

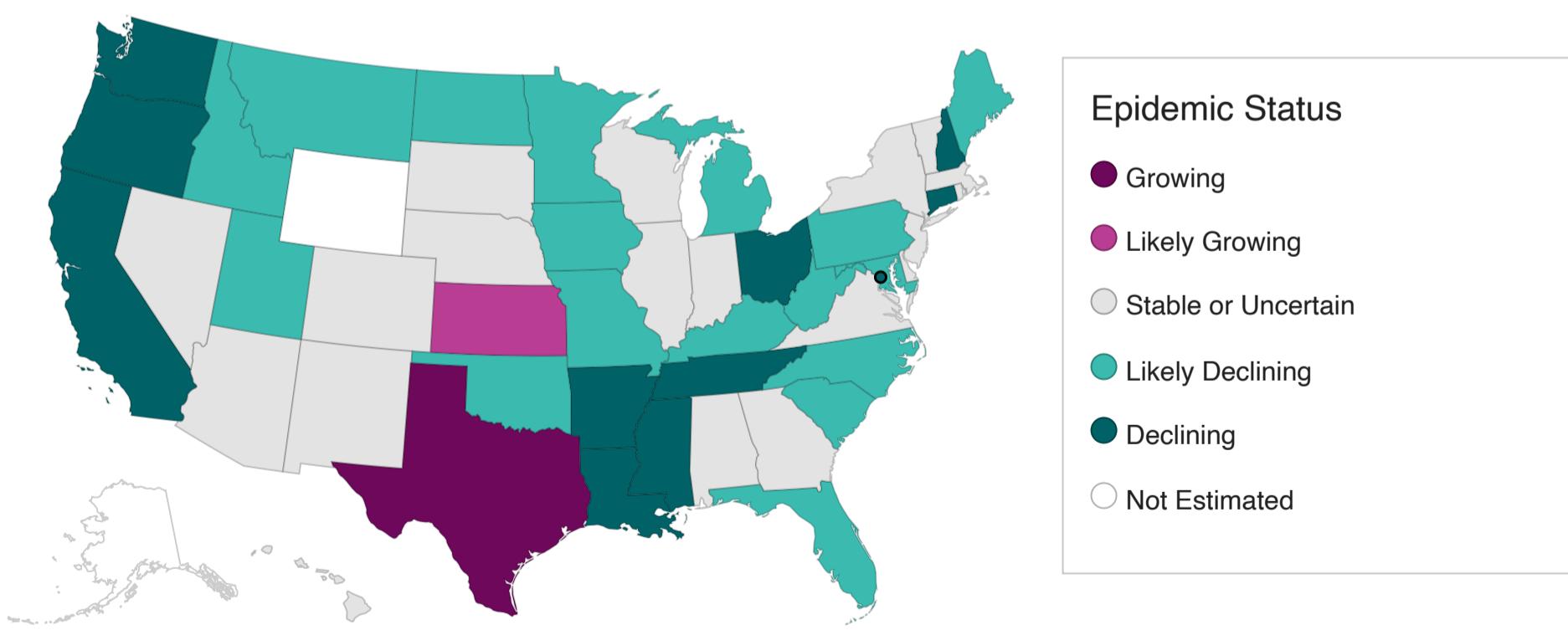
Center for Forecasting and Outbreak Analytics

