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Abstract

Age-structured PDE models have been developed to study viral infection and treatment. However, 

they are notoriously difficult to solve. Here, we investigate the numerical solutions of an age-based 

multiscale model of hepatitis C virus (HCV) dynamics during antiviral therapy and compare them 

with an analytical approximation, namely its long-term approximation. First, starting from a 

simple yet flexible numerical solution that also considers an integral approximated over previous 

iterations, we show that the long-term approximation is an underestimate of the PDE model 

solution as expected since some infection events are being ignored. We then argue for the 

importance of having a numerical solution that takes into account previous iterations for the 

associated integral, making problematic the use of canned solvers. Second, we demonstrate that 

the governing differential equations are stiff and the stability of the numerical scheme should be 

considered. Third, we show that considerable gain in efficiency can be achieved by using adaptive 

stepsize methods over fixed stepsize methods for simulating realistic scenarios when solving 

multiscale models numerically. Finally, we compare between several numerical schemes for the 

solution of the equations and demonstrate the use of a numerical optimization scheme for the 

parameter estimation performed directly from the equations.
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1. Introduction

Chronic hepatitis C viral (HCV) infection affects approximately 70 million people 

worldwide and is the primary cause of liver cirrhosis, liver cancer and liver transplant [1]. 
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There is no vaccine for HCV and for more than a decade the standard-of-care consisting of 

pegylated interferon-alpha (IFN) and ribavirin was suboptimal. The recent advent of direct-

acting antivirals (DAAs) that provide interferon-free, all-oral treatment yielding cure rates 

exceeding 90% with pangenotypic activity, shorter durations of therapy (8–24 weeks) as 

compared to IFN-based therapy (24–48 weeks) is considered one of the greatest 

achievements in medicine [2]. However, despite of these highly effective DAAs, many 

challenges remain, such as finding an optimal approach to current DAA failures and the 

elimination of HCV infection and DAAs cost, which is a significant barrier in treating the 

populations that are most affected by HCV. Thus, there exists a significant need for 

affordable therapy, with much shorter treatment durations and vaccine development [3].

Mathematical modeling of HCV kinetics has considerably advanced in recent years. It has 

improved our understanding of intracellular viral genome dynamics [4, 5, 6, 7], T-cell 

dynamics, and the quantitative events that underlie the immune response to pathogens [8, 9]. 

The standard model for HCV kinetics during treatment provided many insights into the 

effectiveness and mechanism of action of interferon-alpha and ribavirin (reviewed in [10, 

11]). The models were able to retrospectively predict the duration of treatment needed for 

HCV eradication (cure) [12, 13, 14] and more recently used in real-time (on treatment) to 

predict the duration of IFN-free therapy with silibinin+ribavirin needed to achieve cure [15]. 

In the age of DAAs, new models have been developed to meet the challenges of these new 

agents such as drug resistance [16]. Notably, the first age-based multiscale mathematical 

model for HCV kinetics was developed [4, 17, 18] and provided a comprehensive 

understanding of the nature of viral kinetic patterns observed in patients treated with IFN, 

HCV protease inhibitors (telaprevir and danoprevir), or HCV NS5A inhibitor daclatasvir and 

their modes of action. Mathematical models are also valuable in understanding the in vivo 

dynamics of viruses that trigger both persistent infection (e.g. HIV-1 [8, 19, 20, 9], hepatitis 

B virus [21, 22, 23], hepatitis D virus [24, 25], Theiler murine encephalomyelitis virus [26], 

herpes simplex virus [27] and HCV [28, 29, 30]) and acute infection (e.g., influenza A [31, 

32, 33] and ebola [34]).

In the context of HCV kinetics, multiscale models are an extension to the classical biphasic 

model [30] that was introduced in 1998 and treated the infected cell as a “black box”, 

producing virions but without any consideration of the intercellular viral RNA replication 

and degradation within the infected cell [6, 5, 35]. The biphasic model is a set of three 

ordinary differential equations (ODEs) with three variables: uninfected target cells (T), 

productively infected cells (I), and free virus (V). The multiscale models consider the 

intercellular viral RNA in an additional equation for the variable (R), with the introduction 

of age-dependency in addition to time-dependency, making it a partial differential equation 

(PDE) model. The multiscale models study the dynamics of HCV infection under therapy 

with DAAs and because they include both the intracellular viral RNA replication/

degradation and the extracellular viral infection with age-dependency in addition to time-

dependency, they are considerably more difficult to solve compared to the biphasic model. 

Analytical approximations were derived [18, 36, 4], namely the short-term and long-term 

approximations. While the short-term has been shown to be precise only in the first half-day 

of treatment, the long-term is in agreement at the asymptotics with a simple numerical 

solution that utilized a general ODE solver [18].
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The aim of this paper is to significantly improve the numerical solution presented in [18] 

that used a canned solver (an ODE solver called from by a command within a program that 

is written in a higher level langauage such as Matlab and Mathematica, or Python). This 

makes the numerical solution framework as explained herein a flexible and robust entity 

alongside the analytical approximations. As it turns out, because of the properties of the 

multiscale model and the fact that the differential equations are stiff, some advanced 

numerical methods that involve adaptive stepsize are needed. To begin with, the use of a 

canned solver should be replaced with a fully-written solver in the code for the application 

because of the additional integral introduced in the multiscale model for the variable V that 

needs to be computed at each time step. Unlike the construction of numerical schemes in 

other applications, for example in the nonlinear diffusion of digital images [37, 38, 39] 

where accuracy can be limited, herein it is adviseable to construct a stable and efficient 

scheme that belongs to the Runge-Kutta family with at least a fourth order of accuracy. 

However, due to the nature of the differential equations that are stiff and the additional 

integral that needs to be evaluated at each time step, implicit solvers with adaptive stepsize 

are considerably more stable and efficient than the standard Runge-Kutta fourth order. 

Starting for simplicity in building up from explicit and implicit first order schemes, 

extending to explicit and implicit fourth order schemes and noticing that the differential 

equations are stiff, we reach explicit schemes with adaptive stepsize [40] that are by an order 

of magnitude more efficient than fixed stepsize for realistic simulations of viral infection of 

several days. We then implement implicit schemes with adaptive stepsize [41] that are 

considerably more stable. The various numerical schemes are described and compared to 

each other, concluding with an implicit adaptive stepsize integration scheme that is both 

efficient and stable for use in multiscale models with age of hepatitis C virus dynamics [42]. 

Finally, the Levenberg-Marquardt optimization scheme is illustrated for performing 

parameter estimation directly from the equations of the multiscale models.

