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Abstract

Antimicrobial resistance (AMR) is a world-wide public health threat that is projected to lead to 10 

million annual deaths globally by 2050. The AMR public health issue has led to the development 

of action plans to combat AMR, including improved antimicrobial stewardship, development of 

new antimicrobials, and advanced monitoring. The National Antimicrobial Resistance Monitoring 

System (NARMS) led by the United States (U.S) Food and Drug Administration along with the 

U.S. Centers for Disease Control and U.S. Department of Agriculture has monitored antimicrobial 

resistant bacteria in retail meats, humans, and food animals since the mid 1990’s. NARMS 

is currently exploring an integrated One Health monitoring model recognizing that human, 

animal, plant, and environmental systems are linked to public health. Since 2020, the U.S. 

Environmental Protection Agency has led an interagency NARMS environmental working group 

(EWG) to implement a surface water AMR monitoring program (SWAM) at watershed and 

national scales. The NARMS EWG divided the development of the environmental monitoring 

effort into five areas: (i) defining objectives and questions, (ii) designing study/sampling design, 

(iii) selecting AMR indicators, (iv) establishing analytical methods, and (v) developing data 
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management/analytics/metadata plans. For each of these areas, the consensus among the scientific 

community and literature was reviewed and carefully considered prior to the development of 

this environmental monitoring program. The data produced from the SWAM effort will help 

develop robust surface water monitoring programs with the goal of assessing public health risks 

associated with AMR pathogens in surface water (e.g., recreational water exposures), provide 

a comprehensive picture of how resistant strains are related spatially and temporally within a 

watershed, and help assess how anthropogenic drivers and intervention strategies impact the 

transmission of AMR within human, animal, and environmental systems.

Keywords

antimicrobial resistance; surface waters; monitoring; one health; freshwater; environment; human 
health

1 Introduction

Antimicrobial drugs have been widely used in human and veterinary medicine and 

agroecosystems for more than 80 years, with tremendous benefits to human, animal, and 

plant health. However, the use of antimicrobials also represents an evolutionary selective 

pressure on microbes (Aminov, 2010), and prolonged use and/or overuse in a particular 

environment can lead to alterations in the presence of antimicrobial resistant strains within 

a microbial community (e.g., increases or decreases of resistance naturally found in the 

population, evolution of new resistance, etc.). Once alterations in resistance have occurred, 

the genes conferring resistance can spread to other species through horizontal transfer of 

mobile genetic elements (MGEs) (Baharoglu et al., 2013; Marti et al., 2014), or via clonal 

spread of bacteria that carry the resistance element (Baker et al., 2017). In addition to 

antimicrobials, other stressors can mobilize MGEs, such as heavy metals, oxidative stress, 

and ultraviolet light. This can lead to co-selection of both antimicrobial resistance genes 

(ARGs) and other stress-response genes (e.g., heavy metal resistance genes) (Poole, 2012; 

Pal et al., 2015, 2017). Over time, these selective pressures have led to the development of 

highly resistant human pathogens such as Methicillin-resistant Staphylococcus aureus and 

extreme drug-resistant tuberculosis, that are difficult to treat (O’Neill, 2016).

As existing antimicrobials become less effective due to the emergence of antimicrobial 

resistant bacteria (ARB), the risks associated with bacterial infections (e.g., following 

surgery or chemotherapy) increase. The global burden of antimicrobial resistance (AMR) 

was estimated at 4.95 million deaths in 2019, with 1.27 million of those deaths directly 

caused by resistant infections (Murray et al., 2022). It’s predicted that the deaths attributable 

to AMR infections will increase to 10 million globally by 2050 (O’Neill, 2016). The World 

Health Organization (WHO) has also identified AMR as one of the leading global health 

threats (World Health Organization, 2000).

To effectively mitigate the threat of AMR, scientific researchers, health professionals, and 

government agencies must collaborate in new ways. The concept of One Health has been 

adopted to address the challenge of AMR given that the same antimicrobials are used in 

human and animal medicine as well as agriculture, and humans and animals can harbor 
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the same pathogens. The One Health paradigm recognizes that human and animal health 

are linked to environmental health, and that there is a need to better understand the role of 

the environment in disease ecology and transmission. The United States (U.S.) Centers for 

Disease Control and Prevention (CDC) defines One Health as a collaborative, multisectoral, 
and transdisciplinary approach — working at the local, regional, national, and global levels 
— with the goal of achieving optimal health outcomes recognizing the interconnection 
between people, animals, plants, and their shared environment (U.S. Centers for Disease 

Control and Prevention (CDC), 2023). A One Health approach for AMR recognizes the need 

for a holistic system to combat antimicrobial resistance that encompasses human, animal, 

and plant health and the role of the environment in mediating the spread of AMR. This 

One Health approach also involves the development of collaborative systems for effectively 

monitoring the emergence and movement of resistance genes and resistant bacteria within 

and between biological compartments.

An early AMR monitoring effort was established in the U.S. in the mid 1990’s when 

enrofloxacin was approved for use in poultry. This use of enrofloxacin raised concerns about 

the transmission of fluoroquinolone resistant bacteria through the food system (Tollefson 

et al., 1998). As a result, in 1996, the U.S. Food and Drug Administration (FDA), the 

CDC, and the U.S. Department of Agriculture (USDA) collaborated to establish the National 

Antimicrobial Resistance Monitoring System (NARMS). NARMS was designed to detect 

and track AMR in foodborne and other enteric bacteria, like Salmonella, Campylobacter, E. 
coli, Enterococcus, etc., isolated from human and animal clinical cases, food, and food 

animal processing environments (U.S. Food and Drug Administration (FDA), 1994a,b, 

2000). As the foundational and main system currently used to monitor AMR in the U.S. 

food system, NARMS provides key data on which research and policy decisions are based.

In 2000, WHO released a report drawing attention to AMR as a global health threat (World 

Health Organization, 2000). In 2015, WHO adopted the Global Action Plan on AMR, which 

urged the international community to establish national monitoring systems to assess AMR 

in bacteria isolated from both humans and animals and underscored the need to adopt a One 

Health approach (World Health Organization, 2015). Concomitant with the adoption of a 

One Health approach to mitigating AMR was a growing realization that understanding the 

ecology, evolution, and epidemiology of AMR and ARB infections requires integrating data 

from multiple sources and disciplines (National Academies of Sciences (NAS), Engineering, 

and Medicine, 2017; Topp, 2017; McEwen and Collignon, 2018).