Current Epidemic Growth Status (Based on R_t) for States and Territories

COVID-19

Influenza

Methods


Glossary

COVID-19

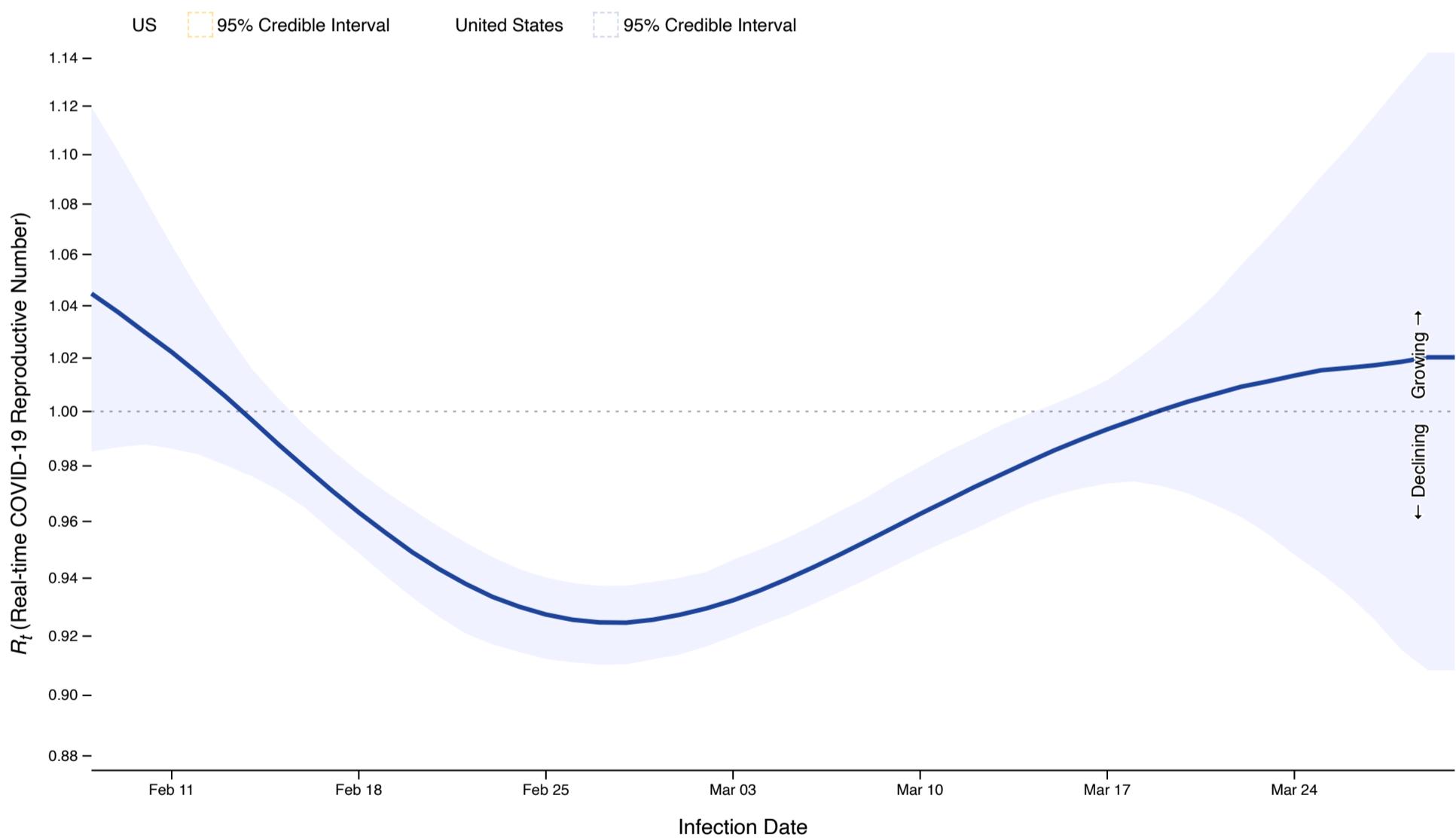
As of March 30, 2024, we estimate that COVID-19 infections are growing or likely growing in 2 states and territories, declining or likely declining in 29 states and territories, and are stable or uncertain in 19 states and territories.

The second figure below shows the estimated time-varying reproductive number, R_t , and uncertainty interval from February 07, 2024 through March 30, 2024 for the U.S. and for each reported state and territory. (Click on the map to view the data for a specific state or territory). Estimated values above 1 indicate epidemic growth.

