
Supplementary Information:

Optimal environmental testing frequency

for outbreak surveillance

Jason W. Olejarz, Kirstin I. Oliveira Roster, Stephen M. Kissler,
Marc Lipsitch, Yonatan H. Grad

This Supplementary Information is organized as follows: In Section 1, we describe the
surveillance protocol under consideration, and we derive the surveillance cost per unit time.
In Section 2, we define the process by which new pathogens emerge, we define the dynamics
of a pathogen that is growing in abundance, we define the manner in which each pathogen
is detected, and we calculate the expected size of an outbreak. In Section 3, we calculate
the expected total cost per unit time, and we determine the optimal testing frequency. In
Section 4, we describe how our model generalizes to account for the emergence of pathogens
with different characteristics. In Section 5, we derive a simple approximation for the optimal
testing frequency. In Section 6, we explore some extensions of our model.

1 Surveillance cost

An important consideration for implementing environmental surveillance for pathogens is
the frequency at which tests are performed. Environmental sampling and testing should
be done frequently enough that an emerging pathogen is intercepted quickly, but not so
frequently that surveillance costs outweigh the benefits of early detection. Here, we assume
that whenever the environment is sampled and a test is conducted, a surveillance cost equal
to c1 is incurred. We also assume that surveillance costs are additive, so that if n tests are
performed, then the total surveillance cost is equal to nc1.

We consider that environmental tests are performed with period T . Since the cost of a
single test is equal to c1, and since the time between tests is equal to T , the surveillance cost
per unit time is given by

C1 =
c1
T

(S1)

2 Expected infection cost

The costs incurred from the surveillance program itself must be considered in the context of
infection-related costs. The costs due to an outbreak can vary depending on several factors:

• When the pathogen first appears in relation to the first environmental test that is
performed following its introduction
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• How the pathogen grows after it is introduced

• The sensitivity of the environmental testing program for detecting the pathogen

• The per-case infection cost

In this section, we describe each of these points in detail. Considering the full stochastic dy-
namics of pathogen initiation, pathogen growth, and pathogen detection, we derive a solution
for the expected size of an outbreak when it is detected. We then derive an approximation
for the expected size of an outbreak by assuming deterministic growth of a pathogen after
it is initiated.

2.1 Emergence of a pathogen

For determining the optimal testing frequency, we require knowledge of how new pathogens
are introduced. We assume that the introduction of new pathogens follows a Poisson process.
New pathogens are initiated independently and continuously in time at rate λ.

2.2 Growth of a pathogen

We also require knowledge of how a pathogen increases in abundance once it first appears.
Here, we assume that each instance of the pathogen makes new instances of the pathogen at
rate r according to a Poisson process. Let xm,n(rt) denote the probability that there are n
copies of the pathogen at time t, given that there are m copies of the pathogen at time 0. In
this section, we present the steps for calculating xm,n(rt), beginning with the simplest cases
and then progressing to the solution for any values of m and n, where m ≤ n.

2.2.1 m = 1, n = 1

Suppose we start with a single instance of the pathogen at time 0 (m = 1). x1,1(rt) gives the
probability that the original instance of the pathogen has not produced any new instances
of the pathogen up to time t (n = 1). x1,1(rt) is given by

x1,1(rt) = e−rt

2.2.2 m = 1, n = 2

Next, consider x1,2(rt), which is the probability that the original instance of the pathogen has
produced a single new instance of the pathogen by time t (n = 2). For this to occur, three
things must happen: The original instance of the pathogen does not make any new instances
of the pathogen between times 0 and t1, the original instance of the pathogen makes a new
copy of itself at time t1, and neither of the two resulting instances of the pathogen make any
new instances of the pathogen between times t1 and t. We must integrate over all values of
t1 between 0 and t:

x1,2(rt) =

∫ t

t1=0

e−rt1(r dt1)e
−2r(t−t1)

2



Simplifying, we have

x1,2(rt) =

(
∫ t

t1=0

ert1(r dt1)

)

e−2rt

Performing the integration, we get

x1,2(rt) =
(

ert − 1
)

e−2rt

This then becomes
x1,2(rt) =

(

1− e−rt
)

e−rt

2.2.3 m = 1, n = 3

Next, consider x1,3(rt), which is the probability that the original instance of the pathogen
has led to two new instances of the pathogen by time t (n = 3). For this to occur, five things
must happen: The original instance of the pathogen does not make any new instances of
the pathogen between times 0 and t2, the original instance of the pathogen makes a new
copy of itself at time t2, neither of the two resulting instances of the pathogen make any
new instances of the pathogen between times t2 and t1, one of the two instances of the
pathogen makes a new copy of itself at time t1, and none of the three resulting instances
of the pathogen make any new instances of the pathogen between times t1 and t. We must
integrate over all values of t2 between 0 and t1, and we must integrate over all values of t1
between 0 and t:

x1,3(rt) =

∫ t

t1=0

∫ t1

t2=0

e−rt2(r dt2)e
−2r(t1−t2)(2r dt1)e

−3r(t−t1)