2. Methods

2.1. The standard HCV model

The standard model that has been used and modified for studying hepatitis C viral dynamics 

is the Neumann et al. model [30]. The three variables this model keeps track of are the target 

cells T, in Eq. (1a), the infected cells I in Eq. (1b) and the free virus V in Eq. (1c). The target 

cells T are produced at constant rate s, die at per capita rate d and are infected by virus V at 

constant rate β. The infected cells I increase with the new infections at rate βV (t)T (t) and 

die at constant rate δ. The virus V is produced at rate p by each infected cells and is cleared 

at constant rate c. The ε term denotes the effectiveness of the anti-viral treatment that 

decreases the production from p to (1 − ε)p. Formally the ensemble of ODEs for this model 

is:

dT t
dt = s − βV t T t − dT t (1a)
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dI t
dt = βV t T t − δT t (1b)

dV t
dt = 1 − ε pI t − cV t . (1c)

From the mathematical perspective, the standard model is realtively much simpler than the 

multiscale model. Although it is nonlinear, it can be solved analytically when assuming that 

T is constant.

2.2. The HCV age-based multiscale model

The multiscale model of hepatitis C virus (HCV) dynamics has been formulated in recent 

years [18, 36, 4] as a more complex system in order to study HCV dynamics during therapy. 

It keeps track as in the standard viral dynamics model of uninfected target cells in equation 

(2a), productively infected cells in equation (2b), and free virus in equation (2c) along with 

considering the intracellular viral RNA dynamics in an infected cell by adding equation (2d).

The equations were formulated as follows:

dT t
dt = s − βV t T t − dT t (2a)

∂I a, t
∂t + ∂I a, t

∂a = − δ a I a, t (2b)

dV t
dt = 1 − εs ∫0

∞
ρ a R a, t I a, t da − cV t (2c)

∂R a, t
∂t + ∂R a, t

∂a = 1 − εα α a

− 1 − εs ρ a + κμ a R a, t ,

(2d)

subject to the initial and boundary conditions V 0 = V, T 0 = T, I(0, t) = βV (t)T (t), 
I a, 0 = I a , R(0, t) = 1, and R a, 0 = R a .

Model parameters of T, Eq.(2a), and I, Eq. (2b), are similar to the standard model where a is 

the age of infection and t is the time duration from therapy initiation. The quantity of 
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intracellular viral RNA R, in Eq. (2d), depends on its production α its degradation μ and 

expulsion from the cell ρ. The quantity of free viruses V shown in Eq. (2c) depends on the 

number of assembled and released virions and their clearance rate c. While those parameters 

should depend on the cell age a, in practice they are considered constant.

An important consideration in this model is that the treatment starts after the infection has 

reached its steady state. The steady states of the different functions are R a , I a , V and T. 

Given N, the total number of virions produced by a cell in its life-span, it can be shown that 

those values are:

N = ρ α + δ
δ ρ + μ + δ R a = α

ρ + μ + 1 − α
ρ + μ e− ρ + μ aI a = βV Te−δaT = c/ βN V

= βNs − dc / βc .

(3)

Unlike the standard model, three different antiviral effects of therapy can be distinguished in 

the multiscale model. The decrease in viral RNA synthesis is represented by εα, the 

reduction in secretion by εs and the increase in viral degradation by κ ≥ 1.

Through the method of characteristics, as was derived in [18] and explained in more detail 

herein in Appendix A, an analytical solution can be found the variable R(a, t). The same 

method can be applied to derive I(a, t) solution. The ensemble of equations (2) represent the 

full model.

R a, t =

  a < t
α

ρ + μ + 1 − α
ρ + μ e− ρ + μ a  

  a ≥ t
α

ρ + μ + R a − t − α
ρ + μ e− ρ + μ t  

(4)

I a, t = βV t − a T t − a e−δa a < t

I a − t e−δt a ≥ t
(5)

From equations (2) it can be noticed that computing V (t) necessitates an integral. If a < t, in 

other words the cell age is younger than the time of treatment, i.e., infection occurs after 

initiation of treatment, the term I(a, t) of the integral in Eq. (5) depends itself on V (t) and T 
(t). As it will be shown, this makes the analytical solution approximative and impedes the 

use of canned numerical solvers for this system of equations.

2.3. Analytical solution

To derive an analytical solution for V (t) the dependancies of I(a, t) makes it difficult unless 

some additional assumptions are taken into account. The solution will be divided into two 
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cases, the short term approximation and long term approximation [18, 36], which mainly 

differ on how I(a, t) is treated.

2.3.1. Short term approximation—For the short term approximate solution, it is 

assumed that after therapy is initiated infected cells remain at their steady-state distribution 

or in other words, new infections occur at the same rate as before therapy initiation [18]. 

Thus, one can replace I(a, t) by its steady state solution, I a, t = I a = βV Te−δa. The 

integral in V, ∫0

∞
R a, t I a, t da, is then computed in two parts. The first part is from 0 to t 

considering the equation of R(a, t) when a < t. The second part of the integral, from t to ∞ is 

computed considering the R(a, t) equations when a ≥ t. Formally, given A = (1−εα)α and B 
= (1−εs)ρ+κμ the short term approximation is:

V t
V0

= e−ct + 1 − εs
cρ
N

A + δ
B + δ cδ 1 − e−ct

+ 1
B + δ − c

N
ρ − A + δ

B + δ δ e−ct − e− B + δ t ,

(6)

where N is as in (3).

2.3.2. Long term approximation—Unlike the short approximation, in the long term 

approximation new infection is ignored since the onset of therapy. In other words, I(a, t) = 

R(a, t) = 0 if a < t. This implies that the integral needed to compute V (t) is simplified to 

∫
t

∞
R a, t I a, t da, and once again we can consider I a, t = βV Te−δa.

Another important distinction is that the term e−γt was included in R(a, t) equation assuming 

that in addition of α being initially inhibited by the factor 1 − εα, also decreases with time 

on treatment due to the decay of replication templates (e.g. replication complexes or 

negative strand HCV RNA), where parameter γ represents slowing of viral RNA synthesis. 

Without it, R would converge to a non zero steady state and its inclusion has been shown to 

be consistent with an intracellular model [5] as described in detail in [18]. This simply adds 

a term to the PDE of R as follows.

∂R a, t
∂t + ∂R a, t

∂a = 1 − εα α a e−γt

− 1 − εs ρ a + κμ a R a, t

(7)

The method of characteristics was reapplied as previously to solve the PDE. From these 

equations, given the simplifications on I and R, it was straight-forward to derive the long-

term approximation for V. Given A, B and N as in the previous section, the long-term 

approximation is:
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V t
V0

= e−ct + 1 − εs
cρ
N

A
B − γ δ δ + γ − c × e−ct − e− δ + γ t + 1

B + δ − c

× N
ρ − A

B − γ δ e−ct − e− B + δ t .

