
Supplementary methods – Adapting vector

surveillance using Bayesian Experimental Design:

an application to an ongoing tick monitoring

program in the southeastern United States

January 8, 2024

1 Model specification

To model the distribution of different tick species simultaneously, we use a
hierarchical framework analogous to a mixed-effects model, where environmental
factors operate as “fixed” effects while residual variability within and between
sites, months and tick species operate as “random” effects. Let yijt be a binary
variable indicating the presence of a tick of species j during a visit to site i in
month t, and rijt the the corresponding risk of tick encounter. There are K
different covariates capturing the environment in the model, and xkit indicates
the value of each covariate during a visit. The full model specification is then

yijt ∼ Bernoulli(rijt) (1)

logit(rijt) = ηijt = µj +

K∑
k=1

fkj(xkit) + sij +mjt (2)

where for each tick species j, µj is an intercept, sj andmj are hierarchical effects
for each visit site and month, and fkj are (potentially nonlinear) functions of
the covariates.

We assume µj ∼ N(0, 5) priors for the intercepts. For environmental effects,
we consider two possible forms for f . First is the linear case where fkj(x) = βkjx
for all k and j, and βkj have N(0, 5) priors. Second is a Bayesian analog to a
spline model, where each fkj(x) is distributed as a random walk of order 1 over
x with precision τf [1].1

We assume site-level effects for each species are independently and identically
distributed, so that sij ∼ N(0, τ−1

s ) with precision τs. For month-level effects,
we assume temporal trends for each species are independently and identically

1For the categorical variable land cover, only a linear form was considered using the stan-
dard dummy-variable approach.
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distributed AR(1) variables with marginal precision τm and lag correlation ρ
[1]. Priors for τf , τs, and τm are set to logGamma(1, 0.1), while ρ is distributed

such that logit
(

1+ρ
1−ρ

)
∼ N(0, 6.67).

2 Model comparison study

To find a model best supported by the existing collections data, we test dif-
ferent variations of the above full model by simplifying different components
and testing all combinations. Each of the environmental, spatial, and temporal
effects are considered as shared between between species (i.e. removing the j
in (2)), as well as with the spatial and temporal components removed entirely.
Finally, both the linear and spline forms for each f are considered. For example,
a model with linear f , spatial effect shared between species, and no temporal
effect would be ηijt = µj +

∑
k βkjxkit + si. Combining these simplifications

results in 28 candidate models, and models are compared using the Deviance In-
formation Criterion. All models are fit in R version 4.2.2 using R-INLA version
23.02.27 [2].

Results from the model comparison study are shown in Figure S1. The top
performing model is highlighted, and included linear f shared between species,
and spatial and temporal effects for each species. Thus, the model chosen for
the remainder of this work has linear predictor

ηijt = µj +
∑
k

βkxkit + sij +mij . (3)

3 Bayesian Experimental Design

As covered in the main text, implementing BED involves specifying a utility
function U(d,y), where in this work d = {(i1, t1), . . . , (im, tm)} is a spatiotem-
poral schedule of collection visits and y is potential future data for each tick
species observed from the schedule d. We consider two such functions, which
represent the value of new data y for increasing some form of public health
information. First is a form of Bayesian D-optimality,

U1(d,y) = − log det cov(β | yinit,y),

where β are the linear coefficients of the environmental effects a posteriori fitted
to yinit and y.

A second criterion was then designed to improve the reliability of prediction
maps in regions where risk of exposure is highest. We first extract covariates for
a regular 4km grid spanning South Carolina and all 12 months. For each point
(i, t) in this set G, we define a subset of high-risk prediction points H containing
(i, t) if E [rijt | yinit] ≥ 0.75 for at least one species j. Utility is assigned based
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Figure S1: Deviance information criterion of different mixed-effects models, fit
to the initial survey data. Each tile indicates a model comprised of the cor-
responding environmental and spatiotemporal effects, shared or independent
between tick species. “Slope” indicates a linear f for each environmental vari-
able, and “spline” indicates nonlinear f . The best-ranked model (lowest DIC)
is highlighted in orange.

on the maximum reduction in standard deviation of risk from the initial dataset,
among these high-risk points in H,