Although the NARMS program has developed data on AMR in human and food-animal 

systems, information on AMR in the environment (such as surface waterways, soil, or 

wildlife) (Marti et al., 2014; Barrett and Bouley, 2015) is more limited. Following the 

2017 FDA’s Science Board recommendation that NARMS pursue an integrated, One 

Health approach, a need for baseline data on AMR in the environment was identified. 

As a result, the establishment of a geographically representative monitoring system for 

AMR in the environment was added as a goal to the NARMS Strategic Plan: 2021–2025 

with the intent of building off of previous work performed by the U.S. Environmental 

Protection Agency (EPA) analyzing select ARGs in surface waters nationwide (Keely et 

al., 2022). An environmental working group (EWG) coordinated by the EPA, FDA, CDC, 
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and USDA Agricultural Research Service (ARS) was formed in 2020 to establish an initial 

environmentally based monitoring system within NARMS.

2 Background on environmental AMR monitoring

2.1 Current status of environmental AMR monitoring

The importance of monitoring AMR in the environment has stimulated multiple discussions 

and review articles on the best sampling and laboratory methods (e.g., Berendonk et al., 

2015; Franklin et al., 2016; Matheu et al., 2017; Larsson et al., 2018; Ben et al., 2019; 

Huijbers et al., 2019; Diallo et al., 2020; Larsson and Flach, 2021; Pruden et al., 2021; 

Kaiser et al., 2022; Liguori et al., 2022). These reports outlined key components necessary 

for environmental AMR monitoring, current knowledge gaps, and limitations of the methods 

currently used to monitor environmental AMR. A common theme across these reviews is 

that the ideal environmental AMR monitoring system should be part of a larger effort that 

also monitors AMR in human and animal populations (i.e., a One Health approach).

A systematic literature review of publications that described AMR monitoring programs 

across 35 countries found that 65 of the 71 programs monitored AMR in bacteria isolated 

from humans, while 18 monitored AMR in bacterial isolates from animals and none 

monitored AMR in bacterial isolates from the environment (Diallo et al., 2020). Similarly, 

Kaiser et al. (2022) reviewed 25 National Action Plans (NAP) for AMR monitoring and 

used a One Health lens when analyzing each plan’s priorities. In general, the NAPs did 

not incorporate environmental monitoring, or only incorporated environmental components 

when they directly related to human exposures. While most environmental AMR research 

has been reactive to known environmental contamination, limited proactive strategies for 

managing ARB in the environment have been identified (Wellcome Trust, 2020; Kaiser et 

al., 2022). These studies highlight the fact that most existing AMR monitoring systems do 

not include environmental monitoring even though there is widespread consensus within 

the scientific community that a One Health approach is the optimal way to monitor AMR. 

As such, the establishment of environmental AMR monitoring systems, like the NARMS 

environmental monitoring effort presented herein, represent a key gap and critical need.

Even among existing human and animal AMR monitoring efforts, harmonization of methods 

and international collaboration is lacking (Diallo et al., 2020; Haenni et al., 2022). The 

sampling, laboratory methods, and data management approaches employed by different 

monitoring systems are not harmonized, and as a result the data produced may be 

difficult to compare. Sample sizes and sampling designs differ between monitoring systems, 

with some efforts performing selective sampling while others are sub-sampling entire 

populations (Chau et al., 2022). Laboratory methods similarly vary, including the type of 

bacterial indicator, antibiotic compounds used for susceptibility testing, and the monitored 

phenotypes and genotypes. In some instances, different antibiotics are used to define the 

same phenotype or genotype since the same genetic determinants can provide resistance 

to multiple antibiotics (Diallo et al., 2020). Even when the same bacterial indicators, 

antibiotic compounds, and/or phenotypes are monitored, different methods may be used 

for bacterial isolation and susceptibility testing. Lastly, data and metadata collection and 

management vary between monitoring efforts. Inconsistencies in the type and method of 
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metadata collected may severely limit the international comparability of data from different 

monitoring systems, as well as the utility of these data for guiding public health decisions. 

Overall, monitoring efforts should use sampling and laboratory methods that align and 

provide comparable data, and, then, the data produced should be collected and managed in 

a manner that ensures coordination across space, time, and biological compartments, ideally 

within a standardized framework.

The NARMS EWG divided the development of the environmental monitoring effort into 

five areas: (i) key objectives and questions, (ii) optimal study/sampling design, (iii) selection 

of AMR indicators, (iv) selection of methods, and (v) development of data management/

analytics/metadata plan. For each of these areas, the consensus among the scientific 

community and literature was reviewed and carefully considered prior to the development 

of this environmental monitoring program. The remainder of this paper outlines key aspects 

for each of these five areas, and then defines the specific implementation of the pilot 

environmental monitoring effort accordingly.

2.2 Current recommendations for AMR monitoring in the environment

2.2.1 Determine key objectives and questions—When designing a new monitoring 

system, the objectives and key questions being posed should drive the overall study design. 

For the development of an environmental AMR monitoring program, the role that the 

environment plays in AMR-related processes is key for defining these objectives and key 

questions. The environment can serve two primary roles in AMR-related processes; first, to 

disseminate already resistant bacteria and genes within and between humans and animals, 

and second, as a source and facilitator for the evolution of AMR (Bengtsson-Palme et 

al., 2023). Anthropogenic activities can actively shape and alter environmental resistomes, 

especially in polluted water bodies. Although evidence is sparse thus far, recent research has 

found that the environment can be directly attributable to human colonization by resistant 

bacteria (Leonard et al., 2018, 2022) as well as resistant infections in clinical settings 

(Stanton et al., 2022). However, the relative contributions of different environmental AMR 

sources (e.g., untreated human versus animal waste) to infections in humans with immediate 

epidemiological linkages is still unclear. Similarly, the concentrations and/or mixtures of 

environmental factors and pollutants (physicochemical, pharmaceutical, heavy metals) that 

would significantly elevate selective pressures for the maintenance of resistance in the 

environment is unknown. Furthermore, the levels or concentrations of AMR in surface 

waters that would pose an increased exposure risk to humans is still an open question 

(Niegowska et al., 2021).