(8)

2.4. Numerical methods

We implemented a variety of numerical methods from the simplest to the more advanced 

ones that are tailored to our needs, starting from first order methods and describing them in 

detail in order for our derivations to remain self-contained. We then build from bottom up 

towards higher order methods, adaptive stepsize methods and implicit schemes in order to 

better characterize the equations of our model using advanced numerical schemes [43, 44].

The general scheme of a numerical method in our context requires to solve a function f(t, x) 

which depends on time and a variable x. In this section we explore the solutions of the 

functions T and V and—except in subsection 2.4.4 about the Rosenbrock method—f(t, x) 

will be always defined as follows. As in Eq. (2) in the case of V we have 

f t, x = 1 − εs ∫0

∞
ρ a R a, t I a, t da − c ∗ x and for T, f(t, x) = s – d * x – βV(t) * x.

2.4.1. Integral implementation challenges—The main obstacle for solving the system 

of differential equations is that the integral term 1 − εs ∫0

∞
ρ a R a, t I a, t da in Eq. (2c) 

makes problematic the direct use of a general ODE solver and limits it to only special cases 

relating to the time steps. This requires an ad hoc implementation.

Another problem caused by the integral is that it does not allow to directly apply canned 

parameter fitting methods to the complete multiscale model. To overcome this challenge, the 

long term approximation has been used to determine some parameters [18]. One limitation 

of such an approach is that it is limited to the multiscale model under treatment, and could 

only be used to approximate the variables c, δ and εα. As a byproduct, we briefly explore 

how a specialized implementation of the Levenberg–Marquardt numerical method can be 

developed to perform parameter fitting directly from the multiscale model equations. In Sec. 

2.5, we apply it to the parameter s for illustration. We validate our implementation in Sec. 

3.6.

No analytical solution can be computed for the aforementioned integral and it must therefore 

be solved numerically unless analytical approximations are used. This is because of the 

function I(a, t) shown in Eq. (5). At every time step t, the value of I depends on previously 

computed values of V and T, which cannot be accessed with general ODE solvers.

In order to compute the integral, a first assumption is that its upper bound is 100. Since the 

integral values represent the age of a cell we assume that cells die after 100 days.

The integral over a ∈ [0, 100] can be divided into two cases. For a > t, the solutions are pre-

computed since they do not depend on any other function. When a < t, we need to know 
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some values of V and T. Given D, the number of days the system is to be solved for, the 

strategy to evaluate this part of the integral depends on the type of framework used for 

solving the ODE system, as described next.

Non-adaptive step framework: The ODE system is solved with a fixed time step h. This 

implies that for every integer τ ∈ [0, D/h] the values V (τh) and T (τh) are known. For every 

value t = τh the integral needs to be computed. The Simpson’s rule method is used to 

evaluate the integral, therefore a time step ha must be selected. Similarly to τ, we define an 

integer τa ∈ [0, 100/ha]. Given t, for every a = τaha (we recall that a < t), the values V (t − a) 

and I(t − a) are required. Thus, there exist a third integer τ∼ ∈ 0, D/h  such that τ∼h = t − a. 

Therefore we should have τ = τaha/h + τ∼. Since τ, τa and τ∼ are integers a solution exists if ha 

is a multiple of h. In the following implementation, setting ha = 10h provides good results.

Adaptive step framework: In that case, the time step h is not fixed and therefore we cannot 

use Simpson’s rule. Given h0 the initial time step, we limit the value of h to 10h0. The 

integral step size ha will also be variable and this condition ensures that it will be at most 

10h0, to maintain the accuracy as in the non-adaptive case.

Given a list of m + 1 time steps 𝔗 = t0, ⋯tm  such that t0 = 0, ti = h0 + ⋯ + hi−1, and t = tm is 

the latest time for which the values of V and I were computed. The strategy consists in 

computing a quadratic interpolation over carefully chosen values of a. For i ∈ 0, 𝔗  let ai be 

tm − tm−i. By construction the difference between ai and ai+1 is tm−i−tm−i−1 ≤ 10h0.

To optimize the process, we do not record all values of V and T but instead proceed as 

follows. Given 𝔗 a list of time steps, 𝔗 −2  the penultimate element of 𝔗, and 𝔗 −1  its last 

element. At the next iteration values are computed for time t. If t − [T − 2] > 10h0, we 

append t to 𝔗. If it is not, we replace the last element 𝔗 −1  by t. The distance between any 

two consecutive elements of 𝔗 is at most 10h0 by construction, as desired.

2.4.2. First order methods—The Euler methods are the simplest first order methods. 

They consist of two possible schemes: Forward Euler that is explicit and Backward Euler 

that is implicit. The Forward Euler scheme is as follows. Given Vn and Tn and a step h we 

simply update the equations:

Vn + 1 = Vn + h × 1 − εs ∫0

∞
ρ a R a, t I a, t da − c ∗ Vn

Tn + 1 = Tn + h × s − dTn − βVnTn

(9)

The complementary scheme to Forward Euler is called Backward Euler, and is an implicit 

scheme. It consists of solving the equations yn+1 = yn + h × f(t + h, yn+1) which yields as 

answers
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Vn + 1 = Vn +
h 1 − εs ∫0

∞
ρ a R a, t I a, t da

1 + ch

Tn + 1 =
shTn

1 + hd + hβV t + h ,

(10)

where V (t + h) = Vn+1.

2.4.3. Accurate methods with fixed stepsize—From the first order Euler methods 

described above, in order to achieve better accuracy we advance to Runge–Kutta 4th order 

(RK4) and Gauss-Legendre 4th order. Gauss-Legendre is an implicit version of RK4, which 

is a collocation method based on the points of Gauss-Legendre quadrature [44]. As will be 

shown, Gauss-Legendre is more stable than RK4 for our problem.

In general, the system of equations to solve Runge–Kutta order s is

yn + 1 = yn + h ∑
i = 1

8
biki, such that

ki = f t + qih, yn + h ∑
j = 1

i − 1
ai jk j

(11)

and given azw, bz, qz as in Table. 1.

Different ensembles of equivalent constants a, b and q can be determined. In all the cases 

presented here they were selected from [43].

Let us first look at V(t) for Vn+1 at time t + h:
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k1
V = 1 − εs ∫0

∞
ρ a R a, t da − cVn

= f t, Vn

k2
V = 1 − εs ∫0

∞
ρ a R a, t + q2h I a, t + q2h da − c Vn + ha21k1

V

= f t + q2h, Vn + ha21k1
V

k3
V = 1 − εs ∫0

∞
ρ a R a, t + q3h I a, t + q3h da − c Vn + ha32k2

V

= f t + q3h, Vn + ha31k2
V

k4
V = 1 − εs ∫0

∞
ρ a R a, t + q4h I a, t + q4h da − c Vn + ha43k3

V

= f t + q4h, Vn + ha43k3
V , such that

Vn + 1 = Vn + h b1k1
V + b2k2

V + b3k3
V + b4k4

V .

