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This Supplementary Information is organized as follows: In Section 1, we describe the
surveillance protocol under consideration, and we derive the surveillance cost per unit time.
In Section 2, we define the process by which new pathogens emerge, we define the dynamics
of a pathogen that is growing in abundance, we define the manner in which each pathogen
is detected, and we calculate the expected size of an outbreak. In Section 3, we calculate
the expected total cost per unit time, and we determine the optimal testing frequency. In
Section 4, we describe how our model generalizes to account for the emergence of pathogens
with different characteristics. In Section 5, we derive a simple approximation for the optimal
testing frequency. In Section 6, we explore some extensions of our model.

1 Surveillance cost

An important consideration for implementing environmental surveillance for pathogens is
the frequency at which tests are performed. Environmental sampling and testing should
be done frequently enough that an emerging pathogen is intercepted quickly, but not so
frequently that surveillance costs outweigh the benefits of early detection. Here, we assume
that whenever the environment is sampled and a test is conducted, a surveillance cost equal
to ¢; is incurred. We also assume that surveillance costs are additive, so that if n tests are
performed, then the total surveillance cost is equal to nc;.

We consider that environmental tests are performed with period 7. Since the cost of a
single test is equal to ¢y, and since the time between tests is equal to T, the surveillance cost
per unit time is given by

O = (S1)
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2 Expected infection cost

The costs incurred from the surveillance program itself must be considered in the context of
infection-related costs. The costs due to an outbreak can vary depending on several factors:

e When the pathogen first appears in relation to the first environmental test that is
performed following its introduction



e How the pathogen grows after it is introduced
e The sensitivity of the environmental testing program for detecting the pathogen
e The per-case infection cost

In this section, we describe each of these points in detail. Considering the full stochastic dy-
namics of pathogen initiation, pathogen growth, and pathogen detection, we derive a solution
for the expected size of an outbreak when it is detected. We then derive an approximation
for the expected size of an outbreak by assuming deterministic growth of a pathogen after
it is initiated.

2.1 Emergence of a pathogen

For determining the optimal testing frequency, we require knowledge of how new pathogens
are introduced. We assume that the introduction of new pathogens follows a Poisson process.
New pathogens are initiated independently and continuously in time at rate A.

2.2 Growth of a pathogen

We also require knowledge of how a pathogen increases in abundance once it first appears.
Here, we assume that each instance of the pathogen makes new instances of the pathogen at
rate r according to a Poisson process. Let z,,,(rt) denote the probability that there are n
copies of the pathogen at time ¢, given that there are m copies of the pathogen at time 0. In
this section, we present the steps for calculating z,, ,(rt), beginning with the simplest cases
and then progressing to the solution for any values of m and n, where m < n.

221 m=1,n=1

Suppose we start with a single instance of the pathogen at time 0 (m = 1). x;1(rt) gives the
probability that the original instance of the pathogen has not produced any new instances
of the pathogen up to time ¢t (n = 1). z11(rt) is given by

x1(rt) = et

222 m=1,n=2

Next, consider xy »(rt), which is the probability that the original instance of the pathogen has
produced a single new instance of the pathogen by time ¢ (n = 2). For this to occur, three
things must happen: The original instance of the pathogen does not make any new instances
of the pathogen between times 0 and ¢;, the original instance of the pathogen makes a new
copy of itself at time ¢, and neither of the two resulting instances of the pathogen make any
new instances of the pathogen between times ¢; and ¢t. We must integrate over all values of
t1 between 0 and ¢:

t
T19(rt) :/ e~ (1 dty)e” 2 tt)
t1=0



Simplifying, we have

¢
z12(rt) = (/ e (r dtl)) e
t1=0

Performing the integration, we get
z12(rt) = (e = 1) e

This then becomes
T1a(rt) = (1—e ) e ™

2.23 m=1,n=3

Next, consider z; 3(rt), which is the probability that the original instance of the pathogen
has led to two new instances of the pathogen by time ¢ (n = 3). For this to occur, five things
must happen: The original instance of the pathogen does not make any new instances of
the pathogen between times 0 and t¢5, the original instance of the pathogen makes a new
copy of itself at time t5, neither of the two resulting instances of the pathogen make any
new instances of the pathogen between times t, and t;, one of the two instances of the
pathogen makes a new copy of itself at time ¢;, and none of the three resulting instances
of the pathogen make any new instances of the pathogen between times ¢; and t. We must
integrate over all values of ¢, between 0 and ¢;, and we must integrate over all values of ¢;
between 0 and t:

t t1
r13(rt) = / / e " (r dtg)e_z”(tl_tQ)(Qr dtl)e_?”’(t—tl)
t1=0 Jt2=0

We can extend the range of the integration over ¢, from t, = 0 to ty = t if we also divide by
2:

1 t t
$1,3(7“t) = 5/ / e T2 (r dt2)6—2r(t1—t2)(2r dt1)6—3r(t—t1)
t1=0 Jta=0

Simplifying, we have

r13(rt) = (/t::() e (r dtz)) (/t;o e (r dtl)) ot

Performing the integration, we get

x13(rt) = (e”t — 1)2 e 3t
This then becomes

z13(rt) = (1 - G_Tt)Q e "t
224 m=1,n=4

Next, consider z 4(rt), which is the probability that the original instance of the pathogen
has led to three new instances of the pathogen by time ¢ (n = 4). For this to occur, seven
things must happen: The original instance of the pathogen does not make any new instances



of the pathogen between times 0 and t3, the original instance of the pathogen makes a new
copy of itself at time ¢3, neither of the two resulting instances of the pathogen make any new
instances of the pathogen between times t3 and t,, one of the two instances of the pathogen
makes a new copy of itself at time ¢, none of the three resulting instances of the pathogen
make any new instances of the pathogen between times t5 and t;, one of the three instances
of the pathogen makes a new copy of itself at time ¢;, and none of the four resulting instances
of the pathogen make any new instances of the pathogen between times ¢; and t. We must
integrate over all values of t3 between 0 and t,, we must integrate over all values of ¢, between
0 and t¢;, and we must integrate over all values of ¢; between 0 and ¢:

t t1 to
1 4(rt) = / / / e~ (1 dtg)e 2 1) (2 dity)e TP (31 Aty e (Et)
t1=0 Jta=0 Jt3=0

We can extend the range of the integration over t3 from t3 = 0 to t3 = ¢t and the range of
the integration over ty from t, = 0 to to = ¢ if we also divide by 3!:

1 st t t
T1,4(rt) = o / / / e (1 dtg)e 1) (2 dity ) e TP ) (31 Aty e Et)
’ 3l t1=0 Jt2=0 Jt3=0

Simplifying, we have

ra(rt) = ( /;0 et dt3)> ( /;0 &2 dtg)) ( /;O e dt1)> Lt

Performing the integration, we get
214(rt) = (" — 1)3 e

This then becomes
z14(rt) = (1 - e_”t)3 e "t

2.25 m=1,any n

We can generalize the calculation to arbitrary values of n:

n—1 t _1 ‘
$1,n(rt0) = <H/ 6—(n—]+1)7"(tj—1—tj)(n _ j)(T dtj)> o Ttn-1
t

=1 L

Changing the integration limits, we have

n—1 t
1 0 .
- - | | —(n—j+)r(tj—1—t;) s ) —7rtn_
an(TtO) - (n_ 1)| (Jl /t;zoe I (TL ])(T dt])) € '

This simplifies to

n—1 to .
T, (rty) = (H/ e~ (iD=t (. dtj)) ot
£;=0

j=1"71t=



This becomes

to n—1
1 0(rto) = (/ e (r dt)) e "o
t=0

Performing the integration, we get

T1n(rt) = (1— e‘”)nil e "t (S2)

2.2.6 Any m and n

Following the same procedure, we can calculate x,, ,(rt):

j—1
Tm,n Tto (H/ (n—j+1)r(tj—1-t;) (n—])(Tdt >> —mrtp—m

Changing the integration limits, we have

ZEm,n(TtO) (H/ (n—j+1)r(tj— l—tj)(n_j)(r dtj)> o~ Mrtn—m

This simplifies further:

_ 1) n—m g, .
T (rto) = (n ) <H / 6_("_J+1)T(tf‘1_tj)(r dtj)> g~ Mrin—m
t

(n—m)l(m —1)! 1 =0

We can rewrite this as

n—1 T [ —(n—j+1)r(t;—1—t;) —mrtn—m
T (rto) = 9 | | e -7 (rdty) e

1 J=

1 to n—m
Tmn(rto) = (;:L B 1) </ ) e”(r dt)) g nrto
t=

Performing the integration, we get

T (1t) = (” - 1) (1—e )" emmrt (S3)

m—1

This becomes

2.3 Detection of a pathogen

We further require an understanding of how the outbreak is detected. Consider that there
are n instances of the pathogen within a particular lineage when the environment is tested.
We assume that each instance of the pathogen is not detected independently with probability
q. The outbreak is not detected if and only if no instance of the pathogen is detected, which
occurs with probability ¢". Therefore, the pathogen is detected with probability 1 — ¢".
We further assume that each lineage of the pathogen is detected independently of any
other lineage. For example, suppose that two lineages of the pathogen are simultaneously
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present. Suppose that when the environment is tested, Lineage A contains n4 copies of the
pathogen, and Lineage B contains np copies of the pathogen. In this case, Lineage A is
detected with probability 1 — ¢"4, and Lineage B is detected with probability 1 — ¢™5. (If
the rate of introduction of new pathogens, A, is small, then simultaneous presence of two
lineages would be a rare occurrence. Nonetheless, we describe this possibility so that the
stochastic dynamics of pathogen initiation, pathogen growth, and pathogen detection are
completely specified.)

2.4 Expected size of an outbreak when it is detected

Using the stochastic rules presented above, and using Equation (S3), we can derive a formula
for the expected size of an outbreak when the pathogen is detected. For understanding the
steps of the calculation, we define X;(a;) to be the probability that there are i testing events
following the appearance of the pathogen that fail to detect the pathogen, and that there
are a; infections when the pathogen is detected.

We first consider the following question: What is the probability that the pathogen is
detected in the first test following its appearance and that there are ag instances of the
pathogen when it is detected? This probability, which we denote Xq(ag), is given by

Xotoo) = [ (F) mrntrmita = o)

There are three components to this calculation:

e The pathogen is initiated at time 7 before the testing event that detects it occurs. If
the pathogen emerges just before the test that detects it is performed, then 7 is slightly
greater than 0. If the pathogen emerges just after the previous test, then 7 is slightly
less that 1. Therefore, we have 0 < 7 < T'. Since new lineages appear independently
and continuously in time, 7 is equiprobably distributed between 0 and 7', hence the
integration fOT dr/T.

e The pathogen begins as a single infection, and it grows to ag infections at time 7 since
its appearance with probability x4, (r7).

e At least one of the ag infections is detected with probability 1 — ¢®.

Next, we can ask: What is the probability that the pathogen is detected in the second
test following its appearance and that there are a; instances of the pathogen when it is
detected? This probability, which we denote Xi(a;), is given by

Tdr & “ "
Xa(a) = [ 3 a7 T)1 = ")

ap=1

This calculation is understood as follows: The first test occurs at time 7 after the pathogen
appears, the pathogen grows to ag infections at time 7 after its emergence, none of those
agp infections are detected in the first test, the pathogen then grows to a; infections at time



T + T after its emergence, and at least one of those a; infections is detected in the second
test. We must sum over all values of ay between 1 and a;.

We can further ask: What is the probability that the pathogen is detected in the third
test following its appearance and that there are a, instances of the pathogen when it is
detected? This probability, which we denote X3(as), is given by

dr
2(ay) / Z Z 1,00 (TT) G Tag .0, (TT) g Ty 0p (1T (1 — ¢%2)

a1=1apg=1

This calculation is understood as follows: The first test occurs at time 7 after the pathogen
appears, the pathogen grows to ag infections at time 7 after its emergence, none of those
ag infections are detected in the first test, the pathogen then grows to a; infections at time
T 4+ T after its emergence, none of those a; infections are detected in the second test, the
pathogen then grows to as infections at time 7 4 27" after its emergence, and at least one of
those ay infections is detected in the third test. We must sum over all values of ag between
1 and a; and over all values of a; between 1 and a».
The calculation of X3(a3) follows in the same manner:

CL3 / ar Z Z Z T1,a0 TT)q Lag,a1 (TT>q Lay, a2<TT>q Lay, a3(TT)(1 - q )

a2=1a1=1ag=1

To calculate the expected size of an outbreak, we sum X,,(a,,)a,, over all possible sizes
of the outbreak when the pathogen is detected (1 < a,, < 0o) and over all possible numbers
of failed tests (0 < m < 00):

(n) = Z Z X (m)am (S4)

Equation (S4) can be written as follows:

/ dr Z Z Z L1 q0 (1T <Hq“1 "Ta;_1a; TT)) (1 —-q¢*)a,,  (SH)
m=0amn=1 |1<a;_1<a;
2.5 Approximation for (n)

Equation (S5) is analytically unwieldy. To make progress, we derive an approximate solution
for the expected size of an outbreak.



