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Abstract

Age-structured PDE models have been developed to study viral infection and treatment. However,
they are notoriously difficult to solve. Here, we investigate the numerical solutions of an age-based
multiscale model of hepatitis C virus (HCV) dynamics during antiviral therapy and compare them
with an analytical approximation, namely its long-term approximation. First, starting from a
simple yet flexible numerical solution that also considers an integral approximated over previous
iterations, we show that the long-term approximation is an underestimate of the PDE model
solution as expected since some infection events are being ignored. We then argue for the
importance of having a numerical solution that takes into account previous iterations for the
associated integral, making problematic the use of canned solvers. Second, we demonstrate that
the governing differential equations are stiff and the stability of the numerical scheme should be
considered. Third, we show that considerable gain in efficiency can be achieved by using adaptive
stepsize methods over fixed stepsize methods for simulating realistic scenarios when solving
multiscale models numerically. Finally, we compare between several numerical schemes for the
solution of the equations and demonstrate the use of a numerical optimization scheme for the
parameter estimation performed directly from the equations.
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1. Introduction

Chronic hepatitis C viral (HCV) infection affects approximately 70 million people
worldwide and is the primary cause of liver cirrhosis, liver cancer and liver transplant [1].
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There is no vaccine for HCV and for more than a decade the standard-of-care consisting of
pegylated interferon-alpha (IFN) and ribavirin was suboptimal. The recent advent of direct-
acting antivirals (DAAs) that provide interferon-free, all-oral treatment yielding cure rates
exceeding 90% with pangenotypic activity, shorter durations of therapy (8-24 weeks) as
compared to IFN-based therapy (24-48 weeks) is considered one of the greatest
achievements in medicine [2]. However, despite of these highly effective DAAS, many
challenges remain, such as finding an optimal approach to current DAA failures and the
elimination of HCV infection and DAAs cost, which is a significant barrier in treating the
populations that are most affected by HCV. Thus, there exists a significant need for
affordable therapy, with much shorter treatment durations and vaccine development [3].

Mathematical modeling of HCV kinetics has considerably advanced in recent years. It has
improved our understanding of intracellular viral genome dynamics [4, 5, 6, 7], T-cell
dynamics, and the quantitative events that underlie the immune response to pathogens [8, 9].
The standard model for HCV kinetics during treatment provided many insights into the
effectiveness and mechanism of action of interferon-alpha and ribavirin (reviewed in [10,
11]). The models were able to retrospectively predict the duration of treatment needed for
HCYV eradication (cure) [12, 13, 14] and more recently used in real-time (on treatment) to
predict the duration of IFN-free therapy with silibinin+ribavirin needed to achieve cure [15].
In the age of DAAs, new models have been developed to meet the challenges of these new
agents such as drug resistance [16]. Notably, the first age-based multiscale mathematical
model for HCV kinetics was developed [4, 17, 18] and provided a comprehensive
understanding of the nature of viral kinetic patterns observed in patients treated with IFN,
HCV protease inhibitors (telaprevir and danoprevir), or HCV NS5A inhibitor daclatasvir and
their modes of action. Mathematical models are also valuable in understanding the in vivo
dynamics of viruses that trigger both persistent infection (e.g. HIV-1 [8, 19, 20, 9], hepatitis
B virus [21, 22, 23], hepatitis D virus [24, 25], Theiler murine encephalomyelitis virus [26],
herpes simplex virus [27] and HCV [28, 29, 30]) and acute infection (e.g., influenza A [31,
32, 33] and ebola [34]).

In the context of HCV kinetics, multiscale models are an extension to the classical biphasic
model [30] that was introduced in 1998 and treated the infected cell as a “black box”,
producing virions but without any consideration of the intercellular viral RNA replication
and degradation within the infected cell [6, 5, 35]. The biphasic model is a set of three
ordinary differential equations (ODESs) with three variables: uninfected target cells (7),
productively infected cells (/), and free virus (V). The multiscale models consider the
intercellular viral RNA in an additional equation for the variable (#), with the introduction
of age-dependency in addition to time-dependency, making it a partial differential equation
(PDE) model. The multiscale models study the dynamics of HCV infection under therapy
with DAASs and because they include both the intracellular viral RNA replication/
degradation and the extracellular viral infection with age-dependency in addition to time-
dependency, they are considerably more difficult to solve compared to the biphasic model.
Analytical approximations were derived [18, 36, 4], namely the short-term and long-term
approximations. While the short-term has been shown to be precise only in the first half-day
of treatment, the long-term is in agreement at the asymptotics with a simple numerical
solution that utilized a general ODE solver [18].
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The aim of this paper is to significantly improve the numerical solution presented in [18]
that used a canned solver (an ODE solver called from by a command within a program that
is written in a higher level langauage such as Matlab and Mathematica, or Python). This
makes the numerical solution framework as explained herein a flexible and robust entity
alongside the analytical approximations. As it turns out, because of the properties of the
multiscale model and the fact that the differential equations are stiff, some advanced
numerical methods that involve adaptive stepsize are needed. To begin with, the use of a
canned solver should be replaced with a fully-written solver in the code for the application
because of the additional integral introduced in the multiscale model for the variable Vthat
needs to be computed at each time step. Unlike the construction of numerical schemes in
other applications, for example in the nonlinear diffusion of digital images [37, 38, 39]
where accuracy can be limited, herein it is adviseable to construct a stable and efficient
scheme that belongs to the Runge-Kutta family with at least a fourth order of accuracy.
However, due to the nature of the differential equations that are stiff and the additional
integral that needs to be evaluated at each time step, implicit solvers with adaptive stepsize
are considerably more stable and efficient than the standard Runge-Kutta fourth order.
Starting for simplicity in building up from explicit and implicit first order schemes,
extending to explicit and implicit fourth order schemes and noticing that the differential
equations are stiff, we reach explicit schemes with adaptive stepsize [40] that are by an order
of magnitude more efficient than fixed stepsize for realistic simulations of viral infection of
several days. We then implement implicit schemes with adaptive stepsize [41] that are
considerably more stable. The various numerical schemes are described and compared to
each other, concluding with an implicit adaptive stepsize integration scheme that is both
efficient and stable for use in multiscale models with age of hepatitis C virus dynamics [42].
Finally, the Levenberg-Marquardt optimization scheme is illustrated for performing
parameter estimation directly from the equations of the multiscale models.