(12)

Similarly in the case of T(t) for Tn+1 at time t + h we have (note that q1 = 0):

k1
T = s − dTn − βV t Tn

= s − dTn − βVnTn
k2

T = s − d Tn + ha21k1
T − βV t + q2h Tn + ha21k1

T

k3
T = s − d Tn + ha32k2

T − βV t + q3h Tn + ha32k2
T

k4
T = s − d Tn + ha43k3

T − βV t + q4h Tn + ha43k3
T , such that

Tn + 1 = Tn + h b1k1
T + b2k2

T + b3k3
T + b4k4

T .

(13)

Note that V t + qih = V t + qihki
V.

An implicit version of Runge–Kutta with a fixed stepsize is Gauss-Legendre. Similar to 

Runge–Kutta order s, for the main equations we have yn + 1 = yn + h∑i = 1
s biki. But the value 

ki is slightly different, notice the bound of the sum in: ki = f t + qih, yn + h∑ j = 1
s ai jk j .

Given s = 2 (for simplicity), we have used the Butcher tableau shown in Table 2.

We need to solve, first for V, the following implicit equations:
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k1
V = 1 − εs ∫0

∞
ρ a R a, t + q1h I a, t + q1h da − c Vn + ha11k1

V + ha12k2
V

= f t + q1h, Vn + ha11k1
V + ha12k2

V

k2
V = 1 − εs ∫0

∞
ρ a R a, t + q2h I a, t + q2h da − c Vn + ha21k1

V + ha22k2
V

= f t + q2h, Vn + ha21k1
V + ha22k2

V ,

(14)

which can be re-written as:

k1
V = A + B × k2

V

k2
V = 1 − εs ∫0

∞
ρ a R a, t I a, t da−cVn − cha21A × 1

1 + ch a22 + a21B
,

(15)

where A =
1 − εs ∫0

∞
ρ a R a, t I a, t da − cVn
1 + cha11

 and B =
−cha12

1 + cha11
. Similarly for T we have:

k1
T = s − d Tn + ha11k1

T + ha12k2
T − βV t + q1h Tn + ha11k1

T + ha12k2
T

k2
T = s − d Tn + ha21k1

T + ha22k2
T − βV t + q2h Tn + ha21k1

T + ha22k2
T ,

(16)

which can be re-written as:

k1
T =

C + Dk2
T

E

k2
T =

s − d + βV t + q2h Tn + ha21C
1 + h d + βV t + q2h a21D + a22

,

(17)

where C = s − dTn – βV (t + q1h)Tn, D = −ha12(d + βV(t + q1h)), and E = 1 + ha11(d + βV(t 

+q1h)). We recall that V t + qih = Vn + qihki
V.

In practice, the two functions R and I are only evaluated at t and not t + qxh. Two reasons 

justify that choice. First, as previously discussed in Sec. 2.4.1, the integral over a is divided 

into two parts, before and after t (i.e., ∫0

100
da =∫0

t
da + ∫

t

100
da). The latter change would 

shift the integral to ∫0

t + qxh
da + ∫

t + qxh

100
da. We argue that those values are close to each 
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other in realistic setups. The maximal qx shown in Table 1, is 1. Given that we chose (see 

Sec. 2.4.1) the integration step ha as 10h, the difference between t and t + qxh is at most 
ha
10 , a 

tenth of a step. A simulation over two days requires 200 steps to evaluate the integral, with 

ha = 0.01. Therefore it represents less than 0.05% of the integral’s value. Second, to compute 

that additional portion in the first part of the integral, it requires to know the value of T and 

V at a time greater than t. To do so would require a more uncertain approximation than the 

one being evaluated, increasing the total error. The same reasoning has been used in [45] to 

show that in the Rosenbrock method, described in the next section, the Jacobian should be 

computed only once with the initial values and not with the intermediary values.

2.4.4. Accurate methods with adaptive stepsize—As for the previous methods with 

a fixed step-size, two adaptive stepsize methods are implemented. Dormand-Prince [40], 

which is explicit, and the Rosenbrock method [41], which is implicit. Similar integration 

methods to Dormand-Prince (RKDP) are Fehlberg (RKF) [46] and Cash-Karp (RKCK) [47].

Conceptually, the Dormand-Prince method solves the same system as RK4, Eq. (11). The 

idea behind the adaptive time step is to solve it for two consecutive orders allowing to 

estimate the total error in the last computed time step. The Butcher tableau [40] in Table 3 is 

used in our implementation. Traditionally the 5th order estimate—bi values—is used and the 

6th order— bi
∗ values— allow to evaluate the error.

The equations are built exactly as for the RK4 method. To evaluate at time n+1 the size of 

the next time step given Vn+1 and Vn + 1
∗ , the method in [43] is used. The parameters are the 

tolerance ε = 10−2, a safety value of 0.9 and the value Δ0. Δ0 consists of the ratio of the error 

given the previous value or 
Vn + 1 − Vn + 1

∗

Vn
. If the step just taken is of size h then the next step 

size is:

hnext
V =

0.9h
Δ0
ε

0.2
Δ0 ≥ ε

0.9h
Δ0
ε

0.25
Δ0 < ε .

(18)

In the same way a value hnext
T  is computed. The smallest from both is considered as hnext. If 

any of those is in the first case, where the step size needs to shrink, we discard the present 

calculation and restart with the new and smaller step size.

The implicit Rosenbrock method is implemented as described in [43]. In its most general 

form the method seeks to solve the following equations given that αi,j, γ, γi,j, and qi are well 

chosen constants. We can notice that a Runge–Kutta scheme is retrieved by setting γ = γi,j = 

0. In this implementation, it is important to note that f is now a vector of two functions, 
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dT t
dt , dV t

dt  and that the notation f(yn + x) is used to represent the array dT t
dt , dV t

dt  which 

is exactly:

f yn + x = s − βVn Tn + x − d Tn + x ,

1 − εs ∫0

∞
ρ a R a, t I a, t da − c Vn + x .

(19)

Note that the part 1 − εs ∫0

∞
ρ a R a, t I a, t  da is constant at each iteration. It is computed 

separately and is not involved in the method.

