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Abstract

This study evaluated the effects of motion speed and magnetic disturbance on the spatial
orientation accuracy of an inertial measurement unit (IMU) on the hand. Thirteen participants
performed six trials of a repetitive material transfer task. Movement speed (15, 30, 45 transfers/
minute) and magnetic disturbance (absent, present) were the independent variables. Optical
motion capture was the reference. Root-mean-square differences (RMSD) exceeded 20° when
inclination measurements (pitch and roll) were calculated using the IMU accelerometer. A linear
Kalman filter and a proprietary, embedded Kalman filter reduced inclination RMSD to <3° across
all movement speeds. The RMSD in the heading direction (i.e., about gravity) increased (from
<5° to 17°) under magnetic disturbance. The linear Kalman filter and the embedded Kalman
filter reduced heading RMSD to <12° and <7°, respectively. Use of IMUs and Kalman filters can
improve inclinometer measurement accuracy. However, magnetic disturbances continue to limit
the accuracy of three-dimensional IMU maotion capture.

INTRODUCTION

Accelerometers have for years been used in field studies to describe the inclination of

the trunk and upper arms with respect to the gravity vector (i.e., pitch angle) and the
horizon (i.e., roll angle) (Akesson, 1997; Fahrenberg, 1997). However, accelerometers (i)
are most accurate when the motion to be assessed are static or quasi-static, and (ii) are
unable to capture information regarding motions about the gravity vector (i.e., heading
angle) (Amasay, 2009; Bernmark, 2002). Without heading angles, these sensors are not
useful for measuring postures and movements of joints when a reference to gravity and the
horizon cannot be reasonably assumed (e.qg., flexion/extension of the wrist can occur with
the wrist in any orientation with respect to gravity and the horizon. Inertial measurement
units (IMUs), which package accelerometers with gyroscopes and magnetometers, are
theoretically able to overcome the limitations of accelerometer-based measurement through
the use of sensor fusion algorithms such as Kalman filters.

For field-based occupational ergonomics applications, IMUs are attractive due to their small
size, relatively low cost, and ability to reliably capture information about worker posture
and movement across full working shifts (Schall, 2015). These attributes are important,

for example, when designing exposure assessment campaigns to estimate exposure to
physical risk factors associated with musculoskeletal outcomes in epidemiological studies,
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or to facilitate quantitative evaluations of interventions. Commercial IMU-based motion
capture systems are increasingly available and marketed to ergonomists. Typically, however,
commercial systems use proprietary sensor fusion algorithms not well-understood by many
ergonomics practitioners. Moreover, the accuracy of IMU-based motion capture remains an
important issue.

Several studies have compared metrics of joint kinematics obtained using IMUs to those
obtained using optical motion capture (Cloete, 2008; Kim, 2013; Robert-Lachaine, 2016;
Cuesta-Vargas, 2010). For example, Cloete and Scheffer (2008) observed errors <6° for hip
flexion/extension, but >15° for ankle rotation. Similarly, Godwin, et al., (2009) reported
errors >20° (i) between different body segments within the same task and (ii) within the
same body segment between different tasks. While these studies are immediately applicable
to practitioners, error magnitudes are influenced by the biomechanical models used. Robert-
Lachaine et al., (2016) observed that differences in protocol between the IMU and OMC
can account for differences >40°, while the actual sensor error was <5°. In addition, the

use of commercial hardware with proprietary algorithms for converting raw IMU data to
kinematic constructs limits the generalizability of these studies’ results beyond potentially
idiosyncratic commercial solutions.

The spatial orientation of IMUs (i.e., heading, pitch and roll angles rather than kinematic
variables) is often presented when (i) developing and comparing sensor fusion algorithms
and (ii) assessing factors that can negatively affect IMU accuracy. Such studies have
generally reported greater accuracy (<6° average error; Bergamini, 2014; Faber, 2013;
Lebel, 2013; Ligorio, 2016; Ricci, 2016) than those reporting kinematic variables. Spatial
orientation is theoretically obtainable with a gyroscope. However, gyroscopes built using
micro-electromechanical systems and packaged with IMUs are inaccurate, leading to time-
dependent error known as gyroscopic drift. Deviations >10° per minute have been observed
(Bergamini, 2014; Luinge, 2007). Alternatively, IMU spatial orientation can be derived
with respect to gravity and magnetic north assuming the measured acceleration is due
solely to gravity and a homogenous local magnetic field (Bachmann, 2004; Ligorio, 2016).
These measurements are considered time-invariant, but can be adversely affected by highly
dynamic motion and fluctuations within the local magnetic field (Amasay, 2009; Bernmark,
2002; de Vries, 2009; Lebel, 2013) leading to deviations of up to 180° (Bachmann, 2004).

