendure, Nickerson, & Bamshad, 2014) and recessive (Delle Vedove et al., 2016) 
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forms reported. A recent study of 14 patients with microphthalmia and/or anophthalmia 

identified one patient with a heterozygous missense variant in PIEZO2 (p.Ser234Leu) that 

was predicted to be deleterious using PolyPhen-1, PolyPhen-2, and SIFT, but predicted 

to be neutral by MAPP, PhD-SNP and SNAP(Matias-Perez, Garcia-Montano, Cruz-

Aguilar, Garcia-Montalvo, Nava-Valdez, Barragan-Arevalo, Villanueva-Mendoza, Villarroel, 

Guadarrama-Vallejo, la Cruz, Chacon-Camacho, & Zenteno, 2018). We identified a de novo 
missense variant resulting in an amino acid change (PIEZO2 p.Ile1441Val) that is predicted 

to be damaging based on the PolyPhen2 score.

Variant in Retinoid X Receptor Alpha (RXRA)

Retinoic acid, a metabolite of vitamin A, serves as a signaling molecule during embryonic 

development of a number of tissues including the eye(Cvekl & Wang, 2009). Retinoic acid 

receptor alpha (RXRA) is a receptor located in the nucleus that can mediate the biological 

effects of retinoids55. Exposure to retinoids, like isotretinoin, early in pregnancy has 

been implicated with a spectrum of neural crest-related phenotypes including craniofacial 

malformations and malformations of the central nervous system (CNS)(Mondal, S, & 

Mishra, 2017). A number of variants near RXRA have been associated with central corneal 

thickness, which has been shown to be thinner in glaucoma patients than the general 

population(Sng, Ang, & Barton, 2017), suggesting that variants near RXRA can cause 

ocular phenotypes. The variant found in our study includes an insertion in exon 8 of 10 that 

results in an early termination and a truncation of the RXRA protein from 462 amino acids 

to 368.

Variant in GLI Family Zinc Finger 2 (GLI2)

GLI2 encodes a C2H2-type zinc finger that has the ability to act as a mediator of Sonic 

hedgehog (shh) signaling which is important in embryonic development(Roessler, Ermilov, 

Grange, Wang, Grachtchouk, Dlugosz, & Muenke, 2005). Variants in this gene have been 

found in patients with holoprosencephaly-like features(Roessler, Du, Mullor, Casas, Allen, 

Gillessen-Kaesbach, Roeder, Ming, Ruiz i Altaba, & Muenke, 2003). Holoprosencephaly is 

the most common forebrain defect in humans, which can manifest in a failure of separation 

of the eye and forebrain(Roessler, Du, Mullor, Casas, Allen, Gillessen-Kaesbach, Roeder, 

Ming, Ruiz i Altaba, & Muenke, 2003; Roessler & Muenke, 2001). The variant found in 

this study resulted in the change from a hydrophobic to an uncharged amino acid toward 

the end of this protein. GLI2 variants in the same region of the protein that have been 

reported in ClinVar among cases with holoprosencephaly have been reported as benign or 

likely benign(Landrum, Lee, Benson, Brown, Chao, Chitipiralla, Gu, Hart, Hoffman, Jang, 

Karapetyan, Katz, Liu, Maddipatla, Malheiro, McDaniel, Ovetsky, Riley, Zhou, Holmes, 

Kattman, & Maglott, 2018).

Variant in Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2)

ALDH3A2 is a member of the aldehyde dehydrogenase family which includes proteins that 

catalyze the conversion of fatty aldehydes with medium- to very-long-chain fatty acids(Amr, 

El-Bassyouni, Ismail, Youness, El-Daly, Ebrahim, & El-Kamah, 2019). According to the 

Human Protein Atlas(“ALDH3A2. The Human Protein Atlas,”), ALDH3A2 is not expressed 

in the eye but is present in a number of other tissues. This gene is frequently mutated 
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in Sjogren-Larsson Syndrome, another Mendelian condition in which patients present with 

intellectual disability, spastic di- or tetraplegia, and ichthyosis(Naganuma, Takagi, Kanetake, 

Kitamura, Hattori, Miyakawa, Sassa, & Kihara, 2016). The variants discovered in one 

of our PCG trios were both heterozygous missense variants, with one variant predicted 

to be benign by PolyPhen2 and the other in exon 7 predicted to be possibly damaging. 

Approximately one-third of Sjogren-Larsson syndrome-causing variants in ALDH3A2 
are missense variants, including some in exon 7(Weustenfeld, Eidelpes, Schmuth, Rizzo, 

Zschocke, & Keller, 2019).