A formal definition of the general Rosenbrock method of order s is that it consists of solving 

the implicit equations [43]:

yn + 1 = yn + ∑
i = 1

s
qiki, such that

1 − γh f ′ ki = h f yn + ∑
j = 1

i − 1
αi, jk j

+ h f ′ ∑
j = 1

i − 1
γi, jk j, i = 1, …, s,

(20)

were f′ denotes the Jacobian matrix, which is:

f ′ = −d − βV −βT
0 −c

. (21)

We note that in Eq. (21), we omitted the term containing the derivative of I(a, t) in function 

of V and T. This is due to the fact that it is dominated by (1 – εs)β, which is 9 order of 

magnitudes smaller than the other terms. A final substitution provides a form allowing a few 

optimizations. Given gi = ∑ j = 1
i − 1 γi, jk j + γki the equations become:
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1
γh − f ′ g1 = f yn
1
γh − f ′ g2 = f yn + a21g1

+ q21g1/h
1
γh − f ′ g3 = f yn + a31g1 + a32g2

+ q31g1 + q32g2 /h
1
γh − f ′ g4 = f yn + a41g1 + a42g2 + a43g3

+ q41g1 + q42g2 + q43g3 /h .

(22)

Finally, to better control the error it has been shown that we must add for each gi the value 

hqix
∂ f
∂x  [43] on the right hand side where qix are predetermined constants. Note that since f′ 

is a 2 × 2 matrix and f is a 2 × 1 vector, gis are 2 × 1 vectors.

Once the four gis are computed, we can directly evaluate the next values and the error using 

only 8 parameters, which we will call bis and eis. The next value is thus yn+1 = yn + b1g1 + 

b2g2 + b3g3 + b4g4 and its associated error e = e1g1 + e2g2 + e3g3 + e4g4. All the required 

parameters are now presented and the values depicted in Table 4 are used.

The main advantage of this technique is the automatic step size adjustment, more so when 

the equations are stiff. As with Dormand-Prince, an error is computed using two sets of 

coefficients. The current implementation uses terms of order 4 and 5 to evaluate the error. 

The next step size is found using Eq. (18) with two differences. First, the exponents are 1/3 

and 1/4 [43]. Second, the term Δ0 contains the derivative, formally in that case 

Δ0 = e

yn + hyn′ + 10−30 . As previously if a shrinkage of the step is observed we discard the 

present step and start again with the smaller value. By limiting a step size increase to at most 

1% of the previous one the error induced by the integral appears to become negligible (data 

not shown).

2.5. A numerical scheme for direct parameter estimation from the multiscale model 
equations

As mentioned in Sec. 2.4.1, the structure of the equations is problematic when trying to use 

some general fitting methods as canned solvers (e.g., calling the Levenberg-Marquardt [43] 

as a canned method). In passing, we briefly show here how the multiscale model equations 

can be adapted for the fitting of parameter s when combined with a full implementation of 

the Levenberg–Marquardt method, without the use of canned solvers. Such a scheme can be 

generalized for other variables besides s and is left for future work that is beyond the scope 

of this contribution.
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Briefly stated, the main idea for the development of a new parameter fitting scheme that 

should be more flexible than what was used in [18], which utilized Levenberg-Marquardt as 

a canned method, is how the the derivatives of T and V with respect to s can be evaluated. 

As schemes to solve dT t
dt  and dV t

dt  being already implemented, we can notice that 
d∂T t

∂s
dt

and 
d∂T t

∂s
dt  can be determined and thereafter solved with the already implemented schemes. 

Those values are exactly:

d∂T t
∂s

dt = 1 − β ∂V t
∂s T t + V t ∂V t

∂s − d ∂V t
∂s (23a)

d∂T t
∂s

dt = 1 − εs ∫0

∞
ρ a R a, t ∂I a, t

∂s da − c∂V t
∂s (23b)

where:

∂I a, t
∂s

β ∂V t − a
∂s T t − a + V t − a ∂T t − a

∂s eδa a < t

e−δa a ≥ t
. (24)

Let us note that the partial derivative of R(a, t) is 0 and thus ignored.

These equations can be directly integrated in the previously discussed schemes since they 

are working on a set of ODEs in parallel. Practically, we need to increase the dimensions of 

the vector f, defined in subsection 2.4.4, to include those new equations. We now need to 

solve for f yn + x : = dT t
dt , dV t

dt ,
d∂T t

∂s
dt ,

d∂V t
∂s
dt . The only additional variable to be inserted 

is a tolerance on the error of the fitting. In section 3.6, we report on a successful proof of 

concept for the new parameter fitting scheme that was briefly outlined here and will be fully 

dealt with in future work.

3. Results

All the methods are implemented in Python3 using the SciPy library. The implementations 

are freely available at http://www.cs.bgu.ac.il/~dbarash/HCVnumerics. The default 

implementation in SciPy of an ordinary differential equation solver leverages ODEPACK 

[48] and is referred to as the canned solver Default. For this entire section, we used the 

parameters from [18] and shown in Table. 5. The parameters that are changed through the 

results are the number of days, the size h of the steps for the ODEs, and the size ha of the 
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steps for computing the integral. In the case of adaptive methods we bound the stepsize by h 
as minimum and ha as maximum.

3.1. Limitation of the short-term approximation

The short-term approximation is shown in Fig. 1a in blue. The results are shown for only 

two days since the behaviour is smooth and conserved on longer time scales in agreement 

with previous results (Fig. 2A in [18]). It is clear that after twelve hours the value converges 

far from the PDE model solution (the PDE model solution is computed by the canned solver 

Default implementation as described at the beginning of the section). This is expected since 

the effect of the treatment on the infection rate is not taken into account. The analysis will 

therefore focus on the long-term approximation.

3.2. Limitation of the long-term approximation

In [36] it is hypothesized that “The long-term approximation is an underestimate of the 
PDE model solution since some infection events are being ignored. However, with realistic 
parameters characteristic of potent therapy, the difference between them is very small.” Fig. 

1b depicts the result of our scheme, measuring the difference between the long-term 

approximation and the solution of the multiscale PDE model (Figure 2B in [18]). We show 

that the long-term approximation is converging to a number with the numerical solution and 

we are indeed obtaining that the long-term approximation is an underestimate of the PDE 

model solution (as the difference between the long term approximation and the solution of 

the PDE model is negative). The difference of less than 0.01 that we are obtaining is very 

small compared to the y-axis units shown in Figure 1 of [36]. Therefore we are actually 

viewing in Fig. 1b this small effect that was inferred in [36] regarding the long-term 

approximation. This limitation of the long-term approximation is worthwhile mentioning 

although it is less severe than the limitation of the short-term approximation. Therefore in 

practice, the long-term approximation is favored over the short-term approximation, 

although the numerical solution offers an attractive alternative to analytical approximations 

and could be easier to adjust when introducing changes to the model.

3.3. The multiscale model equations are stiff

A significant observation that can be inferred already when starting to experiment with the 

multiscale model equations by numerical solutions is their stiffness, or how they can be 

numerically unstable even with a small stepsize. The most straightforward numerical method 

to implement is forward Euler, described in Sec. 2.4.2, followed by RK4 discussed in Sec. 