251 p=1

To calculate a solution for (n) for p = 1, we use Equation (S2), and we integrate over all
possible values of 7 between 0 and T:

Tar &
Wl = [ F 2 nmar)
Tadr &
— e n 1 o 677“7' nflefrf
|7 Son-e

_ 1 Td d i(l_ —rr)n
T 0 TdT €

n=0
1 /T d
—_ d _ T
)y Tt
Performing the integration, we obtain
el —1
), = (S6)

252 pKland Tk 1

To calculate an approximate solution for (n) for small values of p, we assume that the
pathogen grows deterministically after it is initiated (Figure S1). The first several steps of
this process are as follows:

Pathogen population size

aAafF-——-A-— -

Time, ¢ 2

Pathogen introduction

Figure S1: Schematic showing deterministic growth of the pathogen. For calculating
an approximation for the expected size of an outbreak when it is detected, we can assume
that the size of the outbreak grows deterministically.

e The first infection occurs, and at time 7 after its emergence, a test is performed. The
size of the outbreak when the first test is performed is equal to €.



e If the pathogen is not detected in the first test, which occurs with probability ¢* ", then
the pathogen grows until the second test is performed, and the size of the outbreak is

equal to e"(7t7T),

e If the pathogen is not detected in the first test and the second test, which occurs with

probability ¢¢ ¢¢"", then the pathogen grows until the third test is performed, and
742T)

the size of the outbreak is equal to e’ .

e If the pathogen is not detected in the first test, the second test, and the third test,

which occurs with probability ¢ ¢¢ """ ¢¢" """ then the pathogen grows until the
y g( gT)
r(t+3

fourth test is performed, and the size of the outbreak is equal to e

This process continues until the pathogen is detected. We therefore have the following result
for the expected size of an outbreak:

T
dr
<n>‘p,TT<<1 %/0 T e

+ qe” (eT(T+T) . 67"7—)

erT er(t+T)
+47q (
e _er(TH+T) (T ) r(T r(T
+ q q (r+T q +27 (e ( +3T) e ( +2T))

-

Considering that p < 1 and rT < 1, this can be simplified:

e1”(‘1'+2T) . 61"(7'+T) )

<n>|p’rT<<1 s quT ( 2T _ erT) + qerT quTT ( 3T eQrT) + quT qeer qe3rT ( T eSrT) 4.
More compactly: N
(n) |WT<<1 ~ (erT _ 1) Z ekrqukTT Skole—arT (s7)
The process can also be considered by deﬁningk B
p=1-gq (S8)

Here, p is the probability that a single infection is detected in a testing event, so that the
probability that an outbreak of size n is detected in a testing event is given by 1 — (1 — p)™.
Substituting Equation (S8) into Equation (S7), we have

(67"T . 1) ekrTU_ . p)ekrT Zi;é e—@rT

k=1

(n)

p,rT'K1 ~

Next, we approximate Z';;(l) e~ T by (1 — e‘“T) _1, and we approximate the summation over
k by an integration over k:

T oo I lo —p)ekrT (1—e—7T -1
<n>‘p,rT<<1 ~ (e —1) /0 Ak ehrT log(1-p)eF ™ (1 )

Performing the integration and simplifying, this becomes
< >| (erT_l) (1_6—7"T)
L S log(1 —p)

(59)
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2,53 0<p<l

In the limit that p approaches 1, Equation (S9) approaches 0. In the limit that p approaches
0, Equation (S9) becomes arbitrarily large. Therefore, we can add Equations (S6) and (S9)
together to obtain an approximation for (n) for any value of p:

(n) ~ eiT_ 1 (1 - %) (S10)

3 Expected total cost per unit time

For optimizing the testing frequency, the quantity of interest is the expected total cost per
unit time. The surveillance cost per unit time, Cj, is given by Equation (S1). Let Cj
denote an approximation for the expected infection cost per unit time, and let C' denote an
approximation for the expected total cost per unit time. We have

C=Ci+ 0, (S11)

For determining C5, we assume that each infection contributes a cost cp. If new lineages
appear at rate A\, then C5 is given by