Aligning the objectives and key questions of an environmental AMR monitoring program 

with current AMR monitoring programs looking at human, animal, and food systems, like 

NARMS, is essential for creating a One Health assessment of AMR. For example, the 

data gathered by NARMS from foodborne and enteric bacteria within humans, animals, 

and food systems can be used for source attribution of enteric illnesses, investigation of 

underlying genetic mechanisms of resistance, an early warning system for emerging threats, 

and ultimately guiding public health efforts in the prevention of resistant infections through 

the judicious use of antimicrobials (Karp et al., 2017). While the immediate linkages 
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to intervention measures is more difficult within environmental systems, the purpose of 

environmental AMR monitoring fall into several similar categorical objectives: (i) track 

the rates of resistance over time in key environments and organisms, (ii) determine the 

sources and drivers of environmental AMR, (iii) monitor for the evolution of new resistance 

mechanisms, and (iv) determine the exposure risks posed to humans for colonization/

infection in impacted environments. These objectives can be achieved in several different 

monitoring schemes, and each are dependent upon analytical methodology, budgetary 

constraints, and scope of the proposed monitoring system.

2.2.2 Sampling design—Once the objectives of the monitoring system are determined, 

the sampling design can be devised, piloted, and scaled appropriately. For example, if the 

objective is to characterize the baseline presence of AMR within a certain environment (e.g., 

river systems, soil) at a large scale (e.g., nation-wide) then a probabilistic sampling design 

would be adequate since it randomly selects sampling locations to represent the overall 

population of interest without creating sample biases. On the other hand, if the objective 

is to identify drivers and areas with significant AMR hazards (e.g., AMR hot spots), then 

environmental sampling locations need to be selected using prior knowledge of possible 

AMR point sources that could facilitate transmission of ARB between humans, plants, and 

animals. The scale of the study may also affect sampling considerations since it is much 

easier to implement a targeted sampling plan at a regional scale than a general sampling 

scheme at a national level as it requires in-depth knowledge about local processes and land 

uses.

A common limitation of sampling schemes designed to monitor environmental AMR is 

the absence of extensive, high-frequency, time-series datasets, especially in surface waters. 

These types of sampling designs not only establish baseline data for the examination of 

environmental AMR but also facilitate the identification of acute drivers of AMR through 

seasonality, random events, and/or other unknown factors. These timeseries datasets are best 

applied at critical control points where known anthropogenic inputs introduce genes and 

bacteria into the system. These control points include domestic and industrial wastewater 

treatment plants effluents (Pazda et al., 2019), hospital effluents (Paulus et al., 2019), 

high-density and/or older/failing septic system areas (Junaid et al., 2022), combined sewer 

overflow and urban runoff outfalls (Almakki et al., 2019), and high-density agricultural 

areas and CAFO runoff sites (Lopatto et al., 2019). In conjunction, regular monitoring 

of known exposure sites/routes such as impacted recreational water bodies and any 

groundwaters (e.g., private well users) that may be affected by these pollution sources, 

will allow the characterization of infection/colonization risks.

Additionally, the development of a new monitoring program (and/or research study) could 

be designed along a good, better, best spectrum, as outlined by (Harris et al., 2013). 

During the initial planning phase of a large-scale project, it may not always be clear what 

limitations may exist (e.g., funding availability, supply chain issues, laboratory capacity, 

ethical considerations, etc.). Therefore, identifying the generally accepted good, better, and 

best practices for each element of the study and sampling design will aid in making final 

decisions once funding sources, laboratory capacity, availability of supplies, etc. are known.
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2.2.3 Selection of AMR indicators—For a One Health environmental monitoring 

system focused on ARB, selection of AMR indicators (e.g., bacteria, genes, antibiotics, 

etc.) should be guided by existing recommendations from the WHO and other public 

health organizations as well as local behaviors (e.g., which antimicrobials are commonly 

used to treat humans and livestock in the region where the study is being conducted). 

Indicators should also be selected to facilitate investigations into the transmission of AMR 

within and between human and animal populations, and the environment to inform possible 

mitigation strategies. Therefore, overall selection of indicators should be based on relevance 

for humans, animals, and environment in question, the feasibility of collecting and analyzing 

samples for that indicator, and sensitivity to change within the prescribed time frame of 

monitoring. To improve and broaden information about AMR in the environment, baseline 

lists of ARB and ARG indicators that should be used across AMR monitoring efforts have 

been suggested (Haenni et al., 2022). For example, a commonly suggested ARB indicator 

is Escherichia coli (E. coli) resistant to 3rd generation cephalosporins (3GC). The use of 

3GC-resistant E. coli as an indicator for environmental AMR monitoring is supported by 

the WHO extended-spectrum beta-lactamases (ESBL) E. coli “Tricycle protocol” (Anjum 

et al., 2021; World Health Organization, 2021), and logical given the widespread use 

of 3GC in human and veterinary medicine (Temkin et al., 2018; U.S. Food and Drug 

Administration (FDA), 2018; European Medicines Agency (EMA), 2019). In addition, 

Enterococcus spp. (vancomycin resistant) have been proposed as a convenient gram-positive 

counterpart to E. coli given their extensive use as a water quality indicator for decades (U.S. 

Environmental Protection Agency (EPA), 2012; Holcomb and Stewart, 2020; Liguori et al., 

2022). Identifying absolute and relative values (i.e., CFU/mL and percentage of resistant 

colonies) of these ARB provide useful information for assessing human and animal exposure 

rates to environmental sources of AMR and identifying hotspots in the environment.

Selection of ARGs should include clinically relevant and anthropogenically sensitive genes 

that commonly occur in freshwater sources and take into consideration factors such as 

abundance of the gene, propensity for lateral transfer, and ability of ARGs to be expressed in 

pathogens (Berendonk et al., 2015; Ashbolt et al., 2018; Nnadozie and Odume, 2019; U.S. 