We estimate the time-varying reproductive number, R_t , a measure of transmission, based on data from incident COVID-19 hospitalizations. Epidemic status [was determined](#) by estimating the probability that R_t is greater than 1. While R_t tells us if the number of COVID-19 infections are likely growing or declining, it does not reflect the burden of COVID-19. [View a summary of key data for COVID-19, influenza, and RSV.](#)

Territories

PR

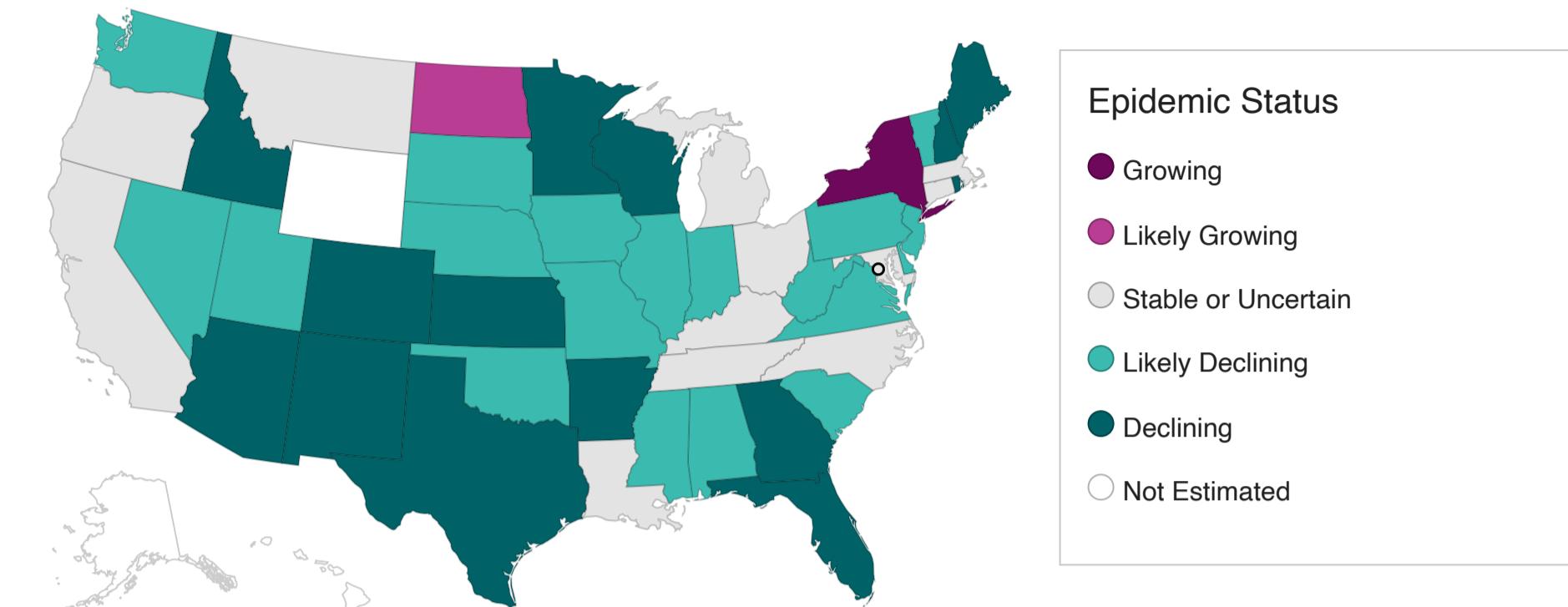

VI

[Download Data \(CSV\)](#)