Cy = Aea(n) (S12)

Substituting Equations (S1), (S12), and (S10) into Equation (S11), we obtain

rT —rT
1 e —1 1—e™
¢ TJ”CQ( T )( log(l—p)) (S13)

3.1 Optimal testing frequency

Equation (S13) specifies the expected total surveillance and pathogen cost per unit time. C
is a function of the testing period, T, and we seek the value of T" for which C' is minimal.
The first step is to show that C' has a single minimum at a particular value of T'. To do this,
we differentiate C' twice with respect to T

r7T?\ dC rcy T 2
MEVEE e — et ) (1 ——
(AQ)dT Ne, TLOT =D+ ]< log(l—p))

 2[sinh(:T) — T cosh(rT)] (514)
log(1 —p)
(C\Z) ?ﬂg = 2;;1 +{[(rT — 1) + 1]e'" — 2}
B [(rT —1)% +1]e"T — 2
fog(1 — p) 519
T +1)2 +1]e T =2
log(1 —p)

10



In Equation (S15), the quantity r7%/(Ac) is necessarily positive. If the right-hand side of
Equation (S15) is positive for positive values of T, then d>C/dT? is necessarily positive.

Note that 75\ 20 )
) T rey
| = 1
Ty [(A@) dTQ] o (516)

We also have

d [[/rT?\ d*C P 2 :
i [ ) ) = foorn o+ (1 g s

From Equations (S16) and (S17), it follows that the right-hand side of Equation (S15) is
necessarily positive. Therefore,

> 0 (S17)

d2C
— 1
i 0 (S18)
Next, note that
. dC
i a = > (519)
We also have 4
jlgrolo 7 = (520)

From Equations (S19), (S20), and (S18), it follows that there is a single value of T" for which
C' is minimized.

To determine the optimal testing period, we set dC/dT = 0 and T = T* in Equa-
tion (S14). We arrive at an implicit solution for the optimal testing period, T*:

rCi . T 2 2 [sinh(rT*) — rT* cosh(rT™)]
— =T -1 ({1l ———) = 21
Acz - ) ( log(1 — p)> log(1 = p) (521)
The optimal testing frequency is given by
1
e — 22

3.1.1 Asymptotic behavior as p — 1
Taking the limit p — 1 in Equation (S21), we obtain the following equation for 7™*:

rc
)\CQ

= (rT* — 1) +1 (p=1)

Letting Wy(z) denote the principal branch of the Lambert W function, and using Equa-
tion (S22), we obtain an explicit solution for the optimal testing frequency:

f*:r{1+W0 (é {%-1])}_1 (p=1) (S23)

Equation (S23) specifies the optimal testing frequency if p = 1.
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3.1.2 Asymptotic behavior as p — 0

For small values of p, the optimal testing frequency, T, is also small. To determine
T*, we consider that p < 1 and r7* < 1 in Equation (S21). We use the ap-
proximations log(1 — p) ~ —p, e ~ 1 +rT* + (rT*)?/2, sinh(rT*) ~ rT* + (rT*)3/3!, and
cosh(rT*) ~ 1+ (r7*)%/2:

:—Zz |:(7’T*—1) (11-:T*+@)+11(1+§>
+§KTT*+(T§!))—T<1+<ﬂ;)ﬂ (p = 0)

Simplifying, we have

re;  (rT*)? . P 2rT*
T L T a ey (14 2) -
ACy P (14rT7) ( + 2) 3 (p—=0)

Considering that p < 1 and 7" < 1, and using Equation (S22), we solve approximately for
the optimal testing frequency:

rACo
pbc

fre (p—0) (524)

For small values of p, f* is approximately given by Equation (524).

4 Distribution of pathogen-related parameters

The calculation of the expected infection cost per unit time, C5, assumes that, for each
lineage that appears, the pathogen-specific parameters cy, r, and p are the same. The
expected infection cost per unit time is then just the expected cost due to a single lineage
multiplied by the rate, A, at which those lineages arise.