2. Methods
2.1. The standard HCV model

The standard model that has been used and modified for studying hepatitis C viral dynamics
is the Neumann et al. model [30]. The three variables this model keeps track of are the target
cells 7, in Eq. (1a), the infected cells /in Eq. (1b) and the free virus Vin Eq. (1c). The target
cells Tare produced at constant rate s, die at per capita rate dand are infected by virus Vat
constant rate 8. The infected cells /increase with the new infections at rate SV (9 7 (¢ and
die at constant rate 8. The virus Vis produced at rate p by each infected cells and is cleared
at constant rate ¢. The e term denotes the effectiveness of the anti-viral treatment that
decreases the production from pto (1 — &)p. Formally the ensemble of ODEs for this model
is:

% =s—pVOT@) —dT(t) (la)
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ao)

5~ = PVOT(® = 5T()  (1b)

dv(n
dr

=1 —-¢eplt)—cV(E). (1)

From the mathematical perspective, the standard model is realtively much simpler than the
multiscale model. Although it is nonlinear, it can be solved analytically when assuming that
T'is constant.

2.2. The HCV age-based multiscale model

The multiscale model of hepatitis C virus (HCV) dynamics has been formulated in recent
years [18, 36, 4] as a more complex system in order to study HCV dynamics during therapy.
It keeps track as in the standard viral dynamics model of uninfected target cells in equation
(2a), productively infected cells in equation (2b), and free virus in equation (2c) along with
considering the intracellular viral RNA dynamics in an infected cell by adding equation (2d).

The equations were formulated as follows:

% =s5s—pVOT@)—dT(r) (2a)

0l(a,t) + ol(a,1) _

ot Ja —8(a@)l(a,t) (2b)

d‘ég’) =(1-¢) f " @R Ol Hda — V(@) (26)
0

aRgc;, 1) + aRa(Z, 1) _ (1 _ ea)a(a) (Zd)

= [(1 = &,)p(a) + ku(a)|R(a, 1),

subject to the initial and boundary conditions v(0) = V, T7(0) = T, /0, § = BV () T (¥,
I(a,0) = I(a), RO, ) =1, and R(a,0) = R(a).

Model parameters of 7, Eq.(2a), and /, Eq. (2b), are similar to the standard model where ais
the age of infection and ¢is the time duration from therapy initiation. The quantity of
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intracellular viral RNA R, in Eq. (2d), depends on its production a its degradation 4 and
expulsion from the cell p. The quantity of free viruses V/shown in Eq. (2c) depends on the
number of assembled and released virions and their clearance rate ¢. While those parameters
should depend on the cell age 4, in practice they are considered constant.

An important consideration in this model is that the treatment starts after the infection has
reached its steady state. The steady states of the different functions are R(a), I(a), V and T.
Given N, the total number of virions produced by a cell in its life-span, it can be shown that
those values are:

a

N= -
p+u

pla+d) 5 .  «a
5@+ﬂ+®MM—p+M+@

= (fNs —dc)/(fc).

)e—@ T (a) = pV Te™™T = c/(BN)V ~ (3)

Unlike the standard model, three different antiviral effects of therapy can be distinguished in
the multiscale model. The decrease in viral RNA synthesis is represented by e,, the
reduction in secretion by esand the increase in viral degradation by x= 1.

Through the method of characteristics, as was derived in [18] and explained in more detail
herein in Appendix A, an analytical solution can be found the variable A(a, §). The same
method can be applied to derive /&, 2 solution. The ensemble of equations (2) represent the
full model.

a<t
a a —[p + ula
+(1- e
|t ( p+ ﬂ)
R(a7 t) - a Z t (4)
a Bir_p__ &% —(p+pt
i HRa-0 -5
_ _ —da
It = éV(t a)T(t —a)e a<t 5)
I(a— t)e_& a>t

From equations (2) it can be noticed that computing V(9 necessitates an integral. If a < ¢, in
other words the cell age is younger than the time of treatment, i.e., infection occurs after
initiation of treatment, the term /g, £ of the integral in Eq. (5) depends itself on V() and 7
(9. As it will be shown, this makes the analytical solution approximative and impedes the
use of canned numerical solvers for this system of equations.

2.3. Analytical solution

To derive an analytical solution for V() the dependancies of A&, f) makes it difficult unless
some additional assumptions are taken into account. The solution will be divided into two
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cases, the short term approximation and long term approximation [18, 36], which mainly
differ on how /(a, 9 is treated.

2.3.1. Short term approximation—For the short term approximate solution, it is
assumed that after therapy is initiated infected cells remain at their steady-state distribution
or in other words, new infections occur at the same rate as before therapy initiation [18].

Thus, one can replace A(a, 9 by its steady state solution, /(a,7) = I(a) = pV Te~**. The
integral in V, / 00R(a, tI(a, f)da, is then computed in two parts. The first part is from 0 to ¢
0

considering the equation of A(a, §) when a < ¢ The second part of the integral, from #to oo is
computed considering the /(& 7 equations when g = ¢. Formally, given A= (1-¢,)a and B
= (1-eg)pt xu the short term approximation is:

V() _ et cp A+6 et
v, ¢ +(1‘ES)W<(B+5)C5(1_6 ) ©

I (N _ A+ \( -t —(B+05)
tBro—clp (B+5)5)(e € )

where Nis as in (3).

2.3.2. Long term approximation—Unlike the short approximation, in the long term
approximation new infection is ignored since the onset of therapy. In other words, /&, ) =
R(a 9 =0if a <t This implies that the integral needed to compute V() is simplified to

0] -
/ R(a, t)I(a, t)da, and once again we can consider I(a,t) = gV Te™%,
t

Another important distinction is that the term e~?’was included in /R(a, 7 equation assuming
that in addition of a being initially inhibited by the factor 1 — &, also decreases with time
on treatment due to the decay of replication templates (e.g. replication complexes or
negative strand HCV RNA), where parameter y represents slowing of viral RNA synthesis.
Without it, #would converge to a non zero steady state and its inclusion has been shown to
be consistent with an intracellular model [5] as described in detail in [18]. This simply adds
a term to the PDE of R as follows.