We can extend the range of the integration over t2 from t2 = 0 to t2 = t if we also divide by
2:

x1,3(rt) =
1

2

∫ t

t1=0

∫ t

t2=0

e−rt2(r dt2)e
−2r(t1−t2)(2r dt1)e

−3r(t−t1)

Simplifying, we have

x1,3(rt) =

(
∫ t

t2=0

ert2(r dt2)

)(
∫ t

t1=0

ert1(r dt1)

)

e−3rt

Performing the integration, we get

x1,3(rt) =
(

ert − 1
)2

e−3rt

This then becomes
x1,3(rt) =

(

1− e−rt
)2

e−rt

2.2.4 m = 1, n = 4

Next, consider x1,4(rt), which is the probability that the original instance of the pathogen
has led to three new instances of the pathogen by time t (n = 4). For this to occur, seven
things must happen: The original instance of the pathogen does not make any new instances
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of the pathogen between times 0 and t3, the original instance of the pathogen makes a new
copy of itself at time t3, neither of the two resulting instances of the pathogen make any new
instances of the pathogen between times t3 and t2, one of the two instances of the pathogen
makes a new copy of itself at time t2, none of the three resulting instances of the pathogen
make any new instances of the pathogen between times t2 and t1, one of the three instances
of the pathogen makes a new copy of itself at time t1, and none of the four resulting instances
of the pathogen make any new instances of the pathogen between times t1 and t. We must
integrate over all values of t3 between 0 and t2, we must integrate over all values of t2 between
0 and t1, and we must integrate over all values of t1 between 0 and t:

x1,4(rt) =

∫ t

t1=0

∫ t1

t2=0

∫ t2

t3=0

e−rt3(r dt3)e
−2r(t2−t3)(2r dt2)e

−3r(t1−t2)(3r dt1)e
−4r(t−t1)

We can extend the range of the integration over t3 from t3 = 0 to t3 = t and the range of
the integration over t2 from t2 = 0 to t2 = t if we also divide by 3!:

x1,4(rt) =
1

3!

∫ t

t1=0

∫ t

t2=0

∫ t

t3=0

e−rt3(r dt3)e
−2r(t2−t3)(2r dt2)e

−3r(t1−t2)(3r dt1)e
−4r(t−t1)

Simplifying, we have

x1,4(rt) =

(
∫ t

t3=0

ert3(r dt3)

)(
∫ t

t2=0

ert2(r dt2)

)(
∫ t

t1=0

ert1(r dt1)

)

e−4rt

Performing the integration, we get

x1,4(rt) =
(

ert − 1
)3

e−4rt

This then becomes
x1,4(rt) =

(

1− e−rt
)3

e−rt

2.2.5 m = 1, any n

We can generalize the calculation to arbitrary values of n:

x1,n(rt0) =

(

n−1
∏

j=1

∫ tj−1

tj=0

e−(n−j+1)r(tj−1−tj)(n− j)(r dtj)

)

e−rtn−1

Changing the integration limits, we have

x1,n(rt0) =
1

(n− 1)!

(

n−1
∏

j=1

∫ t0

tj=0

e−(n−j+1)r(tj−1−tj)(n− j)(r dtj)

)

e−rtn−1

This simplifies to

x1,n(rt0) =

(

n−1
∏

j=1

∫ t0

tj=0

e−(n−j+1)r(tj−1−tj)(r dtj)

)

e−rtn−1
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This becomes

x1,n(rt0) =

(
∫ t0

t=0

ert(r dt)

)n−1

e−nrt0

Performing the integration, we get

x1,n(rt) =
(

1− e−rt
)n−1

e−rt (S2)

2.2.6 Any m and n

Following the same procedure, we can calculate xm,n(rt):

xm,n(rt0) =

(

n−m
∏

j=1

∫ tj−1

tj=0

e−(n−j+1)r(tj−1−tj)(n− j)(r dtj)

)

e−mrtn−m

Changing the integration limits, we have

xm,n(rt0) =
1

(n−m)!

(

n−m
∏

j=1

∫ t0

tj=0

e−(n−j+1)r(tj−1−tj)(n− j)(r dtj)

)

e−mrtn−m

This simplifies further:

xm,n(rt0) =
(n− 1)!

(n−m)!(m− 1)!

(

n−m
∏

j=1

∫ t0

tj=0

e−(n−j+1)r(tj−1−tj)(r dtj)

)

e−mrtn−m

We can rewrite this as

xm,n(rt0) =

(

n− 1

m− 1

)

(

n−m
∏

j=1

∫ t0

tj=0

e−(n−j+1)r(tj−1−tj)(r dtj)

)

e−mrtn−m

This becomes

xm,n(rt0) =

(

n− 1

m− 1

)(
∫ t0

t=0

ert(r dt)

)n−m

e−nrt0

Performing the integration, we get

xm,n(rt) =

(

n− 1

m− 1

)

(

1− e−rt
)n−m

e−mrt (S3)

2.3 Detection of a pathogen

We further require an understanding of how the outbreak is detected. Consider that there
are n instances of the pathogen within a particular lineage when the environment is tested.
We assume that each instance of the pathogen is not detected independently with probability
q. The outbreak is not detected if and only if no instance of the pathogen is detected, which
occurs with probability qn. Therefore, the pathogen is detected with probability 1− qn.