More generally, we can consider dcg dr dp N'(cq, 7, p) to be the (infinitesimal) rate at which
lineages with pathogen-specific parameters co, r, and p appear. In this generalized model,
let CY denote an approximation for the expected infection cost per unit time, and let C’
denote an approximation for the expected total cost per unit time. We have

C'=Cy +C) (525)

With knowledge of the rate density function, \'(ca, 7, p), we are able to compute the expected
infection cost per unit time by integrating over all possible values of co, 7, and p:

Cl = /0 " dey /0 T /0 1 dp [N (ca, 7, p) ea(n)} (526)

Substituting Equations (S1) and (S26) into Equation (S25), we obtain

Fo e o [l s (55) 0-an=p)]} o
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The optimal testing frequency is given by

1
Fr=— 528
arg minp C’ (528)
Equations (S27) and (S28) can be solved numerically to determine the optimal testing fre-
quency. Below, we consider several simple examples for which Equation (S27) can be solved
analytically to show how the model works.

4.1 Example 1

As the simplest example of using Equation (S27), consider that only a single type of pathogen
can emerge. The pathogen has per-case cost ¢, growth rate 7/, and probability of detection
7', and new lineages are introduced at rate X\. The rate density function, X' (co,r, p), is given
by

N(ca,r,p) = M(co — ch)d(r —1")o(p — ')

Here, § denotes the Dirac delta function. When this form for A'(cg,r, p) is substituted into
Equation (S27) and the integrations over ¢y, 7, and p are performed, we obtain

r'T —r'T

c1 et —1 1—e
C'=—=+ ), | ——— l1l—-—
T ( T )( 1og<1—p'>)

Thus, Equation (S27) reduces to Equation (S13) for the case where only a single type of
pathogen with fixed parameters can emerge.

4.2 Example 2

Next, consider the possibility that two different types of pathogens can emerge. Pathogen 1
has parameters ¢, r’, and p’, while Pathogen 2 has parameters ¢, ”, and p”. Lineages of
Pathogen 1 are introduced at rate \;, and lineages of Pathogen 2 are introduced at rate As.
The corresponding rate density function is

N(ca,r,p) = Md(ca — &5)0(r —1)0(p — ') + Aad(ca — &)d(r — ") (p — p")

When this form for X (cq,r,p) is substituted into Equation (S27) and the integrations are
performed, we obtain

r'T —r'T r!'T —r!'T
c1 et —1 l1—ce e —1 1—e
== 1\ | ———— 1 - — Aoc! | ——— 1-—"
T TG ( r'T ) ( log(1 —p’)) T A6 ( T ) ( log(1 —p”))

The expected total cost per unit time, C’, is therefore equal to the surveillance cost per
unit time, plus the expected infection cost per unit time for Pathogen 1, plus the expected
infection cost per unit time for Pathogen 2.
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4.3 Example 3

These considerations can be extended to the case where many different types of pathogens
can emerge. Let Pathogen n have per-case cost c,, growth rate r,, and probability of
detection p,. The rate density function, X' (cq,r, p), is given by

N(ca,m,p) = Z And(Ca = €20)0(r — 12)(p — Dn)

Substituting this into Equation (S27) and integrating yields

rnT —rnT

c1 et —1 1—e™
C'==4 Y Mo | —— ) (1
T n > ( T )( log(l—pn))

The expected infection cost per unit time is therefore linear—i.e., we add together the
expected infection costs per unit time for each of the n possible types of pathogens, and this
sum equals the total expected infection cost per unit time.

4.4 Example 4

The possible parameter values that any new pathogen can have are not discrete. They
are continuous. To show how this works, consider the following form for the rate density

function:
a

N(cz,r,p) = A [(2 —) e—“%] §(r—r')s(p—p)

™

For this case, new pathogens have growth rate ' and probability of detection p’. New
pathogens can, however, have any real value of ¢y that is nonnegative. For any lineage that
is introduced, its value of ¢, is most likely to be close to zero, while larger values of ¢y occur
more rarely. The parameter a controls the width of the probability density function for
co. For smaller values of a, this distribution has a longer tail, and the expected value of ¢y
for any new pathogen increases. Substituting this form for the rate density function into
Equation (S27) and integrating, we have

o a A (T -1 ) 1—e T
=7t / " los(l— )
T ma r'T log(1 —p)

4.5 Example 5

For this example, we suppose that any new pathogen has per-case infection cost ¢, and
probability of detection p’, while the growth rate, r, can be any nonnegative real number.
We use the following form for the rate density function:

N(ca, 7, p) = No(ca — ) [2617’6_‘”"2] ip—17)

Substituting this into Equation (S27) and integrating, we have

,_a Acy/Ta T _ 2 _ =z 2
=g o () - () 0]
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4.6 Example 6