U2(d,y) = max
(i,t)∈H

{σ(rijt | yinit)− σ(rijt | yinit,y)} ,

where σ(X) =
√

Var(X).
For a utility function U(d,y), the utility of d is then averaged over future

outcomes. For discrete y,

U(d) =
∑
y

U(d,y)P (y | yinit,d), (4)

where

P (y | yinit,d) =

∫
P (y | θ,d)P (θ | yinit)dθ

is the posterior predictive distribution for y resulting from d.
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4 Description of search algorithms

Once a design criterion is chosen, the goal is to find some d with as close to
optimal utility as possible. An optimal design for function U is defined

d∗ = argmax
d

U(d).

In experimental design, optimization over the utility surface U usually presents
two broad challenges. First, calculating U(d) is computationally expensive, re-
quiring 10s of seconds or longer for a single evaluation, which limits the number
of search iterations that are feasible to budget. Second, evaluations of the util-
ity surface are subject to noise, since the expectation (4) must be approximated
using Monte Carlo methods and samples from the posterior predictive distribu-
tion. Optimization algorithms therefore must be robust to noise, for example
by having enough exploratory behaviour to avoid (potentially false) local max-
ima [3]. A third challenge particular to the surveys we consider is that the
design space is discrete, which prohibits the use of gradient-based optimization
methods.

With these constraints in mind, we consider 4 search strategies for finding
good designs. The first two are optimization algorithms that begin with an ini-
tial design of visits chosen uniformly at random, then attempt to incrementally
improve the design until T = 150 utility evaluations have occurred.

Simulated annealing: this stepwise strategy proposes new designs by ran-
domly selecting a new visit and randomly removing a current one. If the pro-
posal is accepted, this design becomes the current one and the process repeats.
To avoid local optima, new proposals with a lower utility are sometimes still
accepted. If s = 1, . . . , T is the current iteration, the probability of accepting a
worse proposal is

p(s,dprop,d) = exp {(log10 U(dprop)− log10 U(d))/T (s)} ,

where T (s) is a decreasing function of s called the cooling schedule.

We use a cooling schedule of T (s) = T0

(
1− s−1

T−1

)α

, where T0 is the cooling

magnitude and α the curvature. T0 controls the orders of magnitude worse a
proposal can be to still have a good chance of acceptance at the beginning of the
algorithm, and should be set relative to the magnitude of differences between
values on the utility surface. A larger T0 leads to more exploratory behavior.
Curvature α controls how quickly the acceptance probability decreases from
T0, so that α < 1 leads to more exploratory behavior. We set T0 = 0.2 when
optimizing the first criterion U1, T0 = 0.02 for U2, and α = 1.3 for both.

Exchange: the exchange strategy attempts to search more systematically
than SA by stepping through “nearby” design points until no steps improve
utility [4, 5]. If d is some current design, the algorithm performs the following
steps for each visit (i, t) ∈ d: first the month t is incremented until U does
not increase, then t is decremented until U does not increase, and then the 4
neighbor sites closest to i are checked. If none of these moves improve utility for
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any visit in d, the algorithm terminates and returns d, otherwise, this process
continues until T utility evaluations have taken place.

Since this process is susceptible to terminating early in local optima, we
consider a single run of the algorithm to be 3 independent replications with a
different initial design. The best of these 3 designs is then chosen.

Variance heuristic: this strategy simply chooses visits based on their vari-
ance given the initial data, and is thus completely deterministic. Points are
assigned a rank νit equal to the average of Var(ηijt | yinit) over species j, and
then the m top ranked points are added to d.

Space-filling heuristic: this strategy samples designs randomly, while en-
suring visits are spread across time and space. First, the month of each visit
is sampled without replacement, repeating as necessary if the sample size is
greater than 12. Then, each site is assigned sequentially by sampling each site
randomly, but only accepting sites which are at least 25km away from all sites
chosen so far. As a stochastic strategy, 5 such designs are sampled, and the one
with highest utility is returned.

In the main text, designs of increasing size are considered in increments of 5.
To reduce computation time, the two optimization algorithms build their designs
incrementally. Thus, only 5 visits are optimized at a time for these algorithms,
and these new visits are added to the previous design when evaluating U .
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