2.4.3. An implicit version of RK4 in the same section is the Gauss-Legendre method. With 

small time-steps, the quality of the results is similar between all methods. But as we increase 

the size of the steps, the instability of the equations can be observed as show in Fig. 2 over 

20 days. Both forward Euler and RK4 quickly diverge from the long-term approximation, 

which is close to the numerical solution as shown previously. On the other hand the implicit 

method of second order Gauss-Legendre that belongs to the Runge-Kutta family tends to the 

correct solution.
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3.4. The problems encountered when using a canned solver for the numerical equations

Without taking a detailed examiniation of the equations, a straight-forward strategy that is 

simple to implement and pursue is the utilization of a canned solver (an ODE solver called 

from by a command within a program that is written in a higher level language such as 

Matlab and Mathematica, or Python). Those canned solvers solve the equations 

automatically, determining the time steps given a tolerance provided by the user (only initial 

and extremal values for the time step can be given). However, a restriction of such a strategy 

is that the equations need to be self contained in a set of ODEs without additional integrals 

that may complicate the matter, as discussed in Sec. 2.4.1. The integral term 

1 − εs ∫0

∞
ρ a R a, t I a, t  da cannot be solved analytically and thus a numerical approach 

must be used. Doing so requires to know for which times t the values of V and T are known, 

and what they are. Such a scheme is incompatible with the canned solver strategy. A 

workaround to not fully implement a solver within a program is therefore to use a canned 

solver for small increments of times h and after each iteration, compute the integral again. 

We illustrate this approach in Fig. 3 and it is the strategy used to evaluate the system with 

what we call a Default method. This is not sustainable for long time intervals as the number 

of iterations grows quickly and defeats the purpose of the implementation of advanced ODE 

solvers that utilize multistep methods or adaptive timestep methods. In this strategy, there is 

no advantage in using in the canned solver a sophisticated multistep method such as the 

Backward Differentiation Formula (BDF) or the Rosenbrock method that are especially 

suited for stiff equations because of the small time increments that do not provide a chance 

to exploit the advanced method used in the canned solver.

In contrast, a full implementation of the Rosen-brock method gives full access to the error 

term. With that information, a more subtle integration of the problematic integral is 

performed as shown in Fig. 4. There are two main differences. First, we need to keep track 

of the times at which the ODE system is solved in the array ℐ, which is required to compute 

the integral since those are not fixed anymore. Second, after each iteration we use the known 

error to modify if possible the time step h to potentially decrease the number of required 

iterations. This is shown to be a successful strategy as presented in Table 6.

3.5. Advantages of implicit adaptive stepsize methods

As previously explained, the integral term (1 – εs) ∫0

∞
ρ a R a, t I a, t  da impedes the use of 

adaptive stepsize in the canned solvers. Such methods are essential to allow fast 

computations of complex models like ours. We present in Table. 6 the number of iterations 

computed using the Rosenbrock and Dormand-Prince methods, shown in Sec. 2.4.4, in 

comparison with the default canned method for three different values of h and ha. With the 

smallest step-size, the Rosenbrock method is more than nine times as efficient as the default 

canned method, giving results of similar accuracy as shown in Fig. 5 and with simulations 

extended to 14 days. This is crucial since the methods with fixed stepsize can take up to tens 

of seconds per day of simulation with h = 0.001 and ha = 0.01. Under those conditions a 

nine-fold increase in speed, through the decrease in the number of iterations, provides a 

much needed advantage when testing large number of parameters over long time periods. 
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This is the main inference from Table. 6, showing the advantage of adaptive stepsize 

methods. Interestingly, with the highest value of h, the Rosenbrock method takes 

proportionately additional steps. This is due to the greediness of the stepsize adjustment, 

which when increased too quickly (thereby inducing a large error) backtracks and starts 

again with a smaller value. The Dormand-Prince adaptive stepsize method performs 

somewhat better than the Rosenbrock method in terms of number of iterations but is 

vulnerable to the stiffness of the multiscale model equations, as elaborated below.

Simpler methods than Rosenbrock exist with adaptive stepsize. A well used scheme is the 

Dormand-Prince method that was described in Sec. 2.4.4. The latter is an explicit method, 

while Rosenbrock is implicit, and therefore Dormand-Prince is vulnerable to the stiffness of 

the equations. We show in Fig. 5 that with a modest increase in the stepsize h the Dormand-

Prince method already converges to the wrong value compared to the default method and the 

Rosenbrock method. We note that Rosenbrock needs almost a third of the number of 

iterations as the Default method in that case with similar results.

3.6. Parameter estimation example performed directly from the multiscale model equations

In sub-section 2.5, we briefly sketched an idea for a new strategy that performs flexible 

parameter fitting and is in line with our overall strategy to tackle the problematic issues with 

the integral mentioned in sub-section 2.4.1. As a proof of concept, to evaluate our method, 

we generated an ensemble of data points over one day with our implementation of the 

Rosenbrock method and the parameters in Table 5.

We then applied our implementation of the Levenberg–Marquardt method with different 

starting points for the parameter s, which can not be recovered when using the long-term 

approximation. Using 20 values of s equally distributed in [0, 2s] we observed that in all 

cases the method converged to the correct value of s used to generate the data points, inside 

the provided tolerance on the error of 0.001.

4. Conclusions

A viral dynamic model that considers intracellular viral RNA replication, namely an age-

structured PDE multiscale model, has been recently put forth to study viral hepatitis 

dynamics during antiviral therapy [18, 36, 4]. This type of model is more complicated to 

solve than previous models. The seminal works that introduce the age-based multiscale 

model are predominant by analytical approximations, with some numerical solutions that are 

either based on simple first-order methods or canned solvers (ODE solvers used in higher 

level languages such as Matlab and Mathematica, or Python). Neither of these numerical 

solutions are satisfactory for realistic simulations of several days of infection and therapy in 

terms of accuracy, efficiency and stability.

Analytical approximations to the multiscale model have limitations. The short-term 

approximation holds for only half a day and the long-term approximation is an 

underestimate of the PDE model solution, which was anticipated in [36] because some 

infection events are being ignored with this analytical approximation. By experimenting 

with numerical solutions, one can observe that the governing differential equations are stiff 

Reinharz et al. Page 18

Math Biosci. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and therefore advanced numerical methods are needed. First-order methods with fixed 

stepsize or alternatively, the use of canned solvers, do not offer a comprehensive solution 

treatment to the model and are limited in scope. For example, in the multiscale model, there 

is an integral term that needs to be computed at each time step depending on previous 

iterations, which is inadequately done by canned solvers. Higher-order methods with 

adaptive stepsize are offering a considerable improvement in terms of both accuracy and 

efficiency. An implicit higher-order method with adaptive stepsize was found to be the most 

stable, in addition to being the most accurate and efficient among the various methods being 

compared that are adequate for this model. As a byproduct, the overall strategy of using fully 

implemented numerical schemes applied directly on the multiscale model equations allows 

parameter estimation of the full multiscale model.

