Efforts to control human trypanosomiasis, which sharply reduced the disease, must be sustained.
In the Democratic Republic of Congo (DRC), human African trypanosomiasis (HAT) reached unprecedented levels in the 1990s. To assess recent trends and evaluate control efforts, we analyzed epidemiologic and financial data collected by all agencies involved in HAT control in DRC from 1993 to 2003. Funds allocated to control populations, as well as to the population screened, doubled from 1993 to 1997 and from 1998 to 2003. The number of cases detected decreased from 26,000 new cases per year in 1998 to 11,000 in 2003. Our analysis shows that HAT control in DRC is almost completely dependent on international aid and that sudden withdrawal of such aid in 1990 had a long-lasting effect. Since 1998, control efforts intensified because of renewed donor interest, including a public-private partnership, and this effort led to a major reduction in HAT incidence. To avoid reemergence of this disease, such efforts should be sustained.
Human African trypanosomiasis (HAT), or sleeping sickness, is a vectorborne disease caused by the parasite
Substantial observational evidence from Sudan (
The sustainability of HAT control has been a recurrent concern, as exemplified by the postcolonial history of sleeping sickness control in the Democratic Republic of Congo (DRC). By 1960, the year of DRC's independence, HAT was almost completely eliminated, but by 1976, many new cases were diagnosed. HAT control received substantial international aid during the 1980s, which amounted to >90% of DRC's HAT budget. However, this international support was suddenly withdrawn after the massacre of students at the Lubumbashi University in May 1990 (
DRC has a surface area of 2.345.000 km2 and ≈60 million inhabitants, for a density of 25 inhabitants/km2. Administratively, DRC is subdivided into 11 provinces, and HAT is endemic in 9 of them (Programme National de Lutte contre la Trypanosomiase Humaine Africaine [PNLTHA], unpub. data). Since 1990, the country has been devastated by political turmoil and civil war (1996–1997 and 1998–2003). The health status of the population has deteriorated because of progressive breakdown of health infrastructures, disease outbreaks, and the reemergence of endemic diseases such as tuberculosis and HAT. The emergence of HIV/AIDS has added to this catalog of health disasters.
HAT control in DRC is organized by a national program, PNLTHA. This program divides HAT-endemic areas into 7 regions, each under the responsibility of a regional coordinator (
Disease-endemic regions (indicated by shaded areas) in the Democratic Republic of Congo, as managed by human African trypanosomiasis program.
The main control strategy of PNLTHA is to actively screen the population at risk by specialized mobile teams (
We used the PNLTHA epidemiologic surveillance database that included all HAT cases detected by mobile teams and regular health services since 1926. For 1993–2003, we examined the monthly reports compiled by the regional PNLTHA coordinators, with the exception of those from Maniema-Katanga and the Province Orientale because they were incomplete and fragmentary as a consequence of the ongoing war.
We distinguish 2 discrete periods for the analysis of international aid. From 1993 to 1997, only humanitarian aid budgets were allocated to HAT control, typically lasting for a maximum of 6 months. Because of the political turmoil at that time in DRC, international aid for HAT was given as "indirect aid," i.e., donors would give cash grants to 3 nongovernmental organizations (NGOs)—Fonds Médical Tropical (FOMETRO), Medische Missie Samenwerking (MEMISA), and Médecins sans Frontières (MSF)—and rely on them for implementation. MEMISA and MSF would supplement this indirect aid with funds they had privately raised. Between 1998 and 2003, the Congolese government again benefitted from long-term international aid programs, and the Belgian Technical Cooperation (BTC) launched its own technical assistance program for HAT control. The same NGOs continued to play a major role in implementation, as well as partly funding, these control activities. For the period under study, WHO funds were donated directly to PNLTHA, while those from the European Union were given to FOMETRO.