Centers for Disease Control and Prevention (CDC), 2019; Keenum et al., 2022; Zhang 

et al., 2022). For example, blaCTX-M and vanA have been recommended as clinically 

relevant ARGs, since the types of resistance that these ARGs confer to pathogens are 

noted as “serious” concerns on the CDC threat list (U.S. Centers for Disease Control 

and Prevention (CDC), 2019). BlaCTX-M, which encodes for ESBL, is responsible for 

therapeutic problems, and vanA encodes resistance to vancomycin, a last resort antibiotic 

for treatment of enterococcal infections. Additionally, sulI and tetA are ARGs that tend to 

be associated with anthropogenic sources with sulI, typically carried by class 1 integrons, 

conferring resistance to sulfonamides and tetA encoding resistance to tetracyclines, a 

widely used antibiotic by humans and livestock (Yoshizawa et al., 2020). Besides ARGs, 

intI1, an integron-integrase, is commonly used as a marker of anthropogenic pressure 

and/or pollution with higher abundance associated with waste streams and lower in more 

pristine environments (Gillings et al., 2015; Lucassen et al., 2019; Keely et al., 2022). Its 

environmental presence, particularly in surface water, is often correlated with the presence 

of ARGs because integrons are genetic mechanisms that allow bacteria to adapt and evolve 
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rapidly through the stockpiling and expression of new genes (e.g., through site-specific 

recombination) (Gillings et al., 2015). Coupling the analysis of intI1 with ARGs can provide 

insights into ARG mobility in environmental systems.

A final set of critical indicators for AMR monitoring efforts in the environment 

are antimicrobial compounds like antibiotics and other stressors, such as metals and 

pesticides (Huijbers et al., 2019). Their utility as bioactive compounds are known to 

create selective pressure for evolution, selection, and maintenance of AMR in bacteria, 

even at environmentally relevant concentrations (Sandegren, 2014). Antimicrobials in the 

environment also pose a potential risk to terrestrial and aquatic ecosystem health if 

they are present at concentrations that alter microbial community function and structure 

(e.g., nitrification, denitrification, anaerobic ammonium oxidation inhibition). Analysis 

of antimicrobials in the environment, particularly water, can provide insights into the 

use of antibiotics in human and animal populations and thereby allow for monitoring 

of its potential association with observed AMR indicators (Pärnänen et al., 2019). 

Simultaneous monitoring of antibiotics and AMR is recommended for ensuring continuity 

and comparability across efforts and maximizing data utility to end-users. Human health, 

animal health, and environmental health organizations each have developed lists of priority 

drug indicators to monitor and include fluoroquinolones, sulfonamides, tetracyclines, 

trimethoprim, and aminoglycosides (World Health Organization, 2018; Gomez Cortes et 

al., 2020; Haenni et al., 2022). However, most environmental monitoring efforts are not 

analyzing for antibiotics or other selective agents likely due to the number of antimicrobials 

that would need to be monitored, lack of technical harmonization and optimization 

of detection methods, difficulty detecting low levels of antimicrobials in environmental 

matrices, and/or costs associated with these analyses (Niegowska et al., 2021).

2.2.4 Selection of methods—Once appropriate AMR indicators are selected, 

analytical methods need to be identified. A combination of culture-based and culture-

independent methods provide a comprehensive analysis of AMR in the environment 

(Franklin et al., 2016, 2021; Niegowska et al., 2021; Pruden et al., 2021). Culturing 

bacteria and performing standardized in vitro antimicrobial susceptibility testing has been 

a cornerstone of AMR monitoring since the beginning of the antibiotic era in medicine. 

This methodology feeds directly into the goals of a One Health approach for AMR by 

detecting and characterizing ARB that can potentially cause human and animal disease. 

However, when looking at environmental microbiomes for a comprehensive picture of 

resistance, this approach is inadequate. Only a small subset of environmental bacteria 

can be cultured in a laboratory setting, and determination of phenotypic resistance for 

environmental bacteria is limited by what susceptibility testing can be performed (e.g., 

availability of validated methods, laboratory capacity, etc.). Furthermore, the diversity of the 

gene pool for environmental bacteria is much larger compared to bacteria associated with 

humans or domestic animals, creating a wider array of genetic traits, including novel ARGs 

(Panthee et al., 2022). The inclusion of molecular analysis of AMR (targeted gene analysis, 

metagenomics, and whole genome sequencing) can provide information about the entire 

bacterial population and the environmental resistome of each sample that would otherwise 

be missed with culture-based analysis alone. A comprehensive molecular method approach 
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can identify and/or quantify known ARGs and MGEs through targeted gene analysis as 

well as discover emerging or novel forms of resistance with non-targeted techniques like 

metagenomics and/or whole genome sequencing (Franklin et al., 2021). If monitoring E. coli 
and Enterococcus bacteria and fecal indicator genes both culture and molecular analysis can 

also be used to measure fecal contamination, which provides information about the potential 

for transmission and evolution of AMR (Liguori et al., 2022).

The use of standard methods within and across multiple monitoring efforts is needed to 

ensure consistency across laboratories (Berendonk et al., 2015; Franklin et al., 2016; Liguori 

et al., 2022) so that results will be comparable across studies and monitoring efforts. 

While standard methods are readily available for analysis of AMR in human and animal 

clinical samples, these methods are not always compatible with the complex matrices of 

environmental samples. Several recommendations from governmental and non-governmental 

groups on the best methods to use in detecting certain indicators have been proposed. 

For example, the WHO is currently recommending the Tricycle protocol for analyzing 

ESBL E. coli in surface waters, wastewaters, human, and animal samples (World Health 

Organization, 2021). While a recent U.S. effort funded by the Water Research Foundation 

has recommended a modified mTEC method (modification of EPA standard method 1603, 

U.S. Environmental Protection Agency (EPA), 2014; Liguori et al., 2022) and a modified 

mEI method (modification of EPA standard method 1600, U.S. Environmental Protection 

Agency (EPA), 2009; Davis et al., 2022) for the analysis of resistant E. coli and Enterococci, 
respectively, in surface waters, wastewaters, and reused waters.

2.2.5 Development of data management/analytics/metadata plan—Obtaining 

pertinent key metadata is crucial for interpreting AMR data as well as for use in subsequent 

models to determine key drivers and risks of AMR in environmental, human, and animal 

sectors. Metadata is broadly defined as the contextual information about data, but for most 

biological studies, this refers to basic descriptive information like geographic location, 

sample type, and sampling date. The type of metadata collected and the method of 

collection need to be carefully considered when establishing any monitoring effort. The 

specific metadata that should be collected is dependent on the system being analyzed 

or monitored. Key metadata categories have been deemed important for environmental 

efforts, such as climate information, water quality, geographical information, watershed 

information, and sampling methodologies (Sano et al., 2020). Currently the curation of 

metadata and knowledge from monitoring systems and published literature is a challenge in 

the assessment of AMR and the ability to compare across systems (McArthur and Wright, 

2015). Therefore, having clear, standardized metadata management, including metadata 

collection, cleaning, storage, and nomenclature is important for sharing data across studies 

and time frames.