Although it is expected that the Rosenbrock mehod remains competitive for this application, 

other methods that might be advantageous in some ways could still be tried. Among them is 

the Backward Differentiation Formula (BDF), which is an implicit method belonging to the 

class of linear multistep methods that have been used for the solution of stiff differential 

equations, or other variants of Diagonally Implicit Runge-Kutta (DIRK) that are described in 

[49]. In these other DIRK variants, one nonlinear system has to be solved per step, whereas 

Rosenbrock schemes are derived by linearizing a DIRK method, resulting in schemes where 

only a linear system has to be solved per step. Therefore the cost of time should be lower, 

but larger time integration errors in the Rosenbrock schemes might arise, leaving the 

possibility that some of these other DIRK variants might also be competitive in their 

accuracy. Nevertheless, the Rosenbrock method is expected to remain attractive for solving 

the multiscale model numerically because of its efficiency.
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Appendices

Appendix A. Method of characteristics

Appendix A.1. R(a, t)

We have the relation

∂R a, t
∂t + ∂R a, t

∂a = α a − ρ a + μ a R a, t . (25)

The method of characteristics consists of finding a parametrization of a and t in τ such that 

the coefficient of their respective derivatives allows to combine them as such:

dR a τ , t τ
dτ = ∂R

∂t
∂t
∂τ + ∂R

∂a
∂a
∂τ = α a τ − ρ a τ + μ a τ R a τ , t τ .

Reinharz et al. Page 19

Math Biosci. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this case, they are at a − t = k, for k a constant.

Appendix A.2. a ≥ t

The parametrization in τ is such that a τ :a0
τ:0 t

a and t τ :0 τ:0 t
t

t = τ dt
dτ = 1 (26)

a = τ + a0
da
dτ = 1. (27)

Therefore the equations (25) and (27) are consistent together. We now have to solve the ODE:

R′ + ρ a τ + μ a τ R a τ , t τ = α a τ .

Using the methods of constants Appendix B we need to solve

K′ = α a τ e
∫ ρ a η + μ a η dη

K = ∫0
t
α a u e

∫0
u

ρ a η + μ a η dη
du + C,

which implies that:

R a τ , t τ = ∫0
t
α a u e

∫0
u

ρ a η + μ a η dη
du + C e

−∫0
t

ρ a τ + μ a τ dτ

= Ce
−∫0

t
ρ a τ + μ a τ dτ

+ e
−∫0

t
ρ a τ + μ a τ dτ

∫0
t
α a u e

∫0
u

ρ a η + μ a η dη
du .

In particular, when τ = 0 we have R(a(0), t(0)) = R(a0, 0) = C and therefore:

R a τ , t τ = R a0, 0 e
−∫0

t
ρ a τ + μ a τ dτ

+ e
−∫0

t
ρ a τ + μ a τ dτ

∫0
t
α a u

e
−∫0

u
ρ a η + μ a η dη

du .
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Given the steady state distribution R a , we have as assumption the parametrization (27) and 

that R a, 0 = R a R a0, 0 = R a − t, 0 = R a − t  so R(a, t), a ≥ t is:

R a, t = R a − t e
−∫0

t
ρ a τ + μ a τ dτ

+ e
−∫0

t
ρ a τ + μ a τ dτ

∫0
t
α a u

e
∫0

u
ρ a η + μ a η dη

du .

We will finish by re-writting those equations using the parametrization (27). First notice 

that:

∫0
t

ρ a τ + μ a τ dτ = ∫a0

a
ρ ζ + μ ζ dζ

and

∫a0

a
ρ ζ + μ ζ dζ = ∫0

a
ρ ζ + μ ζ dζ −∫0

a0
ρ ζ + μ ζ dζ,

therefore

e
−∫0

t
ρ a τ + μ a τ dτ

=
e−∫

0

a
ρ ζ + μ ζ dζ

e−∫
0

a0
ρ ζ + μ ζ dζ

. (28)

Let be π a = e
−∫0

s
ρ ζ + μ ζ dζ

 then e
−∫0

t
ρ a τ + μ a τ dτ

= π a
π a0

= π a
π a − t

R a, t = R a − t π a
π a − t + π a

π a − t ∫0
t
α a u e

∫0
u

ρ a η + μ a η dη
du .

We can use once more the result of Eq. (28) to arrive at:

R a, t = R a − t π a
π a − t + π a

π a − t ∫0
t
α a u

π a0
π a − u du
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R a, t = R a − t π a
π a − t + π a

π a − t ∫0
t
α a u π a − t

π a − u du

R a, t = R a − t π a
π a − t + ∫0

t π a α a u
π a − u du .

Assuming that α, ρ and μ are constant we can solve the integral:

∫t0

t
α π a

π a − u du = ∫t0

t
α e

−∫0
a

ρ + μ dv

e
−∫0

a − u
ρ + μ dv

du

= α∫0
t e− ρ + μ a

e− ρ + μ a − u du

= α∫0
t
e− ρ + μ a + ρ + μ a − u du

= α∫0
t
e− ρ + μ udu

= α 1
− ρ + μ e− ρ + μ t − 1

− ρ + μ

= α
ρ + μ 1 − e− ρ + μ t .

We thus obtain:

R a, t = R a − t π a
π a − t + α

ρ + μ 1 − e− ρ + μ t .

Let us re-write
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π a
π a − t = e

−∫0
a

ρ + μ dυ

e
−∫0

a − t
ρ + μ dυ

= e− ρ + μ a

e− ρ + μ a − t

= e− ρ + μ t,

then

R a, t = R a − t π a
π a − t + α

ρ + μ 1 − e− ρ + μ t

= R a − t e− ρ + μ t + α
ρ + μ − α

ρ + μ e− ρ + μ t

= α
ρ + μ + R a − t − α

ρ + μ e− ρ + μ t .

(29)

Appendix A.3. a < t

In this case, we have a < t, then let us parametrize in function of τ such that a τ :0
τ: t0 t

a

and t τ : t0
τ: t0 t

t

t = τ dt
dτ = 1 (30)

a = τ − t0
da
dτ = 1 (31)

The change in conditions is first important in the general equation, where we can notice a 

change of bounds to the integrals:
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R a τ , t τ = Ce

−∫t0

t
ρ a τ + μ a τ dτ

+ e

−∫t0

t
ρ a τ + μ a τ dτ

∫t0

t
α a u

e
∫t0

u
ρ a η + μ a η dη

du

At the boundary condition R(a(0), t(0)) = R(0, t0) = 1 (by assumption) and as all the 

integrals go to zero we have C = 1. Let us now notice that the 

∫
t0

t
ρ a τ + μ a τ dτ = ∫0

a
ρ ζ + μ ζ dζ, which implies that 

e
−∫t0

t
ρ a τ + μ a τ dτ

= π a  and we can therefore rewrite

R a τ , t τ = π a + π a ∫t0

t
α a u 1

π u du,

since e
∫t0

u
ρ a η + μ a η dη

= 1

e

−∫t0

u
ρ a η + μ a η dη

= 1
π u . If we assume that α, ρ, μ are 

constant we can solve the equations and obtain:

π a = e
−∫0

a
ρ a τ + μ a τ dτ

= e
−∫0

a
ρ + μ dτ

= e− ρ + μ a .