6Rgt1, D + ()Rgz, D _ (1- ea)a(a)e_ﬂ @

—[(1 - &,)p(@) + ku(@)|R(a, 1)

The method of characteristics was reapplied as previously to solve the PDE. From these
equations, given the simplifications on /and R, it was straight-forward to derive the long-
term approximation for V. Given A, Band N as in the previous section, the long-term
approximation is:
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VO _ et (o \CP A —ct _ ~@+pry, 1
y, =<+ gS)N[(B—y)5(5+y—c)x(e ¢ Jt 5= ®

|

2.4. Numerical methods

We implemented a variety of numerical methods from the simplest to the more advanced
ones that are tailored to our needs, starting from first order methods and describing them in
detail in order for our derivations to remain self-contained. We then build from bottom up
towards higher order methods, adaptive stepsize methods and implicit schemes in order to
better characterize the equations of our model using advanced numerical schemes [43, 44].

The general scheme of a numerical method in our context requires to solve a function £z, X)
which depends on time and a variable x. In this section we explore the solutions of the
functions 7and VVand—except in subsection 2.4.4 about the Rosenbrock method—~££, x)
will be always defined as follows. As in Eq. (2) in the case of Vwe have

fx=(1- es)Aoop(a)R(a, Hi(a,1)da—cxxand for 7, ft, X) = s—d *x- U * x.

2.4.1. Integral implementation challenges—The main obstacle for solving the system
of differential equations is that the integral term (1 - gs) / oo/)(a)R(a, Hi(a,t)da in Eq. (2¢)
0

makes problematic the direct use of a general ODE solver and limits it to only special cases
relating to the time steps. This requires an ad Aoc implementation.

Another problem caused by the integral is that it does not allow to directly apply canned
parameter fitting methods to the complete multiscale model. To overcome this challenge, the
long term approximation has been used to determine some parameters [18]. One limitation
of such an approach is that it is limited to the multiscale model under treatment, and could
only be used to approximate the variables ¢, §and &,. As a byproduct, we briefly explore
how a specialized implementation of the Levenberg—Marquardt numerical method can be
developed to perform parameter fitting directly from the multiscale model equations. In Sec.
2.5, we apply it to the parameter sfor illustration. We validate our implementation in Sec.
3.6.

No analytical solution can be computed for the aforementioned integral and it must therefore
be solved numerically unless analytical approximations are used. This is because of the
function /&, 2 shown in Eq. (5). At every time step £ the value of /depends on previously
computed values of Vand 7, which cannot be accessed with general ODE solvers.

In order to compute the integral, a first assumption is that its upper bound is 100. Since the
integral values represent the age of a cell we assume that cells die after 100 days.

The integral over a € [0, 100] can be divided into two cases. For a > £, the solutions are pre-
computed since they do not depend on any other function. When a < ¢, we need to know

Math Biosci. Author manuscript; available in PMC 2019 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Reinharz et al.

Page 8

some values of Vand 7. Given D, the number of days the system is to be solved for, the
strategy to evaluate this part of the integral depends on the type of framework used for
solving the ODE system, as described next.

Non-adaptive step framework: The ODE system is solved with a fixed time step /. This
implies that for every integer z € [0, D/ the values V/(z/) and 7 (/) are known. For every
value #= t/the integral needs to be computed. The Simpson’s rule method is used to
evaluate the integral, therefore a time step /7, must be selected. Similarly to z, we define an
integer z, € [0, 100//,). Given ¢ for every a= z,/1, (we recall that a < §), the values V(¢ - 4)
and /(¢ — a) are required. Thus, there exist a third integer 7 € [0, D/h] such that 7h = ¢ — a.
Therefore we should have z =z 1 /h +7. Since z, ;and 7 are integers a solution exists if /1,

is a multiple of /. In the following implementation, setting /1, = 10/ provides good results.

Adaptive step framework: In that case, the time step /is not fixed and therefore we cannot
use Simpson’s rule. Given /y the initial time step, we limit the value of /1to 10/5. The
integral step size A, will also be variable and this condition ensures that it will be at most
10/, to maintain the accuracy as in the non-adaptive case.

Given a list of m+ 1 time steps = [¢, -1, | such that 4y =0, ;= fig + -+ + hj4, and 1= tyis
the latest time for which the values of VVand /were computed. The strategy consists in

computing a quadratic interpolation over carefully chosen values of a. For i € [0,]Z]] let a;be
4y — ty—i By construction the difference between a;and ajq is 4y-—ty-j-1 < 10/.

To optimize the process, we do not record all values of VVand 7 but instead proceed as
follows. Given < a list of time steps, €[-2] the penultimate element of ¥, and E[-1] its last
element. At the next iteration values are computed for time £ If - [7— 2] > 10/, we
append ¢to . If it is not, we replace the last element I[—1] by £ The distance between any
two consecutive elements of € is at most 10/1 by construction, as desired.

2.4.2. First order methods—The Euler methods are the simplest first order methods.
They consist of two possible schemes: Forward Euler that is explicit and Backward Euler
that is implicit. The Forward Euler scheme is as follows. Given V,and 7,and a step /7we
simply update the equations:

Voi1=V,+hX ((1 - es)/mp(a)R(a, Hi(a,tyda—c*V,| (9)
0

T,.1=T,+hx(s—dT,—pV,T,)

The complementary scheme to Forward Euler is called Backward Euler, and is an implicit
scheme. It consists of solving the equations V11 = ¥, + Ax {t+ A, y1) which yields as
answers
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h(l - es)/cop(a)R(a, Hi(a,t)da
0

Vg1 =Vt 1+ch

(10)

shT

n

T\ = T hd v hpva+

where V(t+ h) = V.

2.4.3. Accurate methods with fixed stepsize—From the first order Euler methods
described above, in order to achieve better accuracy we advance to Runge—Kutta 4th order
(RK4) and Gauss-Legendre 4th order. Gauss-Legendre is an implicit version of RK4, which
is a collocation method based on the points of Gauss-Legendre quadrature [44]. As will be
shown, Gauss-Legendre is more stable than RK4 for our problem.

In general, the system of equations to solve Runge—Kutta order sis
8
Vas1=Yp+h Y bk, suchthat (11)

i=1
i—1

k= flt+qhy, +h Zlaijkj
] =
and given &, b, g,as in Table. 1.

Different ensembles of equivalent constants 4 b and g can be determined. In all the cases
presented here they were selected from [43].

Let us first look at ) for V.1 attime £+ /.
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ki =(1-¢) /0 " p(@R(a. da - v, (12)
=/(t.v,)

kY =(1-¢) /0 ” p(@R(a,t + qyh)l(a,t + gyh) da — c(V, + hay K} )

= f(t+axh, V, + hay k})

K =(1-¢) /(; ” p(@R(a,t + q3h)l(a,t + gzh)da — c(V,, + hag,ky )

= f(t+ash, V, + hay k5)

ky=(1-¢) A oop(a)R(a, t+quh)i(a.t + quh) da — oV, + hask} )

= f(t+ q4h. V,, + hayzk3), such that

Vv Vv Vv Vv
Vo1 =Vt h(bk{ + bk + bk +bk)).