Sensor fusion algorithms are used to address the limitations of these two methods.
Regardless of the fusion algorithm, the primary source of information is generally the
gyroscope. Accelerometer and magnetometer measurements are used to remove gyroscopic
drift (Yun, 2006). Dynamic and magnetic disturbances are often attenuated through
increased reliance on gyroscope measurements with the expectation of time-dependent
errors during periods of disturbance (Ligorio, 2016; Roetenberg, 2005; Sabatini, 2006;
Sessa, 2012).

The primary objective of this pilot study was to examine the effects of movement speed and
magnetic disturbance (and their interaction) on IMU spatial orientation accuracy during a
repetitive upper extremity task. In order to extend generalizability, IMU spatial orientation
was calculated using both non-proprietary and proprietary Kalman filter approaches. The
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potential benefit of estimating inclination using an IMU with sensor fusion compared to an
accelerometer-only approach was also explored.

METHODS

Participants

Thirteen participants (11 male; mean age= 27.2 + 6.6 years; right-hand dominant) were
recruited from the local community. Participants self-reported no history of orthopedic
surgery in the upper extremity (shoulder, elbow, wrist, and hand), no physician-diagnosed
musculoskeletal disorders disorder in the past six months, and no musculoskeletal pain in the
two weeks prior to enrollment. The University of lowa Institutional Review Board approved
all study procedures, and informed consent was obtained from all participants.

Experimental Task

The experimental task involved transferring wooden dowels (2 cm diameter x 8 cm length)
for one minute from a waist-level container located directly in front of the participant to a
shoulder-level container placed 45° diagonally with respect to the sagittal and frontal planes.
Three levels of movement speed were assigned: ‘slow’ (15 transfers/min), ‘medium’ (30
transfers/min), and “fast’ (45 transfers/min). Pacing was controlled using a metronome. A
metal plate (30.5 cm x 10 cm x 0.6 cm) was placed within the shoulder-level container to
create a local magnetic field disturbance. Participant performed six trials of the task, once
at each of the three movement speeds both with and without the metal plate. Experimental
conditions were randomized to control for potential order effects. Participants were given
time to acclimate to the motion speeds before each trial began. Each one-minute trial was
followed by a rest period of five minutes.

Instrumentation and Data Processing

The spatial orientation of the hand was simultaneously measured using an IMU (SXT,
Nexgen Ergonomics, Inc., Pointe Claire, Quebec, CA) and a six-camera OMC system
(Optitrack Flex 13, NaturalPoint, Inc., Corvallis, OR, USA) that tracked a rigid marker
cluster attached to the IMU surface. The IMU and OMC data were recorded at 128 Hz and
120 Hz, respectively (the maximum rates for each system). Raw IMU data at each sample
included acceleration, angular velocity, and magnetic field strength (all tri-axial), as well as
a quaternion rotation vector a consisting of a real component (gp) and imaginary components
(1, @, @) output by a proprietary, embedded Kalman filter. Raw OMC data at each sample
(i.e., spatial position of the marker cluster) were converted to a quaternion rotation vector
using the manufacturers’ software (Motive, NaturalPoint, Inc., Corvallis, OR, USA).

The fundamental objective of all post-processing was to calculate the spatial orientation of
the IMU and of the OMC marker cluster using the Euler rotation convention of heading
(), pitch (6), and roll (¢) angles. The IMU spatial orientation was estimated with three
approaches: (i) using the raw IMU data streams (i.e., acceleration, angular velocity, and
magnetic field strength) without sensor fusion, (ii) using modifications of a published, non-
proprietary sensor fusion algorithm, and (iii) using the quaternion output from the IMU’s
embedded and proprietary Kalman filter. The spatial orientation derived from the OMC
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marker cluster was calculated using the quaternion output of the OMC system software. All
post-processing was accomplished using MATLAB (2016a, Mathworks, Natick, MA). The
raw IMU data were down-sampled to 120 Hz to match the OMC sampling rate.

IMU spatial orientation: no sensor fusion.—IMU pitch (6) and roll (¢) angles are
calculated from the accelerometer output (ay, &, a,) using Equations 1 and 2:

6= tan_l(—ax/\/ag + a%) )
¢ = tan_l(ay/az) )

Heading angle (v, i.e., rotation around gravity) is calculated using the pitch and roll
measurements combined with the magnetometer output (/my,/m,,/m;) according to Equation
3:

1 m sin ¢p — my, cos ¢
my cos 6 + my,sin 0 sin ¢ + m; sin 6 cos ¢

v =tan~ (3
The raw accelerometer data stream was low-pass filtered (2" order Butterworth, 3 Hz
corner frequency) prior to the Euler rotation angle calculations. Pitch and roll angles
calculated without sensor fusion are described hereafter using the designation “Accel”.
Heading angles calculated using raw magnetometer measurements (/71,/m,,/1) are described
hereafter using the designation “Mag.” Heading measurements calculated using Mag
contained pitch and roll measurements obtained from the non-proprietary sensor fusion
algorithm to mitigate the effects of increased movement speeds on heading error.