First and foremost, metadata collection ensures the preservation of contextual information. 

Careful management and stewardship also ensure accuracy, consistency, privacy/

confidentiality concerns, and access to metadata. Indeed, a sampling site’s GPS coordinates 

are considered critical metadata; if the coordinate reference system for the coordinates is 

not recorded and linked to the GPS data then those coordinates cannot be reliably used for 

linking the water quality data with other spatial metadata or when using the GPS coordinates 
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for follow-on meta-analyses. Similarly, slight variations in the way a given parameter is 

measured by different studies can affect comparability; for instance, data generated by 

studies that use total suspended solids to track sediment levels are not comparable to data 

generated by studies that measure turbidity. These considerations are particularly important 

as there is an increasing interest in reusing data (and associated metadata) for meta-analysis 

and other research outside the scope for which the data were originally collected. In the 

context of this evolving interest, it is paramount that metadata collection and management 

is standardized and harmonized in a way that facilitates re-use and is amenable to the use 

of machine learning, artificial intelligence, and other big data analytical approaches. This 

impetus was a driving factor behind the establishment of the FAIR (Findable, Accessible, 

Interoperable, Reusable) guiding principles (Wilkinson et al., 2016).

Just as research studies can be designed along a good, better, best spectrum (Harris et al., 

2013), the same principles can be applied to metadata. A good metadata system would 

be comprehensive, while a better system would be standardized and contain controlled 

vocabularies and taxonomies. Controlled vocabularies and taxonomies can be thought of 

as pick lists of terms that are accepted for a certain variable (Hedden, 2010). The best 

system would be one that has maximum re-use potential, conveying rich contextual data 

in a structured, machine-readable format. Ontologies are formal and standardized terms 

that describe objects or data in a particular setting, similar to controlled vocabularies, 

and additionally their relationship to each other, in a hierarchical system. Ontologies can 

also and often do share vocabularies, thereby further connecting and layering contextual 

information across studies and disciplines. This additional layer, or layers, of information 

enable even more complex queries of research data.

One approach to managing data is the inclusion of data management or stewardship plans, 

which are becoming more common and increasingly required by funding agencies. Metadata 

standards serve an analogous purpose for metadata. These standards, or schema, establish 

a structured and organized way to manage metadata. A growing list of metadata standard 

packages and models are available, with some disciplines offering several choices (Yilmaz et 

al., 2011; Delgado et al., 2018; Harrison et al., 2018).

3 Development of the surface water antimicrobial resistance monitoring 

system (SWAM)

3.1 SWAM study design: objectives and sampling plan

Surface waters were selected as the preferred matrices to monitor and profile AMR 

since water creates a conduit for environmental transmission of AMR microbes between 

humans, animals, and the other environments. The overall objective of the newly designated 

Surface Water Antimicrobial Resistance Monitoring System (SWAM) was to profile AMR 

in bacteria from freshwater surface waters (i.e., a watershed) as an initial environmental 

component within a One Health focused NARMS program. The EWG defined four main 

primary uses for these data: (i) generate baseline data on AMR in U.S. surface waters, 

(ii) perform quantitative risk assessment for AMR associated with various water uses 

(e.g., recreational, drinking, agricultural), (iii) characterize drivers of AMR occurrence and 
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selective pressures that facilitate the emergence, spread, and persistence of AMR, and (iv) 

identify critical control points for managing AMR hazards in surface water systems.

To coordinate the establishment of a national surface water monitoring system, task-oriented 

subgroups were formed from the EWG membership to develop study designs, standardized 

sampling, laboratory and data management decisions and protocols, and data use plans 

(Figure 1; Table 1). For example, the End Use of the Data Group provided an interface 

with the NARMS program, which helped resolve issues related to integration with 

existing NARMS reporting structures and ensured that the data collected met user needs. 

Specifically, the End Use of the Data Group aimed to answer (i) what are the key insights 

and outputs desired from SWAM, (ii) how will and could the SWAM data be used to 

support modeling and quantitative risk assessment, (iii) how do the SWAM data link with 

data collected by other monitoring programs, such as NARMS and the National Rivers and 

Streams Assessment (NRSA), an EPA program that monitors water quality.

After an initial planning period, the EWG convened a summit so that each subgroup 

could share their proposals for the respective elements of the new national monitoring 

system. A specific focus of these proposals was the ability to provide robust data on 

environmental AMR that aligned with NARMS priorities and data reporting. Overall, this 

meeting provided an integrated assessment of the system’s scope and needs, including what 

data and metadata needed to be collected and how this data would be managed and used. 

Given the large scale of the SWAM effort, a phased approach was adopted for implementing 

the national monitoring system. The five phases were (i) Method Development Evaluation 

and In-Lab Validation; (ii) Field Validation of Methods in a Single Watershed Pilot Study; 

(iii) a Probabilistic National Study; (iv) Finalized National Monitoring Program; and (v) 

Additional Focused Studies to Address Specific Research Needs (see Table 2 for objectives 

of each phase).

Multiple sampling designs were evaluated to determine which could best fit the proposed 

goals of the surface water pilot (see Table 3 for surface water pilot goals). However, 

no single study could adequately capture the requirements for providing a quantitative 

assessment of AMR at a national scale while also providing insight into local scale 

dynamics, including AMR drivers and selection pressures needed to inform risk models 

and mitigation strategies. To circumvent these problems, a “hybrid” sampling design was 

selected, entailing both extensive national sampling and intensive watershed scale sampling, 

which would provide insight on both national trends and watershed scale dynamics. As 

suggested by World Health Organization (2021) and others, design of both the national-

scale and watershed scale components aimed to leverage existing environmental monitoring 

programs for cost efficiency and to ensure that they provide contextual environmental data. 

Various national monitoring programs that were explored, which included U.S. Geological 

Survey’s National Water Quality Assessment (NAWQA; Gilliom et al., 1995), National 

Science Foundation’s National Ecological Observatory Network (NEON, 2011), USDA’s 

Conservation Effects Assessment Project (CEAP; Duriancik et al., 2008), EPA’s NRSA 

(U.S. Environmental Protection Agency (EPA), 2020), and US Army Corps of Engineers’ 

Water Quality Program for reservoirs (Medina et al., 2019). These programs were evaluated 

for a variety of factors related to AMR monitoring, including the sample population, the 
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sampling density and frequency, their ability to integrate AMR sampling methods, and 

associated costs.