Similarly in the case of 7(2) for 7,1 at time £+ /7we have (note that ¢; = 0):

ki =s—dT,— pvV(T, (13)
=s—dT, - pv,T,
ky =s— d(Tn + haZIkIT) — pV(t + q2h)(Tn + ha, 1’<1T)

Ky =5 — d(T, + hazyk}) = BV(t + q3h)(T, + haz,)3)
ky =s—d(T,+hayk3) = BV(t + q4h)(T, + hazk} ), such that
Tyyy=T,+h(bk] +byk] + bkl +bky).

Note that V(z +g;2) =V, + qihkly.

An implicit version of Runge—Kutta with a fixed stepsize is Gauss-Legendre. Similar to
H : s
Runge-Kutta order s, for the main equations we have y, |, =y, + hZi _ 1 bjk;. But the value

s a. k.

kiis slightly different, notice the bound of the sum in: &, = f(t +qhy,+ hzj —1%; J).

Given s= 2 (for simplicity), we have used the Butcher tableau shown in Table 2.

We need to solve, first for V; the following implicit equations:
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(o)
k =(1-¢) fo p(@R(a,t + qh)I(a,t + g h)da — c(V,, + hay k| + haj,k; ) (14)
= f(t+ a,h, V,, + hay kY + hay,k; )

(o)
K =(1-¢) fo p(@R(a,t + qh)(a,t + gyh)da — oV, + hay kY + hay,ky )

= f(t+ axh, V,, + hay k| + hayyky ),

which can be re-written as:

ki =A+Bxky (15)

1
X 1+ ch(a22 + aZIB)’

k;/ = ((1 - gs) [) oop(a)R(at, Hl(a,yda—cV, — chaZIA)

[So]
(1-¢) /0 pl@R(a, Di(a, )da—cV —ch

a
and B = 12

where A = 1+cha11 1+cha11

. Similarly for 7we have:

k| =s—d(T,+hay k] +hayk3) = BV(t + q,h)(T,, + hay k| +hay,k3)  (16)
K} = s —d(T, + hay k] + haykl) = V(¢ + q,h)(T,, + hay k| + hayk3 ),

which can be re-written as:

C + Dk%
r o S= (d + BV(t + q,h))(T,, + ha,,C)

27 T+ h{d+ V(i + goh))(ay, D + ay)’

where C=s-dT,— BV (t+ ) Ty, D= —hayp(d+ UL+ g h)), and E= 1+ hay1(d+ AL
+q1h)). We recall that V(¢ + gh) = V, + g;hk; .

In practice, the two functions Rand /are only evaluated at £and not £+ g,/. Two reasons
justify that choice. First, as previously discussed in Sec. 2.4.1, the integral over ais divided

100 ' 100
into two parts, before and after #(i.e., / da =/ da + f da). The latter change would
0 0 t

t+qxh

shift the integral to f

100
da + / da. We argue that those values are close to each
0 t

+ qxh
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other in realistic setups. The maximal gy shown in Table 1, is 1. Given that we chose (see
h
a

Sec. 2.4.1) the integration step /1, as 104, the difference between tand ¢ + g,/1is at most 0

a

tenth of a step. A simulation over two days requires 200 steps to evaluate the integral, with
hy=0.01. Therefore it represents less than 0.05% of the integral’s value. Second, to compute
that additional portion in the first part of the integral, it requires to know the value of 7and
Vat a time greater than ¢ To do so would require a more uncertain approximation than the
one being evaluated, increasing the total error. The same reasoning has been used in [45] to
show that in the Rosenbrock method, described in the next section, the Jacobian should be
computed only once with the initial values and not with the intermediary values.

2.4.4. Accurate methods with adaptive stepsize—As for the previous methods with
a fixed step-size, two adaptive stepsize methods are implemented. Dormand-Prince [40],
which is explicit, and the Rosenbrock method [41], which is implicit. Similar integration
methods to Dormand-Prince (RKDP) are Fehlberg (RKF) [46] and Cash-Karp (RKCK) [47].

Conceptually, the Dormand-Prince method solves the same system as RK4, Eq. (11). The
idea behind the adaptive time step is to solve it for two consecutive orders allowing to
estimate the total error in the last computed time step. The Butcher tableau [40] in Table 3 is
used in our implementation. Traditionally the 51 order estimate— b; values—is used and the

6th order— b;.“ values— allow to evaluate the error.

The equations are built exactly as for the RK4 method. To evaluate at time 7+1 the size of

*  the method in [43] is used. The parameters are the

the next time step given Vipand v, |,

tolerance e = 1072, a safety value of 0.9 and the value Ag. A consists of the ratio of the error

v o -V
given the previous value or —* lv "+l ifthe step just taken is of size /2then the next step
n
size is:
AO 0.2
09]1 ? AO Z E
v
next — A 0.25 (18)
0.9h‘—0 Ay<e.
&

In the same way a value hgm is computed. The smallest from both is considered as Apext. I

any of those is in the first case, where the step size needs to shrink, we discard the present
calculation and restart with the new and smaller step size.

The implicit Rosenbrock method is implemented as described in [43]. In its most general
form the method seeks to solve the following equations given that a;; 7, y;; and gjare well
chosen constants. We can notice that a Runge-Kutta scheme is retrieved by setting y = y; ;=
0. In this implementation, it is important to note that fis now a vector of two functions,
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dr ° dt
is exactly:

[dT(t) dv()
dr ’ dt

] and that the notation f{;, + X) is used to represent the array [@ dv(’)] which

f(yn + x) = [s - ﬂVn(Tn + x) - d(Tn + x), (19)

(1 — es)/oop(a)R(a, Hi(a,t)da — c(Vn + x)
0

o0
Note that the part (1 - es) / p(a)R(a,H)(a,t) dais constant at each iteration. It is computed
0

separately and is not involved in the method.