IMU spatial orientation: non-proprietary sensor fusion.—A Kalman filter that
separated the gravity vector from linear acceleration (given gyroscope and accelerometer
measurements) was used to compute the acceleration magnitudes as inputs into Equations

1 and 2. Pitch and roll angles calculated in this manner are described hereafter using

the designation “Accel-KF.” Similarly, a Kalman filter that separated the magnetic north
vector from transient magnetic field strength fluctuation (given gyroscope and magnetometer
measurements) was used to compute the magnetic field strength magnitudes as inputs

into Equation 3. Heading angles calculated in this manner are described hereafter using

the designation “Mag-KF.” These Kalman filters were direct implementations of the

“Linear Kalman Filter” proposed by Ligorio & Sabatini (2015) and later extended to
account for magnetic disturbance (Ligorio, 2016). This specific filter was chosen based on
simplicity of design and implementation. The filter tuning parameters (Table 1) were derived
experimentally.

IMU spatial orientation: embedded Kalman filter—Equation 4 was used to convert
the quaternion rotation vector output from the IMU’s embedded Kalman filter to heading,
pitch, and roll angles. The angles calculated in this manner are described hereafter with the
designation “Em-KF.”
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tan™"(2(q0q3 + 1)/ (46 + 4 — 45 — 43)

0= sin™ ! (2(g002 — 9143)) )

P1 lian™!(2(q0m + wa)/(B - @t - B+ B)

OMC marker cluster spatial orientation.—The raw OMC orientation measurements
were first low-pass filtered (279 order Butterworth, 6 Hz corner frequency). Then the
quaternion rotation vector output from the OMC system software was converted to heading,
pitch, and roll angles using Equation 4.

Error calculation.—The offset between the local coordinate frames of the OMC and the
IMU was calculated using angular rate measurements according to de Vries et al. (2010).
After applying the local offset, the offset between the global coordinate frames of the OMC
and the IMU was determined under static conditions using IMU-derived orientation using
the Mag approach. For each trial, the root-mean-square difference (RMSD) between the
IMU- and OMC-derived heading, pitch, and roll angles was calculated as:

1 2
RMSDy = \/Z Z?: 1 (%omc,i = 91mu.i) ®)

where 7is the sample number, n is the number of samples, and ¢ ppscand & 44y are the
Euler rotation angles measured by the OMC and IMU, respectively.

Statistical Analysis

Two-factor repeated measures analyses of variance were used to estimate the effects of
movement speed, magnetic disturbance, and their interaction on estimates of RMSD in the
heading, pitch, and roll directions. The Greenhouse-Geisser correction was used to adjust
for violations of sphericity. All statistical analyses were performed using SPSS Statistics 23
(IBM, SPSS, Chicago, Illinois, USA).

RESULTS
RMSD in the Pitch and Roll Directions

Regardless of the IMU spatial orientation estimation approach, neither the main effect of
magnetic disturbance nor the interaction between movement speed and magnetic disturbance
on RMSD was significant in the pitch and roll directions. The main effect of movement
speed on RMSD in pitch and roll, however, was significant for the Accel and Accel-KF
approaches but not for the Em-KF approach (Table 2). In general, mean RMSD increased
with increasing movement speed; large increases (4° during the ‘slow’ condition to 24°
during the “fast’ condition) were observed when using the Accel approach and small
increases (1.1° to 1.9°) when using the Accel-KF approach. For the ‘medium’ and ‘fast’
movement speeds, using a Kalman filter (i.e., either the Accel-KF or Em-KF approach) to
estimate pitch and roll reduced RMSD by an order of magnitude compared to using only the
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accelerometer (i.e, the Accel approach). Sample-to-sample differences between OMC and
IMU pitch measurements were not time-dependent (Figure 1).

RMSD in the Heading Direction

For one participant, the heading RMSD from two trials processed using the Em-KF
approach was more than four standard deviations greater than the mean heading angle
RMSD across all subjects and testing conditions. These measurements were considered
outliers and discarded from the analysis. Regardless of the IMU spatial orientation
estimation approach, neither the main effect of movement speed nor the interaction between
movement speed and magnetic disturbance on RMSD was significant in the heading
direction. The main effect of magnetic disturbance on RMSD in the heading direction was
significant for Mag, confirming that the metal plate altered the local magnetic field. The
metal plate also adversely affected heading angle RMSD for both sensor fusion algorithms
(Mag-KF, and Em-KF) (Table 3) although the proprietary Em-KF performed somewhat
better than the non-proprietary Mag-KF. Sample-to-sample differences between OMC and
IMU heading measurements were time-dependent when using sensor fusion, particularly the
Em-KF (Figure 2).