Variant in Usherin (USH2A)

USH2A encodes for a basement membrane protein called usherin which is present in 

the inner ear and retina(Huang, Mao, Yang, Li, Li, & Yang, 2018). Among other genes, 

USH2A has been implicated in Usher syndrome which can include retinitis pigmentosa 

(RP), an eye condition that can result in gradual vision loss(Huang, Mao, Yang, Li, Li, 

& Yang, 2018; Seyedahmadi, Rivolta, Keene, Berson, & Dryja, 2004). Although vision 

loss is reported in both PCG and patients with RP, the age at onset for visual loss in RP 

patients is typically after age 10 years(“Usher syndrome. Rare Disease Database,” 2018). 

The USH2A p.Asp778Tyr variant has been identified in patients with Usher syndrome. 

There are conflicting reports of the pathogenicity of the USH2A p.Asp778Tyr variant in 

ClinVar with one report of it being pathogenic for retinal dystrophy(Lenassi, Vincent, Li, 

Saihan, Coffey, Steele-Stallard, Moore, Steel, Luxon, Heon, Bitner-Glindzicz, & Webster, 

2015; Santos, Molina Thurin, Gustavo Vargas, Izquierdo, & Oliver, 2022).

Variant in UDP Glucuronosyltranferase Family 1 Member A8 (UGT1A8)

UGT1A8 encodes an enzyme that is part of the glucuronidation pathway that 

transforms small lipophilic molecules like steroids, hormones, and water-soluble, excretable 

metabolites73. UGT1A8 is associated with drug metabolism pathways that include 

cytochrome P450 enzymes (in which CYP1B1 belongs) and is mostly expressed 

in hepatic cells(“UGT1A8. Human Gene Database,” ; Xiao, Nunome, Yahara, Inoue, 

Nabeshima, Tsuchida, Hamaue, & Aoki, 2014). Most of the conditions associated with 

genes in this family include conditions of the gastrointestinal tract and the liver, such 

as pericholangitis(“UGT1A8. Human Gene Database,”) and Gilbert syndrome(Ehmer, 

Kalthoff, Fakundiny, Pabst, Freiberg, Naumann, Manns, & Strassburg, 2012) with unknown 

modes of inheritance.

Conclusions

We identified several potentially pathogenic variants which may offer insight into the 

etiology of PCG in the US. Similar to previous work, we found that CYP1B1 was the 

gene most commonly affected. The frequency of variants within this gene in our sample 

(13.5%) was lower than reported in a Moroccan study,(Hilal, Boutayeb, Serrou, Refass-

Buret, Shisseh, Bencherifa, El Mzibri, Benazzouz, & Berraho, 2010) in other studies 

of heterogeneous populations with primarily European (22–48%)(Campos-Mollo, Lopez-

Garrido, Blanco-Marchite, Garcia-Feijoo, Peralta, Belmonte-Martinez, Ayuso, & Escribano, 

2009; Colomb, Kaplan, & Garchon, 2003; Dimasi, Hewitt, Straga, Pater, MacKinnon, Elder, 

Casey, Mackey, & Craig, 2007) or Asian (17–22%)(Y. Chen, Jiang, Yu, Katz, Zhang, 
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Wan, & Sun, 2008; Kakiuchi-Matsumoto, Isashiki, Ohba, Kimura, Sonoda, & Unoki, 2001; 

Sitorus, Ardjo, Lorenz, & Preising, 2003) ancestry, or relatively homogeneous populations 

with higher rates of endogamy and consanguinity (70–100%)(Alfadhli, Behbehani, Elshafey, 

Abdelmoaty, & Al-Awadi, 2006; Bejjani, Stockton, Lewis, Tomey, Dueker, Jabak, Astle, 

& Lupski, 2000; Chitsazian, Tusi, Elahi, Saroei, Sanati, Yazdani, Pakravan, Nilforooshan, 

Eslami, Mehrjerdi, Zareei, Jabbarvand, Abdolahi, Lasheyee, Etemadi, Bayat, Sadeghi, 

Banoei, Ghafarzadeh, Rohani, Rismanchian, Thorstenson, & Sarfarazi, 2007; Plasilova, 

Stoilov, Sarfarazi, Kadasi, Ferakova, & Ferak, 1999); however, it is similar to a previous 

estimate near 15% in a US-based population(Lim, Tran-Viet, Yanovitch, Freedman, Klemm, 

Call, Powell, Ravichandran, Metlapally, Nading, Rozen, & Young, 2013). In addition, we 

identified a family with a variant in FOXC1 which has already been linked to PCG, as 

reviewed elsewhere(Ling, Zhang, Zhang, Sun, Du, & Li, 2020).