A formal definition of the general Rosenbrock method of order sis that it consists of solving
the implicit equations [43]:

S
Yoy =Vn+ Z gk, such that (20)

i=1
i—1
(1 = yhf)k; = hf|y, + Zl ai’jkj)
J=
i—1

+hf' Y Vi Ky i= 1,
/=1

were £ denotes the Jacobian matrix, which is:

—d—pV —BT

f/=( 0 _C). 1)

We note that in Eq. (21), we omitted the term containing the derivative of Aa, 2 in function
of Vand 7. This is due to the fact that it is dominated by (1 — 48, which is 9 order of
magnitudes smaller than the other terms. A final substitution provides a form allowing a few

optimizations. Given g; = z k .+ yk; the equations become:

i—1
=17,

Math Biosci. Author manuscript; available in PMC 2019 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Reinharz et al.

Page 14

(yih - ’)gl = f(v,) (22)
1 ,

(y—h - f )82 = fln+ay8)

+45.81/h

1 ,
(},_h -f )g3 = [y, +a38, + a38,)
+ (43181 + 43,8,)/h
1 ,
(y_h -f )84 = [y, + ag18) + ag8y + ay383)

+ (4181 + 428 + d4383)/h -

Finally, to better control the error it has been shown that we must add for each g;the value

hqix% [43] on the right hand side where g;y are predetermined constants. Note that since 7

isa 2 x 2 matrix and fisa 2 x 1 vector, gs are 2 x 1 vectors.

Once the four g;s are computed, we can directly evaluate the next values and the error using
only 8 parameters, which we will call 55 and es. The next value is thus V1 = yp+ bigr +
by + bygs + bugy and its associated error €= ey + &g + €393 + €194 All the required
parameters are now presented and the values depicted in Table 4 are used.

The main advantage of this technique is the automatic step size adjustment, more so when
the equations are stiff. As with Dormand-Prince, an error is computed using two sets of
coefficients. The current implementation uses terms of order 4 and 5 to evaluate the error.
The next step size is found using Eq. (18) with two differences. First, the exponents are 1/3
and 1/4 [43]. Second, the term Ag contains the derivative, formally in that case

e

A . As previously if a shrinkage of the step is observed we discard the

0 v, +hy, +107%0

present step and start again with the smaller value. By limiting a step size increase to at most
1% of the previous one the error induced by the integral appears to become negligible (data
not shown).

2.5. A numerical scheme for direct parameter estimation from the multiscale model

equations

As mentioned in Sec. 2.4.1, the structure of the equations is problematic when trying to use
some general fitting methods as canned solvers (e.g., calling the Levenberg-Marquardt [43]
as a canned method). In passing, we briefly show here how the multiscale model equations
can be adapted for the fitting of parameter s when combined with a full implementation of
the Levenberg—Marquardt method, without the use of canned solvers. Such a scheme can be
generalized for other variables besides sand is left for future work that is beyond the scope
of this contribution.
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Briefly stated, the main idea for the development of a new parameter fitting scheme that
should be more flexible than what was used in [18], which utilized Levenberg-Marquardt as

a canned method, is how the the derivatives of 7and Vwith respect to scan be evaluated.
aT(z)
d

dT(¢)
Tdr

dV(z)

As schemes to solve == and being already implemented, we can notice that

aT(t)

and can be determined and thereafter solved with the already implemented schemes.

Those values are exactly:

d
a5 - ﬁ(aV(t) o+ V(I)avu)) FALORPN
e 0s
475 _( X al(a D4y VO (oap
a =) ) " pla)Raa, 5.~ (23b)

where:

ov(t oT(t — a) )eaa iy

al(a, 1) ﬂ(a—a)T(t a) + V(= a)=—5

s (24)

e~ % a>t

Let us note that the partial derivative of A(4, ) is 0 and thus ignored.

These equations can be directly integrated in the previously discussed schemes since they
are working on a set of ODEs in parallel. Practically, we need to increase the dimensions of

the vector £, defined in subsection 2.4.4, to include those new equations. We now need to

a7 (1) daV(z)
d7(r) dv(r) ds ds
de > dt > dt > dt

solve for f(yn + x): = . The only additional variable to be inserted

is a tolerance on the error of the fitting. In section 3.6, we report on a successful proof of
concept for the new parameter fitting scheme that was briefly outlined here and will be fully
dealt with in future work.

All the methods are implemented in Python3 using the SciPy library. The implementations
are freely available at http://www.cs.bgu.ac.il/~dbarash/HCVnumerics. The default
implementation in SciPy of an ordinary differential equation solver leverages ODEPACK
[48] and is referred to as the canned solver Default. For this entire section, we used the
parameters from [18] and shown in Table. 5. The parameters that are changed through the
results are the number of days, the size 4 of the steps for the ODEs, and the size 4, of the
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steps for computing the integral. In the case of adaptive methods we bound the stepsize by /
as minimum and /1, as maximum.

3.1. Limitation of the short-term approximation

The short-term approximation is shown in Fig. 1a in blue. The results are shown for only
two days since the behaviour is smooth and conserved on longer time scales in agreement
with previous results (Fig. 2A in [18]). It is clear that after twelve hours the value converges
far from the PDE model solution (the PDE model solution is computed by the canned solver
Defaultimplementation as described at the beginning of the section). This is expected since
the effect of the treatment on the infection rate is not taken into account. The analysis will
therefore focus on the long-term approximation.

3.2. Limitation of the long-term approximation

In [36] it is hypothesized that “ The long-term approximation is an underestimate of the
PDE model solution since some infection events are being ignored. However, with realistic
parameters characteristic of potent therapy, the difference between them is very small.” Fig.
1b depicts the result of our scheme, measuring the difference between the long-term
approximation and the solution of the multiscale PDE model (Figure 2B in [18]). We show
that the long-term approximation is converging to a number with the numerical solution and
we are indeed obtaining that the long-term approximation is an underestimate of the PDE
model solution (as the difference between the long term approximation and the solution of
the PDE model is negative). The difference of less than 0.01 that we are obtaining is very
small compared to the y-axis units shown in Figure 1 of [36]. Therefore we are actually
viewing in Fig. 1b this small effect that was inferred in [36] regarding the long-term
approximation. This limitation of the long-term approximation is worthwhile mentioning
although it is less severe than the limitation of the short-term approximation. Therefore in
practice, the long-term approximation is favored over the short-term approximation,
although the numerical solution offers an attractive alternative to analytical approximations
and could be easier to adjust when introducing changes to the model.