Data Table

Location	Category	Probability Epidemic is Growing	Date
● Alabama	Stable or Uncertain	0.3655	2024-03-30
● Alaska	Not Estimated	NA	2024-03-30
● Arizona	Stable or Uncertain	0.383	2024-03-30
● Arkansas	Declining	0.091	2024-03-30
● California	Declining	0.044	2024-03-30
● Colorado	Stable or Uncertain	0.7345	2024-03-30
● Connecticut	Declining	0.0945	2024-03-30
● Delaware	Stable or Uncertain	0.3855	2024-03-30
● District Of Columbia	Declining	0.064	2024-03-30
● Florida	Likely Declining	0.138	2024-03-30
● Georgia	Stable or Uncertain	0.467	2024-03-30
● Hawaii	Stable or Uncertain	0.31	2024-03-30
● Idaho	Likely Declining	0.2355	2024-03-30
● Illinois	Stable or Uncertain	0.4065	2024-03-30
● Indiana	Stable or Uncertain	0.5375	2024-03-30
● Iowa	Likely Declining	0.1305	2024-03-30
● Kansas	Likely Growing	0.7595	2024-03-30
● Kentucky	Likely Declining	0.154	2024-03-30
● Louisiana	Declining	0.04	2024-03-30
● Maine	Likely Declining	0.187	2024-03-30
● Maryland	Likely Declining	0.1445	2024-03-30
● Massachusetts	Stable or Uncertain	0.2715	2024-03-30
● Michigan	Likely Declining	0.121	2024-03-30
● Minnesota	Likely Declining	0.187	2024-03-30
● Mississippi	Declining	0.067	2024-03-30
● Missouri	Likely Declining	0.156	2024-03-30
● Montana	Likely Declining	0.2295	2024-03-30
● Nebraska	Stable or Uncertain	0.4505	2024-03-30
● Nevada	Stable or Uncertain	0.3975	2024-03-30
● New Hampshire	Declining	0.0405	2024-03-30
● New Jersey	Stable or Uncertain	0.705	2024-03-30
● New Mexico	Stable or Uncertain	0.3945	2024-03-30
● New York	Stable or Uncertain	0.3085	2024-03-30
● North Carolina	Likely Declining	0.198	2024-03-30
● North Dakota	Likely Declining	0.1515	2024-03-30
● Ohio	Declining	0.0955	2024-03-30
● Oklahoma	Likely Declining	0.138	2024-03-30

Location	Category	Probability Epidemic is Growing	Date
Oregon	Declining	0.083	2024-03-30
Pennsylvania	Likely Declining	0.191	2024-03-30
Puerto Rico	Growing	0.9295	2024-03-30
Rhode Island	Stable or Uncertain	0.268	2024-03-30
South Carolina	Likely Declining	0.1915	2024-03-30
South Dakota	Stable or Uncertain	0.3635	2024-03-30
Tennessee	Declining	0.0275	2024-03-30
Texas	Growing	0.9025	2024-03-30
U.S. Virgin Islands	Not Estimated	NA	2024-03-30
Utah	Likely Declining	0.197	2024-03-30
Vermont	Stable or Uncertain	0.282	2024-03-30
Virginia	Stable or Uncertain	0.355	2024-03-30
Washington	Declining	0.056	2024-03-30
West Virginia	Likely Declining	0.114	2024-03-30
Wisconsin	Stable or Uncertain	0.5345	2024-03-30
Wyoming	Not Estimated	NA	2024-03-30


[Download COVID-19 Chart Data \(CSV\)](#)