A major strength of this study is the design of the NBDPS, a multi-year, population-

based study which includes participants from 10 different states. These participants 

reflect race/ethnic, geographic, and socioeconomic diversity generally representative of 

the US population(Cogswell, Bitsko, Anderka, Caton, Feldkamp, Hockett Sherlock, 

Meyer, Ramadhani, Robbins, Shaw, Mathews, Royle, Reefhuis, & National Birth Defects 

Prevention, 2009). Furthermore, ascertainment and classification methods were rigorous 

and standardized across centers ensuring thorough and uniform data collection. Our 

examination of those included WES trios compared to all PCG cases showed few 

differences. More broadly, individuals who chose to participate in NBDPS were not 

substantially different than those who chose not to be interviewed, which further provides 

support of the representativeness of our sample(Forestieri, Desrosiers, Freedman, Aylsworth, 

Voltzke, Olshan, Meyer, & National Birth Defects Prevention, 2019). Clinical review 

and classification of probands infants provides a rigorously defined case sample. This 

study also benefited from the availability of WES which facilitated the analysis of 

genes/variants beyond sequencing or arrays focused on candidate genes. Much like the 

strengths of genome-wide association studies(Hirschhorn & Daly, 2005), WES allows for a 

comprehensive scan of protein-coding genes in a less biased way to identify important and 

novel factors. Further, in this analysis we had WES available from complete trios which 

allows for high confidence in the inheritance patterns of each of these variants and likely 

fewer false positive results.

There are some limitations of this study. NBDPS is one of the largest studies of birth 

defects in the US, though cases are limited to infants diagnosed within the first year of 

life. Although close to 80% of infants with PCG are diagnosed within the first year of 

life(Allingham, Damji, Freedman, Mori, & Shafranov, 2005), this means that our case 

sample might miss approximately 20% of cases. Those missing may include milder cases 

that are not diagnosed until after one year of age or those who are diagnosed later 

for other reasons (e.g., reduced access to healthcare). Despite a few reports(Cascella, 

Strafella, Germani, Novelli, Ricci, Zampatti, & Giardina, 2015; Souma, Tompson, Thomson, 

Siggs, Kizhatil, Yamaguchi, Feng, Limviphuvadh, Whisenhunt, Maurer-Stroh, Yanovitch, 

Kalaydjieva, Azmanov, Finzi, Mauri, Javadiyan, Souzeau, Zhou, Hewitt, Kloss, Burdon, 

Mackey, Allen, Ruddle, Lim, Rozen, Tran-Viet, Liu, John, Wiggs, Pasutto, Craig, Jin, 

Quaggin, & Young, 2016) in the literature of PCG cases being inherited in an autosomal 

Blue et al. Page 12

Birth Defects Res. Author manuscript; available in PMC 2025 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dominant manner, none of the parents in our sample were affected, and it is difficult to 

conclusively assign pathogenicity to variants with reduced penetrance. While a strength 

of the study was the use of WES, this method limits detection of changes outside of the 

exome that might influence gene expression. We also did not investigate copy number 

or structural variants or Sanger validate candidate variants due to limited DNA, although 

genotype-specific variant quality metrics provided in supplemental tables indicate we have 

reported high quality genotypes. Replication studies in an independent population would 

strengthen the evidence for association of these genes with PCG and lead to a higher priority 

for validation and/or animal studies. It is possible that these rare variants may be specific to 

individual families and thus findings will be difficult to replicate without sequencing exomes 

to identify these and possibly other rare variants in the genes in other large populations, of 

which there are few in the US.

In conclusion, this study confirms previous findings that although CYP1B1 is the most 

frequently mutated gene in PCG, CYP1B1 variants are less common in the US compared 

to other populations. We identified candidate variants in 19 genes in 16 families. These 

variants all lie within genes which have not previously been investigated in association 

with PCG, including some which are known to underlie other Mendelian conditions with 

phenotypic overlap, are important in eye development, and have variants that appear to have 

functional consequences. Future studies to replicate these findings in cohorts of patients 

without variants in known PCG genes could be informative. Experimental studies would 

inform the mechanisms associated with the variants reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Comparison of demographic characteristics of whole exome sequencing (WES) samples to all primary 

congenital glaucoma (PCG) cases within National Birth Defects Prevention Study, 1997–2011. Counts are 

provided, with percentages presented in parentheses. One male proband with Hispanic ancestry failed WES 

quality control and was excluded from subsequent analyses.

Demographic Characteristics
All PCG cases

(n=136)
WES PCG samples

(n=38)

Reported Maternal Race/Ethnicity

Non-Hispanic White 63 (46.3%) 23 (60.6%)

Non-Hispanic Black 31 (22.8%) 9 (23.7%)

Hispanic 32 (23.5%) 2 (5.3%)

Asian/Pacific Islander 7 (5.2%) 2 (5.3%)

Other 3 (2.2%) 2 (5.3%)

Maternal Age at Delivery (years)

≤24 53 (39.0%) 9 (23.7%)

25–34 71 (52.2%) 25 (65.8%)

≥35 12 (8.8%) 4 (10.5%)

Paternal Age At Delivery (years)

≤24 31 (24.0%) 7 (18.9%)

25–34 67 (51.9%) 21 (56.8%)

≥35 31 (24.0%) 9 (24.3%)
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