3.3. The multiscale model equations are stiff

A significant observation that can be inferred already when starting to experiment with the
multiscale model equations by numerical solutions is their stiffness, or how they can be
numerically unstable even with a small stepsize. The most straightforward numerical method
to implement is forward Euler, described in Sec. 2.4.2, followed by RK4 discussed in Sec.
2.4.3. An implicit version of RK4 in the same section is the Gauss-Legendre method. With
small time-steps, the quality of the results is similar between all methods. But as we increase
the size of the steps, the instability of the equations can be observed as show in Fig. 2 over
20 days. Both forward Euler and RK4 quickly diverge from the long-term approximation,
which is close to the numerical solution as shown previously. On the other hand the implicit
method of second order Gauss-Legendre that belongs to the Runge-Kutta family tends to the
correct solution.
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3.4. The problems encountered when using a canned solver for the numerical equations

Without taking a detailed examiniation of the equations, a straight-forward strategy that is
simple to implement and pursue is the utilization of a canned solver (an ODE solver called
from by a command within a program that is written in a higher level language such as
Matlab and Mathematica, or Python). Those canned solvers solve the equations
automatically, determining the time steps given a tolerance provided by the user (only initial
and extremal values for the time step can be given). However, a restriction of such a strategy
is that the equations need to be self contained in a set of ODEs without additional integrals
that may complicate the matter, as discussed in Sec. 2.4.1. The integral term

(1 - ss) f * p(a)R(a, H)(a,t) da cannot be solved analytically and thus a numerical approach
0

must be used. Doing so requires to know for which times #the values of Vand 7 are known,
and what they are. Such a scheme is incompatible with the canned solver strategy. A
workaround to not fully implement a solver within a program is therefore to use a canned
solver for small increments of times /and after each iteration, compute the integral again.
We illustrate this approach in Fig. 3 and it is the strategy used to evaluate the system with
what we call a Default method. This is not sustainable for long time intervals as the number
of iterations grows quickly and defeats the purpose of the implementation of advanced ODE
solvers that utilize multistep methods or adaptive timestep methods. In this strategy, there is
no advantage in using in the canned solver a sophisticated multistep method such as the
Backward Differentiation Formula (BDF) or the Rosenbrock method that are especially
suited for stiff equations because of the small time increments that do not provide a chance
to exploit the advanced method used in the canned solver.

In contrast, a full implementation of the Rosen-brock method gives full access to the error
term. With that information, a more subtle integration of the problematic integral is
performed as shown in Fig. 4. There are two main differences. First, we need to keep track
of the times at which the ODE system is solved in the array .7, which is required to compute
the integral since those are not fixed anymore. Second, after each iteration we use the known
error to modify if possible the time step /to potentially decrease the number of required
iterations. This is shown to be a successful strategy as presented in Table 6.

3.5. Advantages of implicit adaptive stepsize methods
As previously explained, the integral term (1 — &) f oop(a)R(a, H)I(a, t) daimpedes the use of
0

adaptive stepsize in the canned solvers. Such methods are essential to allow fast
computations of complex models like ours. We present in Table. 6 the number of iterations
computed using the Rosenbrock and Dormand-Prince methods, shown in Sec. 2.4.4, in
comparison with the default canned method for three different values of #and £, With the
smallest step-size, the Rosenbrock method is more than nine times as efficient as the default
canned method, giving results of similar accuracy as shown in Fig. 5 and with simulations
extended to 14 days. This is crucial since the methods with fixed stepsize can take up to tens
of seconds per day of simulation with #=0.001 and /,= 0.01. Under those conditions a
nine-fold increase in speed, through the decrease in the number of iterations, provides a
much needed advantage when testing large number of parameters over long time periods.
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This is the main inference from Table. 6, showing the advantage of adaptive stepsize
methods. Interestingly, with the highest value of /, the Rosenbrock method takes
proportionately additional steps. This is due to the greediness of the stepsize adjustment,
which when increased too quickly (thereby inducing a large error) backtracks and starts
again with a smaller value. The Dormand-Prince adaptive stepsize method performs
somewhat better than the Rosenbrock method in terms of number of iterations but is
vulnerable to the stiffness of the multiscale model equations, as elaborated below.

Simpler methods than Rosenbrock exist with adaptive stepsize. A well used scheme is the
Dormand-Prince method that was described in Sec. 2.4.4. The latter is an explicit method,
while Rosenbrock is implicit, and therefore Dormand-Prince is vulnerable to the stiffness of
the equations. We show in Fig. 5 that with a modest increase in the stepsize /the Dormand-
Prince method already converges to the wrong value compared to the default method and the
Rosenbrock method. We note that Rosenbrock needs almost a third of the number of
iterations as the Default method in that case with similar results.

3.6. Parameter estimation example performed directly from the multiscale model equations

In sub-section 2.5, we briefly sketched an idea for a new strategy that performs flexible
parameter fitting and is in line with our overall strategy to tackle the problematic issues with
the integral mentioned in sub-section 2.4.1. As a proof of concept, to evaluate our method,
we generated an ensemble of data points over one day with our implementation of the
Rosenbrock method and the parameters in Table 5.

We then applied our implementation of the Levenberg—Marquardt method with different
starting points for the parameter s, which can not be recovered when using the long-term
approximation. Using 20 values of sequally distributed in [0, 25] we observed that in all
cases the method converged to the correct value of sused to generate the data points, inside
the provided tolerance on the error of 0.001.

4. Conclusions

A viral dynamic model that considers intracellular viral RNA replication, namely an age-
structured PDE multiscale model, has been recently put forth to study viral hepatitis
dynamics during antiviral therapy [18, 36, 4]. This type of model is more complicated to
solve than previous models. The seminal works that introduce the age-based multiscale
model are predominant by analytical approximations, with some numerical solutions that are
either based on simple first-order methods or canned solvers (ODE solvers used in higher
level languages such as Matlab and Mathematica, or Python). Neither of these numerical
solutions are satisfactory for realistic simulations of several days of infection and therapy in
terms of accuracy, efficiency and stability.

Analytical approximations to the multiscale model have limitations. The short-term
approximation holds for only half a day and the long-term approximation is an
underestimate of the PDE model solution, which was anticipated in [36] because some
infection events are being ignored with this analytical approximation. By experimenting
with numerical solutions, one can observe that the governing differential equations are stiff
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and therefore advanced numerical methods are needed. First-order methods with fixed
stepsize or alternatively, the use of canned solvers, do not offer a comprehensive solution
treatment to the model and are limited in scope. For example, in the multiscale model, there
is an integral term that needs to be computed at each time step depending on previous
iterations, which is inadequately done by canned solvers. Higher-order methods with
adaptive stepsize are offering a considerable improvement in terms of both accuracy and
efficiency. An implicit higher-order method with adaptive stepsize was found to be the most
stable, in addition to being the most accurate and efficient among the various methods being
compared that are adequate for this model. As a byproduct, the overall strategy of using fully
implemented numerical schemes applied directly on the multiscale model equations allows
parameter estimation of the full multiscale model.

