Emerg Infect DisEmerging Infect. DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention336757604-122010.3201/eid1105.041220Letters to the EditorLetterMeasuring Impact of Antimicrobial ResistanceMeasuring the Impact of Antimicrobial ResistanceRoghmannMary-Claire*BradhamDouglas D.ZhanMin*FridkinScott K.PerlTrish M.§University of Maryland School of Medicine, Baltimore, Maryland, USA:VA Maryland Health Care System, Baltimore, Maryland, USA;Centers for Disease Control and Prevention, Atlanta, Georgia, USA;Johns Hopkins Medical Institutions, Baltimore, Maryland, USAAddress for correspondence: Mary-Claire Roghmann, VA Maryland Health Care System, 100 N. Greene St (lower level), Baltimore, MD 21201, USA; fax: 410-706-0098; email: mroghman@epi.umaryland.edu62005116982983Keywords: Antimicrobial resistancebloodstream infectioncentral venous cathetersintensive care unitcohort studyadultsmortality

To the Editor: Staphylococcus aureus and Enterococcus faecium commonly cause healthcare-associated bloodstream infections (BSI) in the intensive care unit (ICU). Antimicrobial resistance is increasing in both organisms. The impact of antimicrobial resistance on dying of BSI has been studied extensively (1,2). Many studies have concluded that BSI caused by an antimicrobial-resistant organism results in higher death rates (1,38). However, as discussed in a recent report by Kaye et al., "outcome studies of antimicrobial drug resistance are notoriously hard to perform because of confounding variables related to coexisting conditions" (9). Indeed, almost all studies have shown that infections with antimicrobial-resistant organisms occur later in hospitalization than infections with antimicrobial-susceptible organisms, which suggests that differences in death rates may be, at least in part, caused by a difference in the patients' underlying illnesses and protracted hospital course. We report 2 additional methodologic issues that can affect estimates of the impact of antimicrobial resistance: combining different organisms and combining populations from different types of ICUs.

The original objective of our multicenter observational study was to quantify the clinical impact of antimicrobial resistance in S. aureus and E. faecium infections when these bacteria cause a specific type of infection: a monomicrobial, ICU-attributable, central vascular catheter–associated bloodstream infection (CVC-BSI). We studied 187 adult ICU patients with BSI caused by S. aureus and E. faecium at 3 tertiary care institutions from 1994 to 1999. The institutional review boards of each institution and the Centers for Disease Control and Prevention approved this study. Severity of illness was measured with an APACHE II score at ICU admission and on day 7 in the ICU (if applicable). The score would indicate the patient's risk of dying in the hospital before a BSI developed by using a measure validated for predicting in-hospital deaths in ICU patients (10).

The study population stratified by organism is shown in the Table. Fifty-eight percent of patients had CVC-BSI with S. aureus, and 42% had CVC-BSI with E. faecium. Overall, 58% of the organisms causing CVC-BSI were resistant to oxacillin if S. aureus or to vancomycin if E. faecium. However, patients with E. faecium CVC-BSI were more likely to be infected with antimicrobial-resistant bacteria (69% versus 50%, p<0.01), and had a higher mortality rate (54% versus 34%, p<0.01) than patients with S. aureus CVC-BSI. This finding indicates that the type of organism (E. faecium versus S. aureus) confounds the association between resistance and death. In addition, the distribution of ICU type by organism varies, which suggests that patient populations infected with these 2 different organisms were different in other ways. Thus, confounding factors for the association between resistance and death may differ for E. faecium and S. aureus, and analysis of the 2 organisms should be conducted separately. This is consistent with the results of Kaye et al. who showed that the effect of resistance was higher for S. aureus (odds ratio [OR] 3.4) than for E. faecium (OR 2.5) by using separate analyses to show death rates (9). Furthermore, these researchers found different confounding factors in the adjusted analysis of S. aureus than in the adjusted analysis of E. faecium. Because of the need to conduct separate analyses, which reduced our statistical power, our study was ultimately unable to show a difference in death rates if it existed.