The EPA’s NRSA was chosen for the national scale study because it utilizes a spatially 

stratified probabilistic design with the objective of providing an unbiased population 

assessment of rivers and streams across the 48 contiguous states and 9 distinct ecoregions. 

With over 1,800 sites included in the survey, the target sampling locations include a 

wide range of perennial flowing waters from headwater streams to the largest rivers and 

catchments in the U.S., representing over 1.2 million river and stream miles. Given the 

natural variation in biological and chemical water quality indicators across the country, an 

integral part of the study design is the demarcation of strata (state, ecoregion, and river and 

stream size) which allows for the identification of least-disturbed reference sites that are 

regionally relevant (U.S. Environmental Protection Agency (EPA), 2020). These reference 

sites can then be used to identify drivers of environmental AMR at the national scale and 

across macroecological boundaries. Of note, while Alaska and Hawaii are not included 

in the overall study design due to differing climates, shipping limitations, and monetary 

restrictions, smaller scale projects may be performed in those states.

The East Fork Little Miami River (EFLMR) in southeastern Ohio was selected for the 

pilot watershed study because an established surface water monitoring study was already 

in place since 2006 to assess nutrient inputs and management (Peed et al., 2011; Schenck 

et al., 2015; Scown et al., 2017) and it is within proximity of EPA’s research facility 

in Cincinnati, OH. The watershed encompasses 1,295 km2 and is primarily agricultural 

(64%) but grades into suburban and urban areas closer to Cincinnati. Septic systems, many 

failing, are abundant in rural areas while wastewater treatment plants of varying capacities 

are situated near smaller population centers (Ohio EPA, 2021). Harsha Lake, an 8 km2 

reservoir that includes two recreational beaches and the intake for a drinking water plant, is 

downstream of many of these effluents. Since any one watershed can only possess a subset 

of characteristics that are important for characterizing AMR, it is important to build out a 

series of watershed studies over time to complement the national probabilistic survey. For 

example, it will be important to capture watersheds with inputs from more concentrated 

livestock operations and highly urbanized landscapes to build a more complete picture of 

watershed-scale AMR dynamics. Therefore, a primary objective for the East Fork Little 

Miami pilot watershed study, apart from understanding of watershed scale AMR dynamics 

in this system, is to establish measurement protocols, sampling design parameters, and 

reporting guidelines that will facilitate data aggregation across studies as more watersheds 

are assessed.

3.2 AMR indicators for SWAM effort

The types of analyses that will be employed for the SWAM effort include a combination of 

culture-based and molecular-based techniques with indicator selection based on importance 

and relevance for human, animal, and environmental health. For culture analysis, E. coli, 
Enterococcus spp., and Salmonella spp. were selected as priority organisms for AMR 

monitoring in water based on what NARMS already assesses for food, animals, and humans 

as well as their environmental relevance (Nyirabahizi et al., 2020; Zhao et al., 2020; Yin 
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et al., 2021). E. coli and Enterococcus are recommended fecal indicators for surface waters 

(U.S. Environmental Protection Agency (EPA), 2009, 2014), as well as sentinel organisms 

used by NARMS to monitor carriage and emergence of ARGs that could be transferred 

to both gram-negative and gram-positive pathogens (Ge et al., 2020). Salmonella is an 

important zoonotic pathogen (Alakomi and Saarela, 2009) that is systematically monitored 

by NARMS in human clinical isolates, outbreaks, retail meats, and food-producing animals.

Quantitative concentrations of ARB (counts or most probably number (MPN)) were deemed 

necessary since they add significant value to the analysis of AMR in surface waters for 

those indicators that are anticipated to be at sufficient density for quantification. Knowing 

the number of cultivable ARB can be used to: (1) compare magnitudes across sites/studies, 

(2) determine elevated risk with respect to background levels, (3) quantify risk using QMRA 

models; and (4) characterize gradients across land use. Therefore, E. coli and Enterococcus 
analysis will include colony counts and quantification of both total isolates and isolates 

resistant to select antibiotics (cefotaxime for E. coli and vancomycin for Enterococcus). A 

subset of resistant isolates will undergo species confirmation and subsequent whole genome 

sequencing (WGS). Given the variable and typically low numbers of Salmonella found 

in surface waters, a selective enrichment method will be utilized to determine presence 

or absence of Salmonella and to obtain isolates in pure culture in the presence of other 

bacteria. All Salmonella isolates will undergo WGS and, if possible, NARMS standard 

susceptibility testing. Quantification of antimicrobial susceptible E. coli and Enterococcus 
and obtaining isolates of Salmonella, E. coli and Enterococcus from surface waters will 

allow the SWAM effort to fit within the existing NARMS reporting framework as an 

environmental component moving toward a One Health assessment of AMR.

While culturing select priority organisms fits within the typical NARMS framework, 

given the complexity and diversity of the environmental microbiome, the inclusion of 

targeted molecular techniques can be used to provide a more expansive characterization 

of AMR in surface waters. The molecular methods to analyze environmental AMR will 

consist of quantification of ARGs, intI1, fecal source indicators, and other related genes 

and bacterial isolates using quantitative polymerase chain reaction (qPCR)/droplet digital 

PCR (ddPCR), metagenomics, and WGS. qPCR/ddPCR data will provide a quantitative 

assessment of ARGs, intI1, fecal indicators, and other genes of interest that are present 

across a microbial population which can inform models that impart information about AMR 

trends, hot spots, and/or reservoirs within surface waters. Furthermore, for those research 

efforts that cannot conduct extensive culture-based approaches, qPCR/ddPCR methods allow 

for the exploration of relationships between molecular fecal indicators and ARGs within a 

particular environment/microbial population.

Similarly, metagenomics will help identify types and sources of AMR contamination 

(animal production, agriculture, health care/human, etc.) by characterizing the resistome 

of the entire microbial community in surface waters (Mendes et al., 2017; de Abreu et 

al., 2020; Franklin et al., 2021). Metagenomics is also valuable for possibly selecting 

additional culture and/or molecular indicators, providing a more robust characterization 

of baseline contamination levels and differentiating risky ARGs from the background 

endogenous resistome. WGS together with in silico characterization of ARGs, plasmids, 
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sequence types, and virulence factors can be employed to describe bacterial characteristics 

with much greater breadth and precision than phenotypic analysis alone (McDermott and 

Davis, 2021). WGS is also critical for detecting relatedness among isolates from different 

sampling locations including potential source or exposure areas, and it can be used to 

associate resistance with virulence and mobility traits to support risk assessment. Together, 

this array of methodologies will support a robust assessment of AMR dynamics at both 

the watershed and national scales for risk assessment as well as integration into existing 

NARMS monitoring programs.