We further assume that each lineage of the pathogen is detected independently of any
other lineage. For example, suppose that two lineages of the pathogen are simultaneously
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present. Suppose that when the environment is tested, Lineage A contains nA copies of the
pathogen, and Lineage B contains nB copies of the pathogen. In this case, Lineage A is
detected with probability 1 − qnA , and Lineage B is detected with probability 1 − qnB . (If
the rate of introduction of new pathogens, λ, is small, then simultaneous presence of two
lineages would be a rare occurrence. Nonetheless, we describe this possibility so that the
stochastic dynamics of pathogen initiation, pathogen growth, and pathogen detection are
completely specified.)

2.4 Expected size of an outbreak when it is detected

Using the stochastic rules presented above, and using Equation (S3), we can derive a formula
for the expected size of an outbreak when the pathogen is detected. For understanding the
steps of the calculation, we define Xi(ai) to be the probability that there are i testing events
following the appearance of the pathogen that fail to detect the pathogen, and that there
are ai infections when the pathogen is detected.

We first consider the following question: What is the probability that the pathogen is
detected in the first test following its appearance and that there are a0 instances of the
pathogen when it is detected? This probability, which we denote X0(a0), is given by

X0(a0) =

∫ T

0

(

dτ

T

)

x1,a0(rτ)(1− qa0)

There are three components to this calculation:

• The pathogen is initiated at time τ before the testing event that detects it occurs. If
the pathogen emerges just before the test that detects it is performed, then τ is slightly
greater than 0. If the pathogen emerges just after the previous test, then τ is slightly
less that T . Therefore, we have 0 ≤ τ < T . Since new lineages appear independently
and continuously in time, τ is equiprobably distributed between 0 and T , hence the
integration

∫ T

0
dτ/T .

• The pathogen begins as a single infection, and it grows to a0 infections at time τ since
its appearance with probability x1,a0(rτ).

• At least one of the a0 infections is detected with probability 1− qa0 .

Next, we can ask: What is the probability that the pathogen is detected in the second
test following its appearance and that there are a1 instances of the pathogen when it is
detected? This probability, which we denote X1(a1), is given by

X1(a1) =

∫ T

0

dτ

T

a1
∑

a0=1

x1,a0(rτ)q
a0xa0,a1(rT )(1− qa1)

This calculation is understood as follows: The first test occurs at time τ after the pathogen
appears, the pathogen grows to a0 infections at time τ after its emergence, none of those
a0 infections are detected in the first test, the pathogen then grows to a1 infections at time
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τ + T after its emergence, and at least one of those a1 infections is detected in the second
test. We must sum over all values of a0 between 1 and a1.

We can further ask: What is the probability that the pathogen is detected in the third
test following its appearance and that there are a2 instances of the pathogen when it is
detected? This probability, which we denote X2(a2), is given by

X2(a2) =

∫ T

0

dτ

T

a2
∑

a1=1

a1
∑

a0=1

x1,a0(rτ)q
a0xa0,a1(rT )q

a1xa1,a2(rT )(1− qa2)

This calculation is understood as follows: The first test occurs at time τ after the pathogen
appears, the pathogen grows to a0 infections at time τ after its emergence, none of those
a0 infections are detected in the first test, the pathogen then grows to a1 infections at time
τ + T after its emergence, none of those a1 infections are detected in the second test, the
pathogen then grows to a2 infections at time τ + 2T after its emergence, and at least one of
those a2 infections is detected in the third test. We must sum over all values of a0 between
1 and a1 and over all values of a1 between 1 and a2.

The calculation of X3(a3) follows in the same manner:

X3(a3) =

∫ T

0

dτ

T

a3
∑

a2=1

a2
∑

a1=1

a1
∑

a0=1

x1,a0(rτ)q
a0xa0,a1(rT )q

a1xa1,a2(rT )q
a2xa2,a3(rT )(1− qa3)

To calculate the expected size of an outbreak, we sum Xm(am)am over all possible sizes
of the outbreak when the pathogen is detected (1 ≤ am < ∞) and over all possible numbers
of failed tests (0 ≤ m < ∞):

〈n〉 =
∞
∑

m=0

∞
∑

am=1

Xm(am)am (S4)

Equation (S4) can be written as follows:

〈n〉 =
∫ T

0

dτ

T

∞
∑

m=0

∞
∑

am=1





∑

1≤aj−1≤aj

x1,a0(rτ)

(

m
∏

j=1

qaj−1xaj−1,aj(rT )

)



 (1− qam)am (S5)

2.5 Approximation for 〈n〉
Equation (S5) is analytically unwieldy. To make progress, we derive an approximate solution
for the expected size of an outbreak.
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2.5.1 p = 1

To calculate a solution for 〈n〉 for p = 1, we use Equation (S2), and we integrate over all
possible values of τ between 0 and T :

〈n〉
∣

∣

p=1
=

∫ T

0

dτ

T

∞
∑

n=1

nx1,n(rτ)