We obtained financial data on budgets and expenditure for HAT control directly from the various donor agencies and cross-checked data with all the implementing agencies (PNLTHA, the 3 NGOs, and the BTC engaged in HAT control in DRC during the period under study) (
| Type of donor | 1993–1997 | 1998–2003 | |||
|---|---|---|---|---|---|
| US$ | Percentage | US$ | Percentage | ||
| Belgian government | Bilateral | 4,508,774 | 69.2 | 14,566,002 | 87.1 |
| European union | Bilateral | 1,337,946 | 20.5 | 656,367 | 3.9 |
| Congolese government | NA | 270,611 | 4.2 | 329,441 | 2.0 |
| WHO | Multilateral | 0 | 0.0 | 527,698 | 3.2 |
| Pain pour le Monde‡ | NGO | 70,430 | 1.1 | 68,411 | 0.4 |
| MSF‡ | NGO | 0 | 0.0 | 104,233 | 0.6 |
| MEMISA‡ | NGO | 70,965 | 1.1 | 462,906 | 2.8 |
| AFRICA‡ | NGO | 0 | 0.0 | 6,440 | 0.1 |
| Caritas–Germany‡ | NGO | 254,506 | 3.9 | 0 | 0.0 |
| Total | 6,513,232 | 100.0 | 16,721,496 | 100.0 | |
| Total per year | 1,302,646 | 2,786,916 | |||
*NA., not applicable; NGO, nongovernmental organization; WHO, World Health Organization; MSF, Médecins Sans Frontières Belgique; MEMISA, Medische Missie Samenwerking; AFRICA, Association des Femmes pour les Rencontres Intellectuelles et Culturelles en Afrique. †Sanofi-Aventis/Bayer in-kind drug donation not included; see text. ‡The amounts mentioned for NGOs are limited to the "own funds," i.e., funds that they had privately raised and spent on sleeping sickness control. Several NGOs were implementing HAT control activities with funds provided by the bilateral or multilateral donors.
Expenditure in Belgian francs was converted into US dollars, according to the exchange rate that applied at time of expenditure. Expenditure in euros was converted at a fixed rate of 40.3399 Belgian francs = 1 euro. The exchange rate between the US dollar and euro was the average exchange rate per year based on Federal Reserve Statistical Release (available at
PNLTHA defines a new HAT patient as a person whose condition has, for the first time, been diagnosed by parasitologic examination as sleeping sickness. Relapse cases are thus not included in this study. The HAT detection rate is the number of newly detected cases, expressed as a proportion of the screened population. We distinguish the active detection rate (ADR), in which data are collected through active case finding, from the overall detection rate, which also includes cases detected at health facilities. The coverage rate of the population is the proportion of the population tested (through active or passive case finding) divided by the population at risk for HAT. The participation rate applies only to active case finding and is defined as the number of persons screened by the mobile teams divided by the target population. The proportion of treated patients is the number of persons who received HAT treatment divided by the number of persons detected with HAT.
We structured our evaluation of the HAT control program in the form of input, process, output, and outcome analyses (
| Indicators | |
|---|---|
| Input | Financial resources Human resources Availability of tests and anti-HAT drugs |
| Process | Identification of villages at risk Census of population at risk Involvement of population at risk in active case detection Lymph node palpation CATT test Parasitologic test for HAT confirmation Lumbar puncture to determine the stage of disease Treatment Treatment follow-up |
| Output | Coverage rate of population at risk Participation rate Identification of suspects Identification of HAT cases Proportion of HAT cases detected and treated Proportion of HAT cases treated and followed |
| Outcome | Annual HAT detection rate and trend |
*CATT, card agglutination test for trypanosomiasis; LN, lymph node palpation.
Number of new human African trypanosomiasis new cases in the Democratic Republic of Congo, 1926–2003.
After 1998, a marked decline occurred in the number of HAT cases detected, which was not due to an overall decrease in screening activities; the number of operational mobile teams and number of screened persons continued to increase over that period (
Population screened per year and number of mobile teams operating in the Democratic Republic of Congo, 1990–2003.
Number of new human African trypanosomiasis cases and active detection rate (ADR), by region, Democratic Republic of Congo,1993–2003.