DISCUSSION

Consistent with other studies, pitch and roll angles estimated using only an accelerometer
were less accurate as movement speed increased (Korshgj, 2014). This is primarily a
function of increased tangential and centripetal acceleration magnitudes (Bernmark, 2002).
While the accuracy of pitch and roll using the Accel-KF approach was influenced by
movement speed, the magnitude of mean RMSD between the ‘slow’ and ‘fast” movement
speed was negligible (<1°). Both sensor fusion algorithms reduced RMSD in the pitch
and roll directions to <3°across all movement speed conditions, which is consistent

with previous studies (Bergamini, 2014; Ligorio, 2015, 2016). This finding suggests

that IMU-derived inclination measurements improved measurement accuracy compared to
accelerometer-derived inclination measurements commonly used to quantify non-neutral
postures in the workplace within the context of occupational ergonomics.

The mean RMSD in the heading direction in testing conditions without the metal plate (<5°
RMSD) was consistent with previous studies (<6°) (Bergamini, 2014; Faber, 2013; Lebel,
2013; Ligorio, 2016). As anticipated, the presence of the metal plate degraded the heading
angle accuracy, though to a lesser extent when sensor fusion was used. We suspect that

the addition of magnetic disturbance compensation strategies (e.g., vector selection) would
improve measurement accuracy under the presence of magnetic disturbance. However, it

is unlikely that sensor fusion algorithms would eliminate magnetic disturbances as long as
magnetometers remain as a source of information regarding orientation about the gravity
vector.

CONCLUSION

The use of IMUEs in field-based ergonomics research is expected to increase as hardware
development accelerates and more commercial options are available. We did not observe
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an interaction between movement speed and magnetic disturbance on the accuracy of IMU
spatial orientation in this study. We observed substantially greater accuracy in IMU pitch
and roll angles when using sensor fusion compared to using an accelerometer alone. This
finding is important, as it suggests the increase in technical complexity when using an

IMU with sensor fusion (vs. an accelerometer only) is offset by meaningful improvements
in measurement accuracy for describing the postures and movements of certain body
segments in dynamic situations with fast motion speeds. Another key observation is that
the non-proprietary Kalman filters used in this study performed similarly to the embedded,
proprietary Kalman filter packaged with the IMU hardware (although somewhat poorer
with magnetic disturbance). Making such open-source processing alternatives available to
the ergonomics community can, over time, reduce the reliance on proprietary solutions and
improve the comparability of IMU-based research. We plan to make our algorithms available
in the near future. Finally, the full potential of IMU-based motion capture for field research
is not likely to be realized without methods to identify and/or minimize the effects of local
magnetic field disturbances.
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Figure 1.
Sample-to-sample difference between OMC and IMU-derived pitch measurements during

the “fast” movement speed condition; IMU pitch angle estimated using the accelerometer
data only (Accel) and a linear Kalman filter (Accel-KF)
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Figure2.
Sample-to-sample difference between OMC and IMU-derived heading measurements during

the ‘slow’ movement speed; IMU heading angle was estimated using the magnetometer only
(Mag), a linear Kalman filter (Mag-KF) and a proprietary embedded Kalman filter (Em-KF).
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Table 1.

Kalman filter parameters.

ProcessNoise Meas. Noise C; Gy

Accel-KF  0.005 rad/s 0.008 m/s? 0.3 0.08
Mag-KF  0.005 rad/s 0.3uT 01 05

Page 11

Gauss-Markov parameters cg and cp are tuning parameters that determine the separation of vector measurements (e.g., gravity) from transient

fluctuations (e.g., linear acceleration).
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Mean (SD) root-mean-square differences in pitch and roll (°) calculated using an accelerometer (Accel), a

linear Kalman filter (Accel-KF) and an embedded proprietary Kalman Filter (Em-KF).

Slow Med Fast p-value
Pitch
Accel 40(0.7) 113(1.7) 24.0(25) <0.01
Accel-KF  1.1(05) 1.5(0.5) 1.9(04)  <0.01
Em-KF  15(0.8) 18(12) 1.7(0.9)
Roll
Accel 3.1(0.8) 6.4(L7) 126(3.8) <0.01
Accel-KF 1.0(05) 1.4(05) 15(05)  <0.01
Em-KF  22(14) 2621 21(14)
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Table 3.

Mean (SD) root-mean-square difference in heading (°) calculated using a magnetometer (Mag), a linear
Kalman filter (Mag-KF) and an embedded proprietary Kalman Filter (Em-KF).

w/oMetal w/Metal  p-value

Mag 33(1.0)  17.0(45) <0.01
Mag-KF  4.1(1.9)  11.6(4.0) <0.01
Em-KF  43(21)  7.0(4.1) <0.05
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