We can also model the case where new pathogens have per-case cost ¢, and growth rate r/,
while the probability of detection, p, can be any real number between 0 and 1. Suppose that
the rate density function has the following form:

X(ca,7,p) = Ad(es — )(r — 7') [W —a) = 1log(1 —p)}

(1—a)log(l—a)+a

Here, 6 denotes the Heaviside step function. Substituting this into Equation (S27) and
integrating, we obtain

T _ 1 CL(l _ e—r’T)
C' =2 (——) (1
T 62( r'T +(1—a)log(1—a)+a

5 Approximation for F*

If we have excellent understanding of the stochastic dynamics and their associated parame-
ters, then Equations (S27) and (S28) specify the sampling frequency for which the expected
total cost per unit time is minimal. However, in real settings, understanding of the un-
derlying dynamics and parameters would only be approximate. A useful result, then, is a
simple equation that approximately specifies the optimal sampling frequency and can be
easily solved. Accordingly, we approximate Equation (S27) for rT' < 1 as follows:

C/%%JF/OOOch/Ooodr/oldp{kl(@,r,p) {62 (1+%> <1_ﬁ)]}

For small values of p, this can be approximated further:

[e's) 00 1 T
'S +/ dcz/ dr/ dp{)\’(cg,r,p) |:Cg (1 + r_)]}
T 0 0 0 p

Differentiating with respect to 1", we have

s [ o [l (2)

Setting dC”"/dT = 0 yields an approximation for the optimal sampling frequency:

\// dcz/ dr/ dp <Z;) X(ca, 7,p)

6 Extensions of the model

In this section, we explore some simple extensions of the model.

15



6.1 Example 1

A realistic possibility is that the cost due to each test, ¢1, is not constant but is dependent
on the sensitivity of the test, p. Our model readily incorporates this generalization if we set
¢1 — ¢1(p) in our equations. If ¢; is an increasing function of p, then the inverse relationship
between the optimal sampling frequency and p will be stronger than for the case where ¢; is
constant.

6.2 Example 2

Our analytical calculation of the expected total cost per unit time is based on the assumption
that the cost of an outbreak scales linearly with the number of infections. During the early
stages of an outbreak, we believe this assumption to be reasonable. However, our model
works the same for alternative assumptions about how the cost of an outbreak depends on
the number of infections. To demonstrate this, we consider here a different possibility: that
the cost of an outbreak scales quadratically with the number of infections. If we denote an
approximation for the expected total cost per unit time for this scenario by Cy,, then this
quantity is equal to
Csq = % + Acz(n?) (529)
The task is to calculate the expected squared size of an outbreak, (n?). The steps in the
calculation are identical to the case of linear costs.
To calculate a solution for (n?) for p = 1, we use Equation (S2), and we integrate over

all possible values of 7 between 0 and T

Tar &
s = [ F X ntaaler)
n=1

Tdr & 9
— e n2(1 e T nflefrT
|7 >t
1T adE
— d _ 1 —rT
rT J, T dr gom <)
17 a >
= — dr — 1 —-rT 1 —r7\n—1
rT J, g dr ( )nzzon( ") ]
_ 1 Td d -( T 1) 1 d i(l —'rr)n
T Tar |\¢ r) dr — ‘
1 (T df 1\ d
—_ d . T _ 1 _ . TT
el A 1 )<r> ar )}
1 (. d
- . rTT T _ 1
rT Jo dr dr e (e )
Performing the integration, we obtain
61"T erT -1
()] _, = (TT ) (S30)



For p < 1 and T < 1, we have the following result for the expected size of an outbreak:
erT r r e'rT 627'T ™ r erT 627'T eST'T o -
<n2>|p,rT<<1zq (€4T_62T)+q q (66T_64T)+q " q (68T_66T)_|___‘

More compactly:

o
2 | —~ ( 2T 2krT ebrT Skl o—arT
(n®) e 1) g e g
k=1

Next, we approximate Z’;;é e~ by (1 — e_TT) _1, and we approximate the summation over
k by an integration over k:

1

prT'kKl ~

<”2>| ~ (eng — 1) /OO dk €2krT€10g(1_p)ekrT(1_6_”)—
0
This can be rewritten as

<n2>| ~ (GQTT — 1) (1 - e*rT) o0 dk ekTTi (elog(lfp)ekrT(lie,TT)fl)
p,rT<K1 rT log(l — p) ; P