In 1990, 25 mobile teams covered the population at risk. With the reduction in external financial support, 10 teams remained operational from 1991 to 1993. This number slowly increased to 33 teams in 1998 and to 46 teams in 2002. These increases were concentrated in the regions of Bandundu, Equateur-Nord, and Kasai, where the number of teams rose to 13, 13, and 7, respectively, which accounts for 33 mobile teams of 46. In 1993, PNLTHA staff was 250. This number increased progressively to 580 in 2001 and remained stable at 580 in 2003.
From 1993 to 1997, total annual expenditure amounted to US$1,302,646, while in the period 1998–2003, total annual expenditure doubled to US$2,786,916.
| 1993–1997 | 1998–2003 | |
|---|---|---|
| No. screened in population at risk | 5,003,477 | 10,659,210 |
| No. HAT cases detected and treated† | 41,500 | 55,500 |
| Average expenditure per case screened (US$) | 1.30 | 1.57 |
| Average expenditure per case detected and treated (US$) | 156.9 | 301.2 |
*HAT, human African trypanosomiasis. †Takes into account only active case finding by mobile teams and the assumption of a treatment rate of 100%.
From 1993 to 2001, implementing agencies spent, on average, 24% of their budgets in purchasing trypanocidal drugs (range 12%–44%). Though the Sanofi-Aventis/Bayer donation program was established in 2001, in practice, implementing agencies could continue working throughout 2002 with existing drug stocks. For 2003, a detailed analysis of amount of donated drugs versus purchased drugs consumed was not possible, and we therefore ignored the in-kind drug donation in
| Drug | Observed no. patients treated | Drug quantity/patient required | Total quantity drugs required | Unit price‡ US$ | Total (US$) |
|---|---|---|---|---|---|
| Pentamidine | 13,957 | 8 | 111,656 | 2 | 223,312 |
| Suramin | 2,604 | 6 | 15,624 | 7 | 109,368 |
| Pentamidine-suramin | 104 | 8 | 832 | 2 | 1,664 |
| 6 | 624 | 7 | 4,368 | ||
| Melarsoprol | 24,456 | 9 | 220,104 | 7 | 1,540,728 |
| Eflornithine | 377 | 14 | 5,278 | 22 | 116,116 |
| Nifurtimox§ | 1,168 | 100 | 116,800 | 0 | 0 |
| Melarsoprol-nifurtimox | 1,581 | 4 | 6,324 | 7 | 44,268 |
| 64 | 101,184 | 0 | 0 | ||
| Total | 44,247 | 2,039,824 |
*HAT, human African trypanosomiasis. †Source of data: Programme National de Lutte contre la THA (PNLTHA) annual reports. The price of drugs is based on prices reported by the World Health Organization, 1998. Data for the HAT cases retreated in 2003 are not available. ‡Preferential price applicable during the period. §PNLTHA did not buy nifurtimox in this period.
The population at risk in the DRC has been estimated at 12,600,000 persons (PNLTHA, unpub. data). Screening and treatment of the at-risk population is estimated to have risen from 6% in 1993 to 19% in 2003. We observed notable differences between regions. Equateur-Nord had a coverage rate of >50%, while in the other regions the rate ranged from 10% to 20%.
The participation rate of the population in active case finding was almost 96% in 1998. By 2002, the rate had fallen to 78%. The proportion of new patients who received treatment was ≈95% throughout the whole country but varied from region to region, from 89% to 100%. From 2001 to 2003, a total of 44,247 patients were treated with pentamidine (31.5%), suramin (5.8%), the combination pentamidine-suramin (0.2%), melarsoprol (55.2%), eflornithine (0.85%), nifurtimox (2.6%), and the combination melarsoprol-nifurtimox (3.5%) (because nifurtimox is not registered for use against HAT in DRC, it was given on a compassionate basis when no other drugs were available or when melarsoprol treatment failed).