=

∫ T

0

dτ

T

∞
∑

n=0

n (1− e−rτ )n−1e−rτ

=
1

rT

∫ T

0

dτ
d

dτ

∞
∑

n=0

(1− e−rτ )n

=
1

rT

∫ T

0

dτ
d

dτ
(erτ )

Performing the integration, we obtain

〈n〉
∣

∣

p=1
=

erT − 1

rT
(S6)

2.5.2 p ≪ 1 and rT ≪ 1

To calculate an approximate solution for 〈n〉 for small values of p, we assume that the
pathogen grows deterministically after it is initiated (Figure S1). The first several steps of
this process are as follows:

0 TτT τ+T τ+2T τ+3TTime, t

P
a

th
o

g
e

n
 p

o
p

u
la

ti
o

n
 s

iz
e

Pathogen introduction

Figure S1: Schematic showing deterministic growth of the pathogen. For calculating
an approximation for the expected size of an outbreak when it is detected, we can assume
that the size of the outbreak grows deterministically.

• The first infection occurs, and at time τ after its emergence, a test is performed. The
size of the outbreak when the first test is performed is equal to erτ .
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• If the pathogen is not detected in the first test, which occurs with probability qe
rτ

, then
the pathogen grows until the second test is performed, and the size of the outbreak is
equal to er(τ+T ).

• If the pathogen is not detected in the first test and the second test, which occurs with
probability qe

rτ

qe
r(τ+T )

, then the pathogen grows until the third test is performed, and
the size of the outbreak is equal to er(τ+2T ).

• If the pathogen is not detected in the first test, the second test, and the third test,
which occurs with probability qe

rτ

qe
r(τ+T )

qe
r(τ+2T )

, then the pathogen grows until the
fourth test is performed, and the size of the outbreak is equal to er(τ+3T ).

This process continues until the pathogen is detected. We therefore have the following result
for the expected size of an outbreak:

〈n〉
∣

∣

p,rT≪1
≈
∫ T

0

dτ

T

[

erτ

+ qe
rτ (

er(τ+T ) − erτ
)

+ qe
rτ

qe
r(τ+T ) (

er(τ+2T ) − er(τ+T )
)

+ qe
rτ

qe
r(τ+T )

qe
r(τ+2T ) (

er(τ+3T ) − er(τ+2T )
)

+ · · ·
]

Considering that p ≪ 1 and rT ≪ 1, this can be simplified:

〈n〉
∣

∣

p,rT≪1
≈ qe

rT (

e2rT − erT
)

+ qe
rT

qe
2rT (

e3rT − e2rT
)

+ qe
rT

qe
2rT

qe
3rT (

e4rT − e3rT
)

+ · · ·
More compactly:

〈n〉
∣

∣

p,rT≪1
≈
(

erT − 1
)

∞
∑

k=1

ekrT qe
krT

∑k−1
x=0 e

−xrT

(S7)

The process can also be considered by defining

p ≡ 1− q (S8)

Here, p is the probability that a single infection is detected in a testing event, so that the
probability that an outbreak of size n is detected in a testing event is given by 1− (1− p)n.
Substituting Equation (S8) into Equation (S7), we have

〈n〉
∣

∣

p,rT≪1
≈
(

erT − 1
)

∞
∑

k=1

ekrT (1− p)e
krT

∑k−1
x=0 e

−xrT

Next, we approximate
∑k−1

x=0 e
−xrT by

(

1− e−rT
)−1

, and we approximate the summation over
k by an integration over k:

〈n〉
∣

∣

p,rT≪1
≈
(

erT − 1
)

∫ ∞

0

dk ekrT elog(1−p)ekrT (1−e−rT )
−1

Performing the integration and simplifying, this becomes

〈n〉
∣

∣

p,rT≪1
≈
(

erT − 1
) (

1− e−rT
)

−rT log(1− p)
(S9)
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2.5.3 0 < p ≤ 1

In the limit that p approaches 1, Equation (S9) approaches 0. In the limit that p approaches
0, Equation (S9) becomes arbitrarily large. Therefore, we can add Equations (S6) and (S9)
together to obtain an approximation for 〈n〉 for any value of p:

〈n〉 ≈ erT − 1

rT

(

1− 1− e−rT

log(1− p)

)

(S10)

3 Expected total cost per unit time

For optimizing the testing frequency, the quantity of interest is the expected total cost per
unit time. The surveillance cost per unit time, C1, is given by Equation (S1). Let C2

denote an approximation for the expected infection cost per unit time, and let C denote an
approximation for the expected total cost per unit time. We have

C = C1 + C2 (S11)

For determining C2, we assume that each infection contributes a cost c2. If new lineages
appear at rate λ, then C2 is given by

C2 = λc2〈n〉 (S12)

Substituting Equations (S1), (S12), and (S10) into Equation (S11), we obtain

C =
c1
T

+ λc2

(

erT − 1

rT

)(

1− 1− e−rT

log(1− p)

)

(S13)

3.1 Optimal testing frequency

Equation (S13) specifies the expected total surveillance and pathogen cost per unit time. C
is a function of the testing period, T , and we seek the value of T for which C is minimal.
The first step is to show that C has a single minimum at a particular value of T . To do this,
we differentiate C twice with respect to T :