Integrating by parts, we have

(62TT _ 1) (1 _ efrT)

1

/OO dk ekrTelog(lfp)ekrT(176_TT)7
0

2 ~
<n > |p,7"T<<1 ~

—log(1 —p)
Performing the integration and simplifying, this becomes
2rT —rT \ 2
9 et =1/ 1—e
A S31
) (531)

In the limit that p approaches 1, the above expression approaches 0. In the limit that
p approaches 0, the above expression becomes arbitrarily large. Therefore, we can add
Equations (S30) and (S31) together to obtain an approximation for (n?) for any value of p:

T (orT 2rT —rT \ 2
o €T (eT=1) T -1/ 1-e¢
~ 2
() T * rT log(1 — p) (532)

Substituting Equation (S32) into Equation (S29), we obtain

rT (T 2rT —rT \ 2
c1 e (e — 1) e —1(1—e
Cog=—+ A S33

“a T T A rT + rT (log(l — p)) ] (833)

Equation (S33) specifies the expected total cost per unit time for the case where the cost
due to a single outbreak scales quadratically with the number of infections.
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6.3 Example 3

Our model can be adapted to the case where breakthrough infections are a possibility. As a
simple example, we suppose that immediately after an outbreak is detected and intervention
is applied, a single new infection is initiated with probability b, while with probability 1 — b,
there are no follow-up infections. The approximate expected total cost per unit time in this
scenario, which we denote C}, is given by

Cy = C_zi + ez | () + (1= 0) > bk (n), (S34)
k=0

(n),—r denotes the expected size of an outbreak, given that the first environmental test

is performed at time T' after the outbreak begins. The summation in square brackets is

understood as follows:

e With probability 1 — b, all infections of the original outbreak are controlled, and there
are no further pathogen-related costs. The expected total cost related to the original
outbreak is equal to ca(n).

e With probability b(1—b), a single case of the original outbreak is not controlled. It then
leads to a second outbreak, and the pathogen must again be detected and controlled.
The expected size of the second outbreak when it is detected is equal to (n),—r. The
expected total cost related to the original outbreak and the second outbreak is equal

to ca((n) + (n)r=1).

e With probability b?(1 — b), a single case of the original outbreak is not controlled.
It then leads to a second outbreak, and the pathogen must again be detected and
controlled. The expected size of the second outbreak when it is detected is equal to
(n),—r However, a single case of the second outbreak is not controlled, leading to a
third outbreak. The expected size of the third outbreak when it is detected is equal to
(n).—r. The expected total cost related to the original outbreak, the second outbreak,
and the third outbreak is equal to cz((n) + 2(n),—r).

The understanding is similar for higher-order terms in the summation in Equation (S34).
This equation can be rewritten:

_ 4 S k—1
Cb = T + )\CQ (n) + <n>T:T b(l — b) kZ:O kb ]

This is equal to

C1

Cb = T + )\02 (n) + <7’L>7—:T b(l - b) % gbk]

This becomes

Cy = % +Acz | () + (n)rr b(1 =) % (ﬁﬂ
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Simplifying, we have
c b
Cb = Tl + )\CQ |:<TL> + <TL>7—:T (m)] (835)

For p =1, (n),—r is given by

(W)re],_, =€ (536)
For p < 1 and 7T" < 1, (n),—r is given by Equation (S9):
(e"T — 1) (1 — e"'T)

>T:T|p,T’T<<1 ~ —rT'log(1l — p) o

(n

In the limit that p approaches 1, Equation (S37) approaches 0. In the limit that p
approaches 0, Equation (S37) becomes arbitrarily large. Therefore, we can add Equa-
tions (S36) and (S37) together to obtain an approximation for (n),_r for any value of p:

OwTT:zeff-(err;ﬁiégi:j;)r ) (38)

Substituting Equations (S10) and (S38) into Equation (S35), we obtain

6rT -1 | 1— e—rT N . (erT - 1) (1 - e—rT) b <S39)
T log(1— p) c rTlog(1 — p) 1-b
Equation (S39) specifies the expected total cost per unit time for the case where, whenever

an outbreak is detected, a single new infection breaks through control and is initiated with
probability b, while intervention eliminates all infections with probability 1 — b.

&1

Co= =

+ /\CQ
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