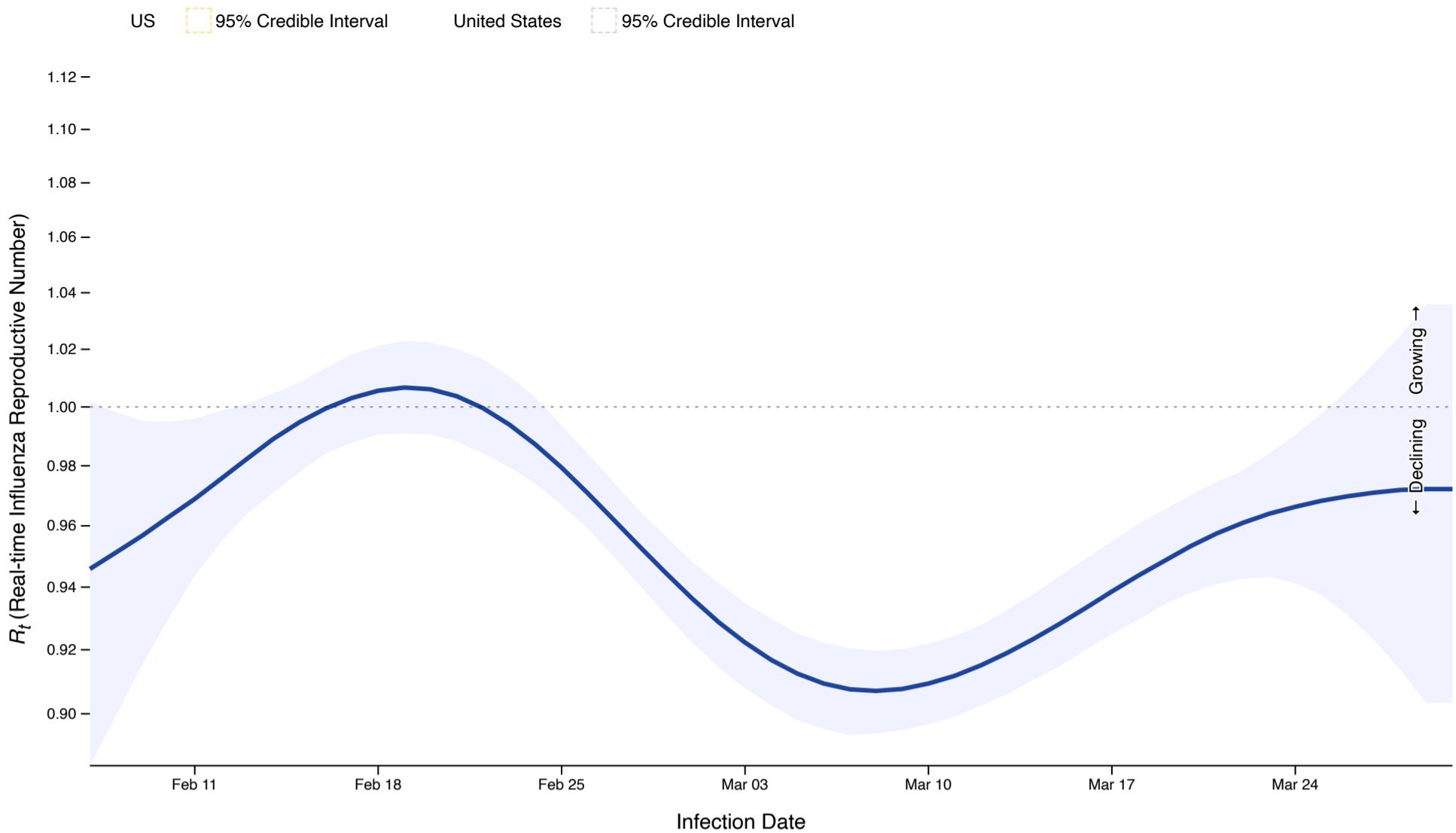
Influenza

As of March 30, 2024, we estimate that influenza infections are growing or likely growing in 2 states and territories, declining or likely declining in 33 states and territories, and are stable or uncertain in 14 states and territories.

The second figure below shows the estimated time-varying reproductive number, R_t , and uncertainty interval from February 07, 2024 through March 30, 2024 for the U.S. and for each reported state and territory. (Click on the map to view the data for a specific state or territory). Estimated values above 1 indicate epidemic growth.