(

rT 2

λc2

)

dC

dT
= − rc1

λc2
+
[

(rT − 1)erT + 1
]

(

1− 2

log(1− p)

)

− 2 [sinh(rT )− rT cosh(rT )]

log(1− p)

(S14)

(

rT 3

λc2

)

d2C

dT 2
=

2rc1
λc2

+
{

[(rT − 1)2 + 1]erT − 2
}

− [(rT − 1)2 + 1]erT − 2

log(1− p)

− [(rT + 1)2 + 1]e−rT − 2

log(1− p)

(S15)
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In Equation (S15), the quantity rT 3/(λc2) is necessarily positive. If the right-hand side of
Equation (S15) is positive for positive values of T , then d2C/dT 2 is necessarily positive.
Note that

lim
T→0

[(

rT 3

λc2

)

d2C

dT 2

]

=
2rc1
λc2

> 0 (S16)

We also have

d

dT

[(

rT 3

λc2

)

d2C

dT 2

]

= r3T 2

[

cosh(rT ) +

(

1− 2

log(1− p)

)

sinh(rT )

]

> 0 (S17)

From Equations (S16) and (S17), it follows that the right-hand side of Equation (S15) is
necessarily positive. Therefore,

d2C

dT 2
> 0 (S18)

Next, note that

lim
T→0

dC

dT
= −∞ (S19)

We also have

lim
T→∞

dC

dT
= ∞ (S20)

From Equations (S19), (S20), and (S18), it follows that there is a single value of T for which
C is minimized.

To determine the optimal testing period, we set dC/dT = 0 and T = T ∗ in Equa-
tion (S14). We arrive at an implicit solution for the optimal testing period, T ∗:

rc1
λc2

=
[

(rT ∗ − 1)erT
∗

+ 1
]

(

1− 2

log(1− p)

)

− 2 [sinh(rT ∗)− rT ∗ cosh(rT ∗)]

log(1− p)
(S21)

The optimal testing frequency is given by

f ∗ =
1

T ∗
(S22)

3.1.1 Asymptotic behavior as p → 1

Taking the limit p → 1 in Equation (S21), we obtain the following equation for T ∗:

rc1
λc2

= (rT ∗ − 1)erT
∗

+ 1 (p = 1)

Letting W0(x) denote the principal branch of the Lambert W function, and using Equa-
tion (S22), we obtain an explicit solution for the optimal testing frequency:

f ∗ = r

{

1 +W0

(

1

e

[

rc1
λc2

− 1

])}−1

(p = 1) (S23)

Equation (S23) specifies the optimal testing frequency if p = 1.
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3.1.2 Asymptotic behavior as p → 0

For small values of p, the optimal testing frequency, T ∗, is also small. To determine
T ∗, we consider that p ≪ 1 and rT ∗ ≪ 1 in Equation (S21). We use the ap-
proximations log(1− p) ≈ −p, erT

∗ ≈ 1 + rT ∗ + (rT ∗)2/2, sinh(rT ∗) ≈ rT ∗ + (rT ∗)3/3!, and
cosh(rT ∗) ≈ 1 + (rT ∗)2/2:

rc1
λc2

≈
[

(rT ∗ − 1)

(

1 + rT ∗ +
(rT ∗)2

2

)

+ 1

](

1 +
2

p

)

+
2

p

[(

rT ∗ +
(rT ∗)3

3!

)

− rT ∗

(

1 +
(rT ∗)2

2

)]

(p → 0)

Simplifying, we have

rc1
λc2

≈ (rT ∗)2

p

[

(1 + rT ∗)
(

1 +
p

2

)

− 2rT ∗

3

]

(p → 0)

Considering that p ≪ 1 and rT ∗ ≪ 1, and using Equation (S22), we solve approximately for
the optimal testing frequency:

f ∗ ∼
√

rλc2
pc1

(p → 0) (S24)

For small values of p, f ∗ is approximately given by Equation (S24).

4 Distribution of pathogen-related parameters

The calculation of the expected infection cost per unit time, C2, assumes that, for each
lineage that appears, the pathogen-specific parameters c2, r, and p are the same. The
expected infection cost per unit time is then just the expected cost due to a single lineage
multiplied by the rate, λ, at which those lineages arise.

More generally, we can consider dc2 dr dp λ
′(c2, r, p) to be the (infinitesimal) rate at which

lineages with pathogen-specific parameters c2, r, and p appear. In this generalized model,
let C ′

2 denote an approximation for the expected infection cost per unit time, and let C ′

denote an approximation for the expected total cost per unit time. We have

C ′ = C1 + C ′
2 (S25)

With knowledge of the rate density function, λ′(c2, r, p), we are able to compute the expected
infection cost per unit time by integrating over all possible values of c2, r, and p:

C ′
2 =

∫ ∞

0

dc2

∫ ∞

0

dr

∫ 1

0

dp {λ′(c2, r, p) c2〈n〉} (S26)

Substituting Equations (S1) and (S26) into Equation (S25), we obtain

C ′ =
c1
T

+

∫ ∞

0

dc2

∫ ∞

0

dr

∫ 1

0

dp

{

λ′(c2, r, p)

[

c2

(

erT − 1

rT

)(

1− 1− e−rT

log(1− p)

)]}

(S27)
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The optimal testing frequency is given by

F ∗ =
1

argminT C ′
(S28)

Equations (S27) and (S28) can be solved numerically to determine the optimal testing fre-
quency. Below, we consider several simple examples for which Equation (S27) can be solved
analytically to show how the model works.