In summary, future studies measuring the impact of antimicrobial resistance on death rates should be restricted to a specific type of infection cause by a single organism in a uniform setting using a validated system to predict mortality in that setting. As such, future studies should involve multiple study sites.

Description of 187 adult patients with central vascular catheter-associated bloodstream infections with <italic>Staphylococcus aureus</italic> or <italic>Enterococcus faecium</italic> attributable to the intensive care unit*
CharacteristicsS. aureus (n = 109)E. faecium (n = 78)p value
Patient demographics
Male (%)74560.02
Mean age, y (SD)58 (17)56 (16)0.32
Type of ICU<0.01
Cardiac (%)2010
Cardiothoracic surgery (%)66
Medical (%)2040
Neurologic/neurosurgical (%)60
Surgical (%)2037
Trauma (%)286
Severity of illness
Mean APACHE II score at ICU admission (SD)19 (8)21 (9)0.12
Mean APACHE II score within 7 days of BSI (SD)17 (8)20 (8)0.05
Resistant infections (%)50690.01
In-hospital death rate (%)3454<0.01

*SD, standard deviation; ICU, intensive care unit.

Suggested citation for this article: Roghmann M-C, Bradham DD, Zhan M, Fridkin SK, Perl TM. Measuring impact of antimicrobial resistance [letter]. Emerg Infect Dis [serial on the Internet]. 2005 Jun [date cited]. http://dx.doi.org/10.3201/eid1106.041220

This project was supported by cooperative agreements (U50/CCU316578-01 and UR8/CCU315092-03) from the Centers for Disease Control and Prevention. Mary-Claire Roghmann was supported by a VA Career Development Award during the time this work was performed.

ReferencesCosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36:539 10.1086/34547612491202Niederman MS Impact of antibiotic resistance on clinical outcomes and the cost of care. Crit Care Med. 2001;29(Suppl 4):N11420 10.1097/00003246-200104001-0001111292886Selvey LA, Whitby M, Johnson B Nosocomial methicillin-resistant Staphylococcus aureus bacteremia: Is it any worse than nosocomial methicillin-sensitive Staphylococcus aureus bacteremia? Infect Control Hosp Epidemiol. 2000;21:6458 10.1086/50170711083180Conterno LO, Wey SB, Castelo A Risk factors for mortality in Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol. 1998;19:327 10.1086/6477049475347McClelland RS, Fowler VG Jr, Sanders LL, Gottlieb G, Kong LK, Sexton DJ, Staphylococcus aureus bacteremia among elderly vs younger adult patients: comparison of clinical features and mortality. Arch Intern Med. 1999;159:12447 10.1001/archinte.159.11.124410371233Bhavnani SM, Drake JA, Forrest A, Deinhart JA, Jones RN, Biedenbach DJ, A nationwide, multicenter, case-control study comparing risk factors, treatment, and outcome for vancomycin-resistant and -susceptible enterococcal bacteremia. Diagn Microbiol Infect Dis. 2000;36:14558 10.1016/S0732-8893(99)00136-410729656Stosor V, Peterson LR, Postelnick M, Noskin GA Enterococcus faecium bacteremia: does vancomycin resistance make a difference? Arch Intern Med. 1998;158:5227 10.1001/archinte.158.5.5229508230Vergis EN, Hayden MK, Chow JW, Snydman DR, Zervos MJ, Linden PK, Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia. A prospective multicenter study. Ann Intern Med. 2001;135:4849211578151Kaye KS, Engemann JJ, Mozaffari E, Carmeli Y Reference group choice and antibiotic resistance outcomes. Emerg Infect Dis. 2004;10:1125815207068Knaus WA, Draper EA, Wagner DP, Zimmerman JE APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:81829 10.1097/00003246-198510000-000093928249