Analysis of antibiotics was also considered as an important element to the evaluation 

of AMR and possible drivers of AMR in surface waters. The selection of antibiotics to 

analyze within surface waters should be based on antibiotic usage in humans and animals 

with a focus on high priority antibiotics like fluoroquinolones, sulfonamides, tetracyclines, 

trimethoprim, and aminoglycosides. While beta-lactams and the bacteria resistant to them 

(e.g., ESBL E. coli) are of highest priority and deemed critically important in human 

medicine, these antibiotic compounds are highly unstable in the environment and rarely 

found intact, especially in surface waters, due to the beta-lactam ring that can be opened 

by beta-lactamases (enzymes carried by certain bacteria) and/or by chemical hydrolysis 

(Christian et al., 2003; Huijbers et al., 2019). Even though the importance of analyzing for 

antibiotics was highlighted and discussed during the development of the SWAM effort, it 

was not included in the final designs of the watershed and national scale studies due to 

various reasons (e.g., cost and manpower constraints, concerns of what antibiotics to select, 

etc.), but may be revisited later.

3.3 Analytical method selection for SWAM AMR indicators

For method development and evaluation, utilization of standard methods when possible was 

deemed a high priority to ensure comparability of this effort with similar environmental 

monitoring efforts (World Health Organization, 2021; Liguori et al., 2022). Since 

various sampling and laboratory methods are used by different researchers, the SWAM 

environmental working group aimed to determine optimal method(s) for AMR analysis 

in surface waters that will provide comparative data across studies. As a result, standard 

methods were compared with those methods commonly used for analysis of AMR in surface 

waters, with final selection of methods based on their adaptability within the requirements 

and limitations of the SWAM effort as well as how well they aligned with similar water 

monitoring projects to create consistency across efforts. Any modifications to these methods 

occurred because they were deemed beneficial and/or necessary to support study objectives.

Development of culture methods included evaluation of methods for the quantification 

of total and resistant E. coli and Enterococcus spp. and isolation of Salmonella spp. 

The culture methods that were considered for E. coli and Enterococcus spp. consisted 

of those commonly used and recommended for the quantification and isolation of these 

bacteria in surface waters, including standard methods recommended by WHO, EPA, and 

ASTM International (Table 4) with EPA 1603 and EPA 1600 selected for E. coli and 

Enterococcus spp., respectively. These methods were modified to perform susceptibility 

testing with cefotaxime for E. coli and vancomycin for Enterococcus spp. Method evaluation 
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for Salmonella included considerations of different water volumes and comparisons of 

filtration and/or concentration techniques to optimize the recovery of low and sporadic levels 

of these bacteria in surface waters (Sharma et al., 2020; Kraft et al., 2023). Additionally, 

different selective enrichments, agars, and identification methods for Salmonella isolates 

(culture recovery versus rapid screening) were compared. The Salmonella method selected 

for this effort was based off the modified Standard Method 9260.B2, which has been used 

extensively to analyze surface waters in the southeastern U.S. (Meinersmann et al., 2008; 

Cho et al., 2022; Kraft et al., 2022). This method involves filtration utilizing perlite (in place 

of diatomaceous earth) to capture the bacterial cells, a general enrichment to revive injured 

cells, selective enrichments, and plating on selective media (Figure 2).

Method development for molecular techniques included comparisons of different water 

volumes, filtration techniques, DNA extraction kits, whole cell standards, and DNA 

standards. Having sufficient volumes of water and a DNA extraction kit that provided 

adequate amounts of high-quality DNA was deemed a high priority for the success of 

subsequent molecular work. Due to the lack of standardization for molecular techniques, 

including qPCR, ddPCR, WGS, and metagenomics, this work focused on having quality 

control measures at each step of sample processing to account for any processing variability. 

QA/QC guidelines will follow the Minimum Information for Publication of Quantitative 

Real-Time PCR Experiments (MIQE) guidelines (Bustin et al., 2009).

Although recommendations and guidelines for WGS and shotgun metagenomic data are 

currently limited for environmental studies, factors that are important across all next 

generation sequencing (NGS) approaches include data quality metrics such as average 

Q scores, sequence complexity distributions, contamination, number of ambiguous bases, 

sequence length, coverage and N50s for assembly. A minimum coverage, ranging from 30X 

for Salmonella to 40X for E. coli, will be targeted for all WGS experiments (Timme et 

al., 2020). For metagenomic studies, ‘coverage’ is a far more complicated subject because 

hundreds or thousands of distinct genomes may be present in any particular sample. 

Recommendations for depth of sequencing will vary by matrix and the overall aim of 

the study (Rodriguez-R and Konstantinidis, 2014). For taxonomic composition and AMR 

gene profiling, work has shown that the required depth of sequencing varies significantly by 

matrix (Gweon et al., 2019). The complexity and diversity of microbiomes in a sample, the 

interest to characterize the less abundant organisms, and sequencing cost were considered 

in deciding the depth of sequencing for the shotgun metagenomic sequencing. A shotgun 

metagenomics approach will be used to characterize the microbiome and to index the full 

complement of environmental AMR genes in the surface water samples. In addition to 

shotgun metagenomic sequencing, sequencing of culture enrichments from surface waters, 

known as quasimetagenomics, will be performed to characterize ARGs present in less 

abundant organisms. Preliminary studies by this NARMS surface water sampling initiative 

(Ottesen et al., 2022; Kocurek et al., 2024) have demonstrated that quasimetagenomic data 

could identify as many as 30% of critically important AMR genes (Table 5) from surface 

water samples while metagenomic data without enrichment only detected 1% of these AMR 

genes in the same samples at the same sequencing depth.
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All sequencing reads will go through quality control steps to remove adaptors, low quality 

and complexity sequences using Trimmomatic (Bolger et al., 2014) prior to analysis. 