4.1 Example 1

As the simplest example of using Equation (S27), consider that only a single type of pathogen
can emerge. The pathogen has per-case cost c′2, growth rate r′, and probability of detection
p′, and new lineages are introduced at rate λ. The rate density function, λ′(c2, r, p), is given
by

λ′(c2, r, p) = λδ(c2 − c′2)δ(r − r′)δ(p− p′)

Here, δ denotes the Dirac delta function. When this form for λ′(c2, r, p) is substituted into
Equation (S27) and the integrations over c2, r, and p are performed, we obtain

C ′ =
c1
T

+ λc′2

(

er
′T − 1

r′T

)(

1− 1− e−r′T

log(1− p′)

)

Thus, Equation (S27) reduces to Equation (S13) for the case where only a single type of
pathogen with fixed parameters can emerge.

4.2 Example 2

Next, consider the possibility that two different types of pathogens can emerge. Pathogen 1
has parameters c′2, r

′, and p′, while Pathogen 2 has parameters c′′2, r
′′, and p′′. Lineages of

Pathogen 1 are introduced at rate λ1, and lineages of Pathogen 2 are introduced at rate λ2.
The corresponding rate density function is

λ′(c2, r, p) = λ1δ(c2 − c′2)δ(r − r′)δ(p− p′) + λ2δ(c2 − c′′2)δ(r − r′′)δ(p− p′′)

When this form for λ′(c2, r, p) is substituted into Equation (S27) and the integrations are
performed, we obtain

C ′ =
c1
T

+ λ1c
′
2

(

er
′T − 1

r′T

)(

1− 1− e−r′T

log(1− p′)

)

+ λ2c
′′
2

(

er
′′T − 1

r′′T

)(

1− 1− e−r′′T

log(1− p′′)

)

The expected total cost per unit time, C ′, is therefore equal to the surveillance cost per
unit time, plus the expected infection cost per unit time for Pathogen 1, plus the expected
infection cost per unit time for Pathogen 2.
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4.3 Example 3

These considerations can be extended to the case where many different types of pathogens
can emerge. Let Pathogen n have per-case cost c2,n, growth rate rn, and probability of
detection pn. The rate density function, λ′(c2, r, p), is given by

λ′(c2, r, p) =
∑

n

λnδ(c2 − c2,n)δ(r − rn)δ(p− pn)

Substituting this into Equation (S27) and integrating yields

C ′ =
c1
T

+
∑

n

λnc2,n

(

ernT − 1

rnT

)(

1− 1− e−rnT

log(1− pn)

)

The expected infection cost per unit time is therefore linear—i.e., we add together the
expected infection costs per unit time for each of the n possible types of pathogens, and this
sum equals the total expected infection cost per unit time.

4.4 Example 4

The possible parameter values that any new pathogen can have are not discrete. They
are continuous. To show how this works, consider the following form for the rate density
function:

λ′(c2, r, p) = λ

[(

2

√

a

π

)

e−ac22

]

δ(r − r′)δ(p− p′)

For this case, new pathogens have growth rate r′ and probability of detection p′. New
pathogens can, however, have any real value of c2 that is nonnegative. For any lineage that
is introduced, its value of c2 is most likely to be close to zero, while larger values of c2 occur
more rarely. The parameter a controls the width of the probability density function for
c2. For smaller values of a, this distribution has a longer tail, and the expected value of c2
for any new pathogen increases. Substituting this form for the rate density function into
Equation (S27) and integrating, we have

C ′ =
c1
T

+
λ√
πa

(

er
′T − 1

r′T

)(

1− 1− e−r′T

log(1− p′)

)

4.5 Example 5

For this example, we suppose that any new pathogen has per-case infection cost c′2 and
probability of detection p′, while the growth rate, r, can be any nonnegative real number.
We use the following form for the rate density function:

λ′(c2, r, p) = λδ(c2 − c′2)
[

2are−ar2
]

δ(p− p′)

Substituting this into Equation (S27) and integrating, we have

C ′ =
c1
T

+
λc′2

√
πa

T

[

erf

(

T

2
√
a

)

+

(

1− 2

log(1− p′)

)

(

1− e
−T2

4a

)

]

e
T2

4a
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4.6 Example 6

We can also model the case where new pathogens have per-case cost c′2 and growth rate r′,
while the probability of detection, p, can be any real number between 0 and 1. Suppose that
the rate density function has the following form:

λ′(c2, r, p) = λδ(c2 − c′2)δ(r − r′)

[

[θ(p− a)− 1] log(1− p)

(1− a) log(1− a) + a

]