We estimate the time-varying reproductive number, R_t , a measure of transmission, based on data from incident influenza hospitalizations. Epidemic status [was determined](#) by estimating the probability that R_t is greater than 1. While R_t tells us if influenza infections are likely growing or declining, it does not reflect the burden of influenza. [View a summary of key data for COVID-19, influenza, and RSV.](#)

Territories PR VI



[Download Data \(CSV\)](#)

Data Table

Location	Category	Probability Epidemic is Growing	Date
Alabama	Likely Declining	0.1285	2024-03-30
Alaska	Not Estimated	NA	2024-03-30
Arizona	Declining	0.092	2024-03-30
Arkansas	Declining	0.0055	2024-03-30
California	Stable or Uncertain	0.392	2024-03-30
Colorado	Declining	0.061	2024-03-30
Connecticut	Stable or Uncertain	0.5125	2024-03-30
Delaware	Likely Declining	0.12	2024-03-30
District Of Columbia	Stable or Uncertain	0.3125	2024-03-30
Florida	Declining	0.0095	2024-03-30
Georgia	Declining	0.025	2024-03-30
Hawaii	Not Estimated	NA	2024-03-30
Idaho	Declining	0.0685	2024-03-30
Illinois	Likely Declining	0.1555	2024-03-30
Indiana	Likely Declining	0.138	2024-03-30
Iowa	Likely Declining	0.198	2024-03-30
Kansas	Declining	0.0715	2024-03-30
Kentucky	Stable or Uncertain	0.3405	2024-03-30
Louisiana	Stable or Uncertain	0.5355	2024-03-30
Maine	Declining	0.086	2024-03-30

Location	Category	Probability Epidemic is Growing	Date
● Maryland	Stable or Uncertain	0.3025	2024-03-30
● Massachusetts	Stable or Uncertain	0.434	2024-03-30
● Michigan	Stable or Uncertain	0.503	2024-03-30
● Minnesota	Declining	0.0305	2024-03-30
● Mississippi	Likely Declining	0.1535	2024-03-30
● Missouri	Likely Declining	0.199	2024-03-30
● Montana	Stable or Uncertain	0.366	2024-03-30
● Nebraska	Likely Declining	0.203	2024-03-30
● Nevada	Likely Declining	0.1225	2024-03-30
● New Hampshire	Declining	0.0305	2024-03-30
● New Jersey	Likely Declining	0.1455	2024-03-30
● New Mexico	Declining	0.1	2024-03-30
● New York	Growing	0.9625	2024-03-30
● North Carolina	Stable or Uncertain	0.307	2024-03-30
● North Dakota	Likely Growing	0.7575	2024-03-30
● Ohio	Stable or Uncertain	0.382	2024-03-30
● Oklahoma	Likely Declining	0.1525	2024-03-30
● Oregon	Stable or Uncertain	0.316	2024-03-30
● Pennsylvania	Likely Declining	0.1655	2024-03-30
● Puerto Rico	Stable or Uncertain	0.3805	2024-03-30
● Rhode Island	Declining	0.094	2024-03-30
● South Carolina	Likely Declining	0.117	2024-03-30
● South Dakota	Likely Declining	0.2235	2024-03-30
● Tennessee	Stable or Uncertain	0.271	2024-03-30
● Texas	Declining	0.0035	2024-03-30
● U.S. Virgin Islands	Not Estimated	NA	2024-03-30
● Utah	Likely Declining	0.217	2024-03-30
● Vermont	Likely Declining	0.2145	2024-03-30
● Virginia	Likely Declining	0.154	2024-03-30
● Washington	Likely Declining	0.1625	2024-03-30
● West Virginia	Likely Declining	0.108	2024-03-30
● Wisconsin	Declining	0.0525	2024-03-30
● Wyoming	Not Estimated	NA	2024-03-30

[Download Influenza Chart Data \(CSV\)](#)

Interpreting R_t

- R_t is a data-driven measure of disease transmission. R_t is an estimate on date t of the average number of new infections caused by each infectious person. R_t accounts for current population susceptibility, public health interventions, and behavior.
- $R_t > 1$ indicates that infections are growing because, on average, each infected person is causing more than one new infection while $R_t < 1$ indicates that infections are declining.
- R_t can be a **leading indicator** of increases or decreases in cases, hospitalizations, or deaths, because transmission occurs before case confirmation, hospitalization, or death.
- The uncertainty range for each R_t estimate determines the probability that infections are growing. For example, if 75% of the uncertainty range falls above 1, then there is a 75% chance that the infections are growing in that location.
- When the data are sparse, the model used to generate R_t estimates will tend to generate estimates nearer to 1 with wide credible intervals, which reflects uncertainty in the true epidemic trend during these time periods.