A combination of read-based/assembly-free and assembly-based approaches will be used 

for taxonomic and resistome profiling. For screening environmental metagenomes for 

ARGs, standalone databases containing functionally verified genes, such as CARD, NCBI’s 

AMRFinderPlus, and ResFinder (Feldgarden et al., 2019; Bortolaia et al., 2020; Feldgarden 

et al., 2021; Alcock et al., 2023) and predictive models, like DeepARG (Arango-Argoty 

et al., 2018) were examined for maximum coordination of gene nomenclature. Overall, the 

success of the molecular analysis is dependent on important considerations, like consistent 

quality control measures, metadata, data storage and sharing, as well as coordination of 

results from PCR, metagenomic, and WGS data.

3.4 Data management for SWAM effort

Given the large scope of the SWAM effort, the planning and management of metadata 

needed to be carefully considered. To identify and guide metadata needs, a conceptual 

schematic of the project scope was developed (Figure 1). The project was divided into 

the following categories based on setting and activity: Sample site, in situ measurements, 

weather and climate, sample collection, sample transportation, primary sample processing, 

culturing, metagenomics, targeted gene assays, water chemistry, and isolate WGS. This 

categorized approach was helpful as it segregated the development of the metadata standard 

into manageable sections.

Since this environmental study will include metagenomic and microbiome sequence data, 

the MIxS metadata standard, which is implemented by NCBI, will be used to facilitate 

ease of data submission. The MIxS, or Minimum Information about any (x) Sequence, 

standard is a metadata framework established and maintained by the Genomic Standards 

Consortium (Yilmaz et al., 2011). MIxS provides a standardized format for annotation 

of sample attributes through a series of environmental packages, including core terms 

as well as setting-specific checklists. One of the main points of emphasis within the 

MIxS framework is the re-use of existing terms from other environmental packages, when 

appropriate, to promote interoperability as well as to minimize metadata term maintenance 

efforts. Therefore, current MIxS environmental packages were examined to identify terms 

that could be reused for the metadata standard associated with this study, and currently 

includes 24 reused MIxS terms. A draft metadata sheet is presented in the Appendix 1.

To maximize the impact of the contextual information contained in this research study, 

ontological terms and definitions were utilized whenever possible. The current metadata 

standard draft includes 12 ontological terms. These terms include geographic location 

descriptors from Gazetteer ontology (GAZ), general biological and microbiological terms 

from the National Cancer Institute Thesaurus (NCIT), and phenotypic and microbiological 

terms from the Ontology of Prokaryotic Phenotypic and Metabolic Characters (MICRO) 

to name a few. The Ontology Lookup Service, maintained by EMBL-EBI and the Open 

Biological and Biomedical Ontology (OBO) Foundry were invaluable in finding existing 

ontological terms to define and describe certain attributes in the metadata standard.
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4 Discussion

4.1 Next steps

With the preliminary planning, decision-making, method development, and method 

evaluation for the SWAM effort complete, the next steps for this effort are completion 

of the yearlong watershed scale study and the national scale study that will span a two-year 

time frame. During the East Fork Watershed study, thirty-five sites throughout the watershed 

will be sampled every three weeks with a few locations upstream and downstream of point 

sources being sampled weekly. This study will not only provide an opportunity to test 

the culture and molecular methods with a variety of sampling locations during base flow 

and various weather conditions (rain events, snow, snow melt, etc.) but will also provide 

information about the temporal variation of AMR, assist in assessing possible drivers of 

AMR, inform exposure risk assessment, and/or identify critical control points at a watershed 

scale.

The national-scale study for the SWAM effort will utilize the U.S. EPA NRSA survey 

that will be executed in 2023–2024. This national scale assessment of rivers and streams 

occurs every five years over a two-year time frame (sampling during May – September) 

and includes approximately 2,000 sites (about 1,000 sites per year). Sites are sampled only 

during base flow conditions, and most sites are only visited once, except for 10% that are 

revisited as a quality control measure. Since the NRSA survey collects a wide variety of 

water quality indicators to assess the ecological condition of surface waters nation-wide, this 

national-scale study will build off the trends previously identified by Keely et al. (2022) and 

provide additional information about the spatial variation of AMR across the nation as well 

as how water quality parameters may correlate with AMR indicators.

4.2 Future directions for SWAM

Once the watershed scale and national scale studies are completed, the SWAM effort 

will have generated a library of isolates (Salmonella, Enterococcus, and E. coli) that 

will be compared and cross-referenced with the NARMS isolate libraries to explore 

interconnections between human, animal, and environmental compartments at local, 

regional, and national scales. Assessments of what was successful and/or feasible during 

the watershed- and national-scale studies will guide the development of the national 

environmental monitoring program as well as recommendations for how to perform 

additional watershed-scale studies. Other needs or questions that remain to be addressed can 

be added during subsequent watershed-based and national-scale studies. Having validated 

standard frameworks for environmental monitoring of AMR will facilitate data aggregation 

across these studies as additional watershed- and national-scale studies are performed.

The SWAM effort will be a significant step forward for environmental monitoring and 

the assessment of AMR from a One Health perspective, allowing direct comparison of 

surface water isolates and metagenomes with existing NARMS isolate libraries. This effort 

will produce standard measurement protocols, sampling design parameters, and reporting 

guidelines for monitoring AMR in surface waters at both the watershed and national scale. 

The protocols from this effort could also be utilized by other researchers in their own 
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surface water studies (e.g., additional watershed scale studies), which can then be integrated 

into larger assessments/meta-analyses to address deeper questions about AMR dynamics. 

Overall, the unique data set on surface waters produced by this effort will provide a 

One Health assessment of AMR to support the NARMS monitoring program and create 

a framework for environmental monitoring programs at national and international scales.
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FIGURE 1. 
Schematic of an environmental monitoring effort for antimicrobial resistance in the 

environment.
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FIGURE 2. 
General flow chart of Salmonella enrichment and isolation procedure. Protocols for 

the filtration via the Modified Standard Method 9260.B2 and selective enrichment can 

be found at: dx.doi.org/10.17504/protocols.io.rm7vzy72xlx1/v2 and dx.doi.org/10.17504/

protocols.io.kxygxz5q4v8j/v1, respectively. GN, Gram negative; TT, Tetrathionate; RV, 

Rappaport Vassiliadis; XLT4, Xylose lysine tergitol 4; BGS, Brilliant Green Sulfa; TSI, 

Triple Sugar Iron; LIA, Lysine Iron Agar.
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