Although it is expected that the Rosenbrock mehod remains competitive for this application,
other methods that might be advantageous in some ways could still be tried. Among them is
the Backward Differentiation Formula (BDF), which is an implicit method belonging to the
class of linear multistep methods that have been used for the solution of stiff differential
equations, or other variants of Diagonally Implicit Runge-Kutta (DIRK) that are described in
[49]. In these other DIRK variants, one nonlinear system has to be solved per step, whereas
Rosenbrock schemes are derived by linearizing a DIRK method, resulting in schemes where
only a linear system has to be solved per step. Therefore the cost of time should be lower,
but larger time integration errors in the Rosenbrock schemes might arise, leaving the
possibility that some of these other DIRK variants might also be competitive in their
accuracy. Nevertheless, the Rosenbrock method is expected to remain attractive for solving
the multiscale model numerically because of its efficiency.
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Appendices

Appendix A. Method of characteristics

Appendix A.1. R(a, t)

We have the relation

R0 4 KD  o(a) = [pla) + pta)]Ri@, ). (29)

The method of characteristics consists of finding a parametrization of aand ¢in z such that
the coefficient of their respective derivatives allows to combine them as such:

dR@D,12) _ IR 91| ORI _ oa(e) - [pla(@) + p(a@)|R(a(@). 1))
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In this case, they are at 4 — ¢= k, for ka constant.

Appendix A.2.a=>t

The parametrization in zis such that a(z):a, m;f a and #(z):0 m;f t

dr
t—T:a—l (26)
a=1+a0=>?1—j_=1. (27)

Therefore the equations (25) and (27) are consistent together. \WWe now have to solve the ODE:

R+ [p(a(0) + p(a(0)]R(a(r), (7)) = a(a(7)) .

Using the methods of constants Appendix B we need to solve

/ Lo(a(n)) + ula(n))dn
K' = a(a(r))e

I

ot + atian
K= [)- a(a(u))e du+ C,

which implies that:

u t
f Lo(a(n)) + ula(n)dn - A [p(a(2) + u(a(e)]dr

R(a(7), (7)) = /(; ta(a(u))e du+Cle

t t
- f [pa(@) + pla@)ldr  — f [p(a®) + pa()]de f “ L oa(m) + p(atm))ldn
=Ce 0 +e 0 0

du.

f ta(a(u))e
0

In particular, when z =0 we have R(a(0), {0)) = R(ay, 0) = Cand therefore:

t
/ ala(u)
0

t t
- / [p(a(®) + ua(z)]dr - f [p(a()) + u(a(z))]dr
R(a(0). (2)) = R(a 0)e e 70

- f “Iptatn) + u(a(n)ldn
e 70 du.
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Given the steady state distribution R(a), we have as assumption the parametrization (27) and
that R(a, 0) = R(a) = R(a,0) = R(a —1,0) = R(a — 1) S0 R(&, O, a > tis:

/ [p(a(@) + p(a(z)]dz / [p(a(?)) + p(a(z)]dz
R(a,?) = R(a — te [) a(a(u)

f “Iotatn) + u(a(n)ldn
0 d
u.

We will finish by re-writting those equations using the parametrization (27). First notice
that:

t
/ [p(a() + p(a(@)]de = / “Lo© + w1
0 a

and

a,
0
L “Lo© + oz = [) L + uo1g ~ A [p(O) + HOL,
0

therefore

/ [p(a(@) + pla@)ldr € / [p(0) + w()]d

/ [p(O) + u(©)]dS

t
- / [p(a(2)) + u(a(z))]dr
thene =

(28)

N
- / [0(©) + WOl @ @

Let be z(a) =e wlag) — #a=1)

/ [o(a() + ulatr))ldn

R(a,?) = R(a — 1) ”(”) () / aa(u))e

n(a — ﬂ(a 1) du.

We can use once more the result of Eq. (28) to arrive at:

n(a) n(a)

R(a,?) = R(a — t),,(a ) ;r(u -1
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7(a) 7(a) n(a — )

R(a,?) = R(a — ’),,(a -1 " mla—1)

a(a( )

R(a,1) = Rla— "9 _ 4 f HDa(@w) g,
, ) i+,

n(a—t n(a — u)

Assuming that a, p and y are constant we can solve the integral:

a
(p + u)dv

/l 7(a) /
- / “o+ ﬂ)dv

t —(p+ma
B fo e—(p+ﬂ)(a—u)

_ afote—(p +ua+(p+ua—uy,

t
_ a./o (0 + g,

_ 1 —(p+me_ 1
_a(—(ﬂﬂt)e —(ﬂ+ﬂ))

0 -OF[ /4)(1 e +”)t)'

We thus obtain:

R(a,1) = R(a — t)ﬂ(]:z(i)t) v Z ;4)(1 _e— (i)

Let us re-write
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n(a) e

¢ d
A (p+ p)dv
_ —

na—1t) t
—A (0 + H)do

c

~ e~ (P +ua
Tt ma-n

=Pt

then

R(a,t) = R(a — 1) ﬂ(z(ci)t) + o j‘_ ,u)(l el +M)t) (29)

=Ra—pePtmwry X & ~(p+pr
(@=1 p+w (p+mw
-_¢ R a —(p+
=——~+|Ra—1) - e :
VIR S
Appendix A.3.a<t
T:t0—>t
In this case, we have a < £ then let us parametrize in function of zsuch that a():0 ——a
Tith—1
and #(z): ty——1
dr
t=1t=> E =1 (30)
da
a=1—t0=>5=1 (31)