It remains to solve

∫t0

t
α a u 1

π u du = ∫t0

t
αe ρ + μ udu

= ∫0
a

αe ρ + μ ςdζ

= α
ρ + μ e ρ + μ a − 1 .

Combining it all together:
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R a, t = e−[ρ + μ]a + e−[ρ + μ]a α
ρ + μ e[ρ + μ]a − 1

= e−[ρ + μ]a + α
ρ + μ 1 − e−[ρ + μ]a

= e−[ρ + μ]a + α
ρ + μ − α

ρ + μe−[ρ + μ]a

= α
ρ + μ + 1 − α

ρ + μ e−[ρ + μ]a .

(32)

Appendix A.4. R(a, t) solution

Combining the two previous sub-sections, we can obtain the following general closed form 

for R(a, t):

R a, t =

α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a a < t

α
ρ + μ + R a − t − α

ρ + μ e− ρ + μ t a ≥ t .
(33)

Appendix B. Variation of Constants / Parameters methods

Given the ODE:

f ′ + a x f = 0,

one can solve it as follows:

f ′
f + a x = 0

ln f + ∫x
a y dy = K0

f = e
K0e

−∫x
a y dy

f = Ke
−∫x

a y dy
.

If instead of 0 on the right-hand side there is a function g(x):

f ′ + a x f = g x ,

then the only thing that changes is the parameter K, which is now a function of x. Therefore 

we must solve
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f = K x e
−∫x

a y dy
f ′ = K′ x e

−∫x
a y dy

− a x K x e
−∫x

a y dy
.

It follows that

f ′ + a x K x e
−∫x

a y dy
dy = K′ x e

−∫x
a y dy

f ′ + a x f = K′ x e
−∫x

a y dy

g x = K′ x e
−∫x

a y dy

g x e
∫ xa y dy

= K′ x .

The last equation needs to be solved for the specific problem.
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Highlights

• We investigate numerical solutions to the multi-scale model of hepatitis C 

virus dynamics

• We show that the long-term approximation is an underestimate of the PDE 

model solution

• The numerical solution should consider previous iterations of the associated 

integral in the model, making problematic the use of canned solvers 

Considerable gain in efficiency can be achieved by using adaptive stepsize 

methods

• We compare between several numerical schemes and conclude that an 

implicit adaptive stepsize method is both efficient and stable

• We demonstrate the use of a numerical optimization scheme for the parameter 

estimation performed directly from the equations
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Figure 1. 
The parameters are h = 0.001, ha = 0.01, and over two days.

(a) The log values of the long-term and short-term approximation are shown compared to the 

PDE solution using the canned method (Default). The convergence close to the long-term 

approximation can be observed.

(b) We observe the underestimation of the PDE equations by the long-term approximation.
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Figure 2. 
Under the parameter values ht = 1, ha = 1, and over 20 days, the model equations are shown 

to be stiff. Both forward Euler and RK4 diverge quickly. Gauss-Legendre (implicit method) 

is correcting itself and moving towards the desired solution that utilizes small stepsize.
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Figure 3. Canned method flow
When using the canned solver, the production of free virus depends on all preceding time 

steps. The canned solver to solve the ODE must therefore be called with a small time step h 
and use that value to reevaluate the integral before the next iteration. This strategy does not 

allow to exploit the benefits of the specialized method that is used within the canned solver.
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Figure 4. Rosenbrock implementation flow
The full implementation of the method gives us the error, err, at each time step. Doing so 

allows to vary the size of the step h. We keep track of the time steps necessary to compute 

the integral in an auxiliary array ℐ (initialized at the beginning to an empty set) to take full 

advantage of the adaptive step sizes.
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Figure 5. 
Adaptive time step stability with parameters ht = 0.01, ha = 0.1, and over two days. 

Rosenbrock and the canned solver (Default) converge to the same solution while Dormand-

Prince does not converge to the right solution.
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Table 1

Butcher tableau for Runge–Kutta 4th order

qi aij

0

1/2 1/2

1/2 0 1/2

1 0 0 1

bi= 1/6 1/3 1/3 1/3
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Table 2

Butcher tableau for Gauss-Legendre

qi ai,j

1/2 − 3/6
1/4

1/4 − 3/6

1/2 + 3/6 1/4 + 3/6
1/4

bi = 1/2 1/2
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Table 3

Butcher tableau Dormand-Prince

qi ai,j

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

8/9 19372/6561 25360/2187 64448/6561 212/729

1 9017/3168 355/33 46732/5247 49/176 5103/18656

1 35/384 0 500/1113 125/192 2187/6784 11/84

bi 35/384 0 500/1113 125/192 2187/6784 11/84 0

bi
∗ 5179/57600 0 7571/16695 393/640 92097/339200 187/2100 1/40
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Table 4

Rosenbrock method parameters

γ = 0.5 a21 = 2.0 a31 = 48/25

a32 = 6/25 q21 = −8 q31 = 372/25

q41 = −112/125 q42 = −54/125 q43 = −2/5

b1 = 19/9 b2 = 1/2 b3 = 25/108

b4 = 125/108 e1 = 17/54 e2 = 7/36

e3 = 0 e4 = 125/108 q1x = 1/2

q2x = −3/2 q3x = 121/50 q4x = 29/250
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Table 5

The parameters of the model used in all simulations, taken from [18].

Parameter Value Parameter Value

s 130000 cells/mL β 0.00000005 mL day−1 virion−1

d 0.01 day−1 δ 0.14 day−1

κ 6.36 c 22.5 day−1

α 40 day−1 ρ 7.95 day−1

μ 1 day−1 γ 0.24 day−1

εs 0.65 εα 0.997

Math Biosci. Author manuscript; available in PMC 2019 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reinharz et al. Page 40

Table 6

Number of steps taken by the Dormand–Prince (Do.–Pr.) and Rosenbrock (Ros.) methods given h and ha 

compared to the number of steps taken with the canned method (Default). The results are for a simulation run 

of 14 days.

h ha Ros. Do.–Pr. Default

0.001 0.01 1543 1403 14000

0.005 0.05 582 295 2800

0.01 0.1 563 290 1400
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