Here, θ denotes the Heaviside step function. Substituting this into Equation (S27) and
integrating, we obtain

C ′ =
c1
T

+ λc′2

(

er
′T − 1

r′T

)(

1 +
a(1− e−r′T )

(1− a) log(1− a) + a

)

5 Approximation for F ∗

If we have excellent understanding of the stochastic dynamics and their associated parame-
ters, then Equations (S27) and (S28) specify the sampling frequency for which the expected
total cost per unit time is minimal. However, in real settings, understanding of the un-
derlying dynamics and parameters would only be approximate. A useful result, then, is a
simple equation that approximately specifies the optimal sampling frequency and can be
easily solved. Accordingly, we approximate Equation (S27) for rT ≪ 1 as follows:

C ′ ≈ c1
T

+

∫ ∞

0

dc2

∫ ∞

0

dr

∫ 1

0

dp

{

λ′(c2, r, p)

[

c2

(

1 +
rT

2

)(

1− rT

log(1− p)

)]}

For small values of p, this can be approximated further:

C ′ ≈ c1
T

+

∫ ∞

0

dc2

∫ ∞

0

dr

∫ 1

0

dp

{

λ′(c2, r, p)

[

c2

(

1 +
rT

p

)]}

Differentiating with respect to T , we have

dC ′

dT
≈ −c1

T 2
+

∫ ∞

0

dc2

∫ ∞

0

dr

∫ 1

0

dp

[

λ′(c2, r, p)

(

c2r

p

)]

Setting dC ′/dT = 0 yields an approximation for the optimal sampling frequency:

F ∗ ≈
√

∫ ∞

0

dc2

∫ ∞

0

dr

∫ 1

0

dp

(

c2r

c1p

)

λ′(c2, r, p)

6 Extensions of the model

In this section, we explore some simple extensions of the model.

15



6.1 Example 1

A realistic possibility is that the cost due to each test, c1, is not constant but is dependent
on the sensitivity of the test, p. Our model readily incorporates this generalization if we set
c1 → c1(p) in our equations. If c1 is an increasing function of p, then the inverse relationship
between the optimal sampling frequency and p will be stronger than for the case where c1 is
constant.

6.2 Example 2

Our analytical calculation of the expected total cost per unit time is based on the assumption
that the cost of an outbreak scales linearly with the number of infections. During the early
stages of an outbreak, we believe this assumption to be reasonable. However, our model
works the same for alternative assumptions about how the cost of an outbreak depends on
the number of infections. To demonstrate this, we consider here a different possibility: that
the cost of an outbreak scales quadratically with the number of infections. If we denote an
approximation for the expected total cost per unit time for this scenario by Csq, then this
quantity is equal to

Csq =
c1
T

+ λc2〈n2〉 (S29)

The task is to calculate the expected squared size of an outbreak, 〈n2〉. The steps in the
calculation are identical to the case of linear costs.

To calculate a solution for 〈n2〉 for p = 1, we use Equation (S2), and we integrate over
all possible values of τ between 0 and T :

〈n2〉
∣

∣

p=1
=

∫ T

0

dτ

T

∞
∑

n=1

n2x1,n(rτ)

=

∫ T

0

dτ

T

∞
∑

n=0

n2 (1− e−rτ )n−1e−rτ

=
1

rT

∫ T

0

dτ
d

dτ

∞
∑

n=0

n(1− e−rτ )n

=
1

rT

∫ T

0

dτ
d

dτ

[

(1− e−rτ )
∞
∑

n=0

n(1− e−rτ )n−1

]

=
1

rT

∫ T

0

dτ
d

dτ

[

(erτ − 1)

(

1

r

)

d

dτ

∞
∑

n=0

(1− e−rτ )n

]

=
1

rT

∫ T

0

dτ
d

dτ

[

(erτ − 1)

(

1

r

)

d

dτ
(erτ )

]

=
1

rT

∫ T

0

dτ
d

dτ
[erτ (erτ − 1)]

Performing the integration, we obtain

〈n2〉
∣

∣

p=1
=

erT
(

erT − 1
)

rT
(S30)
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For p ≪ 1 and rT ≪ 1, we have the following result for the expected size of an outbreak:

〈n2〉
∣

∣

p,rT≪1
≈ qe

rT (

e4rT − e2rT
)

+ qe
rT

qe
2rT (

e6rT − e4rT
)

+ qe
rT

qe
2rT

qe
3rT (

e8rT − e6rT
)

+ · · ·

More compactly:

〈n2〉
∣

∣

p,rT≪1
≈
(

e2rT − 1
)

∞
∑

k=1

e2krT qe
krT

∑k−1
x=0 e

−xrT

Next, we approximate
∑k−1

x=0 e
−xrT by

(

1− e−rT
)−1

, and we approximate the summation over
k by an integration over k:

〈n2〉
∣

∣

p,rT≪1
≈
(

e2rT − 1
)

∫ ∞

0

dk e2krT elog(1−p)ekrT (1−e−rT )
−1

This can be rewritten as

〈n2〉
∣

∣

p,rT≪1
≈
(

e2rT − 1
) (

1− e−rT
)

rT log(1− p)