The change in conditions is first important in the general equation, where we can notice a
change of bounds to the integrals:
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t t
—[ [p(a(7)) + u(a(z))]de —[ [p(a(?)) + u(a(r))]dz
t
RGa(),(x) = Ce  © ye 0 / aa(u)
Yo
u
| totatn + oo
0

e du

At the boundary condition /R(a(0), 0)) = R0, &) = 1 (by assumption) and as all the
integrals go to zero we have C= 1. Let us now notice that the

t

/ [p(a(®) + pla(e)]dr = / Lo + w(O))de, which implies that

N 0
~ [ taten + wtatar

e O = n(a) and we can therefore rewrite

! 1
R(a(z), 1(7)) = n(a) + n(a) /t . a(a(u))mdu,

[ “oatn) + platm)ldn

sincee ° = ! = ”Lu If we assume that a, p, yare

- [ “Iptatn) + u(a(n)ldn
0

(S

constant we can solve the equations and obtain:

a
- / [p(a(?)) + u(a()]dz

n(a)=e

a
—/0 [p + pldz

=e

—olp+ula

It remains to solve

/ta(a(u))%du= /tae[/""”]udu
0 ‘o
= faae[p-'—ﬂ]gd{

0

- ﬁ(e[p +ula _ 1) _

Combining it all together:
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— o lptpla  ~lp+ula_a [p+ula _
Ra,f)=e +e p_'_'u(e 1) (32
_olptpla _* (1 _ ~lp+ula
=e +p+u(1 e )

—elptula a o el +ula
ptu ptu
= +(1— “ )e_[p+”]a.
p+u p+u

Appendix A.4. R(a, t) solution

Combining the two previous sub-sections, we can obtain the following general closed form

for R(a, b:
a a_\-lp+pula
+(l— )e a<t
Ran=|""* pru (33)
D a —(p+pt
+|R(a—1) - 21.
(p+p) ((a ) (p+/4))e “

Appendix B. Variation of Constants / Parameters methods

Given the ODE:

[ +ax)f =0,

one can solve it as follows:

§+a(x)=0

Inf + /a(y)dy = KO
X

Ky~ A a(y)dy
€

- f a(y)dy
x .

f=e

f=Ke

If instead of 0 on the right-hand side there is a function g(x):

fr+anf = g),

then the only thing that changes is the parameter K; which is now a function of x. Therefore
we must solve
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—/);a(y)dy —/xa(y)dy —/a(y)dy

f=Kxe = f =K'(x)e —aKxe

It follows that

- f a(y)dy - f a(y)dy
X X

f +ax)K(x)e dy = K'(x)e

= [ a(y)dy
f+ax)f=Kwe v

— [ a(y)dy
g =K'e 7

(»nd
g(x)e/xa P =K'(x).

The last equation needs to be solved for the specific problem.
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Highlights

We investigate numerical solutions to the multi-scale model of hepatitis C
virus dynamics

We show that the long-term approximation is an underestimate of the PDE
model solution

The numerical solution should consider previous iterations of the associated
integral in the model, making problematic the use of canned solvers
Considerable gain in efficiency can be achieved by using adaptive stepsize
methods

We compare between several numerical schemes and conclude that an
implicit adaptive stepsize method is both efficient and stable

We demonstrate the use of a numerical optimization scheme for the parameter
estimation performed directly from the equations
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Figure 1.
The parameters are /1= 0.001, /1, = 0.01, and over two days.

(a) The log values of the long-term and short-term approximation are shown compared to the
PDE solution using the canned method (Defaulf). The convergence close to the long-term
approximation can be observed.

(b) We observe the underestimation of the PDE equations by the long-term approximation.
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Figure 2.
Under the parameter values /#t= 1, ha= 1, and over 20 days, the model equations are shown

to be stiff. Both forward Euler and RK4 diverge quickly. Gauss-Legendre (implicit method)
is correcting itself and moving towards the desired solution that utilizes small stepsize.
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Compute the integral fot da [<-

Solve the ODE system for
V and T at time t + h

Figure 3. Canned method flow
When using the canned solver, the production of free virus depends on all preceding time

steps. The canned solver to solve the ODE must therefore be called with a small time step /
and use that value to reevaluate the integral before the next iteration. This strategy does not
allow to exploit the benefits of the specialized method that is used within the canned solver.
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Compute the integral fI da

l

Solve the ODE system for
s V and T at time t + h
Retrieve err

l

F —

Update h given err

Figure 4. Rosenbrock implementation flow

Page 33

The full implementation of the method gives us the error, er r, at each time step. Doing so
allows to vary the size of the step /2. We keep track of the time steps necessary to compute
the integral in an auxiliary array .7 (initialized at the beginning to an empty set) to take full

advantage of the adaptive step sizes.
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Figure 5.
Adaptive time step stability with parameters /4= 0.01, #a= 0.1, and over two days.

Rosenbrock and the canned solver (Defaulf) converge to the same solution while Dormand-
Prince does not converge to the right solution.
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Table 1

Butcher tableau for Runge—Kutta 4th order

0] qjj
0

12 12

12 0 12

b~ U6 13 13 13
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Butcher tableau for Gauss-Legendre

i CH
1/2 /316 v 1/4 — /316
1124316 1/4+/3/6 v
b= 12 12
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Table 3

Butcher tableau Dormand-Prince

Gi aj

0

1/5 1/5

3/10 3/40 9/40

45 44/45 -56/15 32/9

8/9  19372/6561 25360/2187 64448/6561 212/729

1 9017/3168 355/33 46732/5247  49/176  5103/18656

1 35/384 0 500/1113  125/192  2187/6784 11/84

b; 35/384 0 500/1113  125/192  2187/6784 11/84 0
, 517957600 0 7571/16695 393/640 92097/339200  187/2100  1/40
b

l

Math Biosci. Author manuscript; available in PMC 2019 June 01.

Page 37



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Reinharz et al.

Table 4

Rosenbrock method parameters

y=05

ap = 6/25

quy = —-112/125
by = 19/9

by = 125/108
6=0

Gox =312

a1 =20 a5 = 48/25
G =-8 @51 = 372125
Gup = -54/125 g3 =-2/5
b =12 bs = 25/108
e =17/54 & =17/36

e, =125/108 Q=112
Gax=121/50 gy, = 29/250
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The parameters of the model used in all simulations, taken from [18].

Table 5

Parameter Value Parameter Value
s 130000 cells/mL B 0.00000005 mL day~? virion=t
d 0.01 day™! s 0.14 day™!
x 6.36 c 22.5 day1
a 40 day™! P 7.95 day~1
U 1 day™! ¥ 0.24 day™*
&5 0.65 &4 0.997
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Table 6

Number of steps taken by the Dormand-Prince (Do.—Pr.) and Rosenbrock (Ros.) methods given /and £,
compared to the number of steps taken with the canned method (Defauld). The results are for a simulation run
of 14 days.

h h, Ros. Do—Pr. Default

0.001 0.01 1543 1403 14000
0.005 005 582 295 2800
001 01 563 290 1400
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