After the number of cases peaked in 1998 with 26,000 new cases, the annual number of HAT cases reported in DRC has decreased to 10,900 cases in 2003. From 1993 to 2003, the annual number of persons screened for HAT, as well as financial resources allocated to HAT control in DRC, has doubled.
The increase in reported cases and in the detection rate observed between 1993 and 1997 can be attributed to increased transmission but also to renewed efforts after several months when active case finding was interrupted. However, the striking decrease in HAT cases from 1998 to 2003 cannot be explained by decreased case-detection efforts because the number of persons screened in the same period doubled. Changes in detection rates through active case finding are difficult to interpret because the population reached is not the same over time. The additional number of persons screened might come from populations that were less at risk in the first place, as happened, for example, in Ville de Kinshasa, where a new mobile team started operating in May 2001 in an area with lower prevalence. Population movements during the war could, in theory, also explain the observed changes in HAT prevalence, but no noteworthy migration from disease-endemic to disease-nonendemic areas or vice versa took place over the study period. We therefore conclude that the decreasing trend in HAT case detection observed in DRC since 1999 is real. Most likely this trend is explained by the intensification of control efforts, the steep increase in resource allocation since 1998, and a major drug donation in 2001. The systematic use of CATT as the serologic screening test in 1996 has probably contributed to a decline in transmission, because it increased screening effectiveness (
However, these national figures hide important differences between regions. In the northern and southern Equateur regions and in Kinshasa, the absolute number of HAT cases and detection rates has declined, whereas these indicators remain stationary in the Bas Congo, Kasai, and Bandundu regions. In fact, the decline observed at national level is, to a large extent, based on the decline observed in 1 region, Equateur-Nord, which experienced a major outbreak but brought it under control by an intensive and well-coordinated campaign.
A similar rapid decrease in the number of HAT cases has been observed by Van Nieuwenhove and Declercq (
Our analysis showed how HAT control in DRC almost completely depends on international aid and that the interruption of financing from 1990 to 1991 had a long-lasting negative effect on case load. Funding may be discontinued for different reasons, such as changes in donor policies or priorities, so HAT control remains vulnerable. Private NGOs have so far accounted for a minor part of funding in DRC, although they played a role both in advocacy and in program implementation. The recent public-private alliance with pharmaceutical companies not only made continued care for HAT patients possible again but also released substantial financial resources that can be used in the future for operations in DRC. Moreover, through direct financial support to research, training, and rehabilitation, the public-private partnership has contributed to a wider alliance and extension of activities. However, the fact that the 3 main drugs used to treat HAT patients are produced and donated by a single company creates a new type of dependency. Care for HAT patients may be seriously compromised if production or donation stopped for any reason, for example, a company takeover, management changes, or a change in the company's priorities.
The disparities now emerging in disease epidemiology in different parts of DRC call for the adoption of differential control strategies in different regions of the country. Where the ADR has dropped to low levels, screening intervals could be lengthened. Alternatively, and with lower cost, surveillance methods could be used that detect emerging epidemics at an early stage, such as serologic surveys, or that rely on data collection from passive case finding and enhanced diagnosis in the primary health structures (
Our analysis shows that successful HAT control is possible, but that it depends on continued financial support and drug availability. Therefore, the governments of disease-endemic countries and the international community must make long-term financial commitments to ensure the continuity of HAT control activities. This necessitates sound financial sustainability planning for HAT control, as is already done, for instance, in childhood immunization (
During this study, P. Lutumba was supported by a PhD grant from the Belgian Directorate-General for International Cooperation. This sponsor played no role in study design, collection, analysis, interpretation of data, report writing, or the decision to submit the paper.
Although Sanofi-Aventis indirectly sponsored part of the HAT control activities in DRC, and donated HAT drugs, the company played no role in study design, collection, analysis, interpretation of data, report writing, or the decision to submit the paper.
Dr Lutumba is head of the research unit of the national sleeping sickness control program of DRC. He has extensive experience in sleeping sickness control in DRC and participates in clinical research programs on HAT diagnosis and treatment.