∫ ∞

0

dk ekrT
d

dk

(

elog(1−p)ekrT (1−e−rT )
−1)

Integrating by parts, we have

〈n2〉
∣

∣

p,rT≪1
≈
(

e2rT − 1
) (

1− e−rT
)

− log(1− p)

∫ ∞

0

dk ekrT elog(1−p)ekrT (1−e−rT )
−1

Performing the integration and simplifying, this becomes

〈n2〉
∣

∣

p,rT≪1
≈ e2rT − 1

rT

(

1− e−rT

log(1− p)

)2

(S31)

In the limit that p approaches 1, the above expression approaches 0. In the limit that
p approaches 0, the above expression becomes arbitrarily large. Therefore, we can add
Equations (S30) and (S31) together to obtain an approximation for 〈n2〉 for any value of p:

〈n2〉 ≈ erT
(

erT − 1
)

rT
+

e2rT − 1

rT

(

1− e−rT

log(1− p)

)2

(S32)

Substituting Equation (S32) into Equation (S29), we obtain

Csq =
c1
T

+ λc2

[

erT
(

erT − 1
)

rT
+

e2rT − 1

rT

(

1− e−rT

log(1− p)

)2
]

(S33)

Equation (S33) specifies the expected total cost per unit time for the case where the cost
due to a single outbreak scales quadratically with the number of infections.
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6.3 Example 3

Our model can be adapted to the case where breakthrough infections are a possibility. As a
simple example, we suppose that immediately after an outbreak is detected and intervention
is applied, a single new infection is initiated with probability b, while with probability 1− b,
there are no follow-up infections. The approximate expected total cost per unit time in this
scenario, which we denote Cb, is given by

Cb =
c1
T

+ λc2

[

〈n〉+ (1− b)
∞
∑

k=0

bkk〈n〉τ=T

]

(S34)

〈n〉τ=T denotes the expected size of an outbreak, given that the first environmental test
is performed at time T after the outbreak begins. The summation in square brackets is
understood as follows:

• With probability 1− b, all infections of the original outbreak are controlled, and there
are no further pathogen-related costs. The expected total cost related to the original
outbreak is equal to c2〈n〉.

• With probability b(1−b), a single case of the original outbreak is not controlled. It then
leads to a second outbreak, and the pathogen must again be detected and controlled.
The expected size of the second outbreak when it is detected is equal to 〈n〉τ=T . The
expected total cost related to the original outbreak and the second outbreak is equal
to c2(〈n〉+ 〈n〉τ=T ).

• With probability b2(1 − b), a single case of the original outbreak is not controlled.
It then leads to a second outbreak, and the pathogen must again be detected and
controlled. The expected size of the second outbreak when it is detected is equal to
〈n〉τ=T However, a single case of the second outbreak is not controlled, leading to a
third outbreak. The expected size of the third outbreak when it is detected is equal to
〈n〉τ=T . The expected total cost related to the original outbreak, the second outbreak,
and the third outbreak is equal to c2(〈n〉+ 2〈n〉τ=T ).

The understanding is similar for higher-order terms in the summation in Equation (S34).
This equation can be rewritten:

Cb =
c1
T

+ λc2

[

〈n〉+ 〈n〉τ=T b(1− b)
∞
∑

k=0

kbk−1

]

This is equal to

Cb =
c1
T

+ λc2

[

〈n〉+ 〈n〉τ=T b(1− b)
d

db

∞
∑

k=0

bk

]

This becomes

Cb =
c1
T

+ λc2

[

〈n〉+ 〈n〉τ=T b(1− b)
d

db

(

1

1− b

)]
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Simplifying, we have

Cb =
c1
T

+ λc2

[

〈n〉+ 〈n〉τ=T

(

b

1− b

)]

(S35)

For p = 1, 〈n〉τ=T is given by
〈n〉τ=T

∣

∣

p=1
= erT (S36)

For p ≪ 1 and rT ≪ 1, 〈n〉τ=T is given by Equation (S9):

〈n〉τ=T

∣

∣

p,rT≪1
≈
(

erT − 1
) (

1− e−rT
)

−rT log(1− p)
(S37)

In the limit that p approaches 1, Equation (S37) approaches 0. In the limit that p
approaches 0, Equation (S37) becomes arbitrarily large. Therefore, we can add Equa-
tions (S36) and (S37) together to obtain an approximation for 〈n〉τ=T for any value of p:

〈n〉τ=T ≈ erT −
(

erT − 1
) (

1− e−rT
)

rT log(1− p)
(S38)

Substituting Equations (S10) and (S38) into Equation (S35), we obtain

Cb =
c1
T

+ λc2

[

(

erT − 1

rT

)(

1− 1− e−rT

log(1− p)

)

+

(

erT −
(

erT − 1
) (

1− e−rT
)

rT log(1− p)

)

(

b

1− b

)

]

(S39)

Equation (S39) specifies the expected total cost per unit time for the case where, whenever
an outbreak is detected, a single new infection breaks through control and is initiated with
probability b, while intervention eliminates all infections with probability 1− b.
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