- **What R_t can tell us:** R_t can tell us whether infections are growing, declining, or remaining stable, and is an additional tool to help public health practitioners prepare and respond.
- **What R_t cannot tell us:** R_t cannot tell us about the underlying *burden* of disease, just the trend of transmission. An $R_t < 1$ does not mean that transmission is low, just that infections are declining. It is useful to look at respiratory disease activity in conjunction with R_t .

Caveats and limitations

- R_t estimates are sensitive to assumptions about the **generation interval** distribution.
- R_t estimates may be over or underestimated if the proportion of infections that result in hospitalizations changes abruptly. These estimates can be impacted by shifts in clinical severity, increased or decreased use of clinical testing, or changes in reporting.
- While these estimates are based on a single data source (hospitalizations), **studies** have indicated that any resulting biases are likely minor and that this is a robust approach to estimate R_t .

Methods

R_t is defined as the average number of new infections caused by each infected person at a particular time, t. When $R_t > 1$, infections are growing, and when $R_t < 1$, infections are declining. The color categories in the maps above were determined by estimating a distribution of possible R_t values based on the observed hospitalization data and model assumptions (formally, a “credible interval”). We then calculate the proportion of that credible interval where the $R_t > 1$. Credible intervals are determined using the EpiNow2 package, which uses a Bayesian model to estimate R_t , while adjusting for delays and reporting effects.

- If >90% of the credible interval distribution of $R_t > 1$, infections are growing
- If 76%-90% of the credible interval distribution of $R_t > 1$, infections are likely growing
- If 26%-75% of the credible interval distribution of $R_t > 1$, infections have an uncertain trend or are stable (in this case, the credible interval spans across 1, and contains a mix of values above and below 1.)
- If 10%-25% of the credible interval distribution of $R_t > 1$, infections are likely declining; this is equivalent to 75%-90% of the credible interval of $R_t \leq 1$
- If <10% of the credible interval distribution of $R_t > 1$, infections are declining; this is equivalent to >90% of the credible interval of $R_t \leq 1$
- R_t was not estimated for states and territories in the following cases: 1. fewer than 10 laboratory-confirmed COVID-19 or influenza hospital admissions were reported in each of the prior 2 weeks, 2. there were detected anomalies in reported values, and 3. the model did not pass checks for reliability.

R_t estimates are derived from [daily counts of new COVID-19 or influenza hospitalizations](#). This [blog post](#) provides a more in-depth overview of the modeling approach used to estimate R_t , and the strategies CDC uses to validate the accuracy of estimates.

To estimate R_t , we fit Bayesian models to the data using the R packages [EpiNow2](#), [epinowcast](#), or using Stan models developed by the CDC Center for Forecasting and Outbreak Analytics. Following [best practices](#), these models adjust for lags from infection to observation, incomplete observation of recent infection events, and day-of-week reporting effects, in addition to uncertainty from all these adjustments.

Glossary of Terms

- **Generation Interval:** the interval between the infection times of an infector-infectee pair; i.e. the difference in the time when an individual (Person j) is infected by an infector (Person i) and the time when this infector (Person i) was infected.
- **Leading Indicator:** a variable that provides an early indication of future trends in an outbreak, e.g., R_t , as this metric estimates the number of infections caused by one infected person in near real-time.
- **Lagging indicator:** a variable that provides a lagged indication of future trends in an outbreak, e.g., COVID-19 deaths, as this outcome happens after cases have occurred.

Last Reviewed: April 5, 2024