

HHS Public Access

Author manuscript

J Assoc Nurses AIDS Care. Author manuscript; available in PMC 2019 November 01.

Published in final edited form as:

J Assoc Nurses AIDS Care. 2019 ; 30(6): 675–681. doi:10.1097/JNC.0000000000000088.

Postpartum depression and prevention of mother-to-child transmission of HIV in Kenya

Tyson Hegarty, MPH, RN [Graduate Student],

Department of Global Health, University of Washington, Seattle, Washington, USA.

Christine J. McGrath, PhD [Assistant Professor],

Department of Global Health, University of Washington, Seattle, Washington, USA.

Benson Singa, MBChB, MPH [Senior Research Officer],

Kenya Medical Research Institute, Nairobi, Kenya.

John Kinuthia, MBChB, MPH [Head of Research and Programs],

Kenyatta National Hospital, Nairobi, Kenya.

Grace John-Stewart, MD, PhD [Professor],

Departments of Global Health, Medicine, and Epidemiology University of Washington, Seattle, Washington, USA.

Jillian Pintye, PhD, RN, MPH* [Affiliate Assistant Professor],

Department of Family and Child Nursing, University of Washington, Seattle, Washington, USA

Collaborative HIV Impact on MCH Evaluation (CHIME) Study Team

Keywords

depression; HIV; maternal health; postpartum; prevention of mother to child transmission (PMTCT)

Depressive disorders are among the top 10 causes of the global burden of disability-adjusted life-years (Global Burden of Disease Study 2013 Collaborators, 2015). People living with HIV (PLWH) are more likely to experience depression than uninfected people (Boarts, Buckley-Fischer, Armelie, Bogart, & Delahanty, 2009; Endeshaw et al., 2014; Nyirenda, Chatterji, Rochat, Mutevedzi, & Newell, 2013). Several individual studies and meta-analyses link depression to adverse HIV-related outcomes among PLWH, including lower antiretroviral therapy (ART) uptake, lower ART adherence and reduced overall health status (Boarts et al., 2009; Endeshaw et al., 2014; Kingori, Haile, & Ngatia, 2015; Yotebieng, Fokong, & Yotebieng, 2017). Few studies have assessed the relationship of postpartum depression (PPD) among mothers living with HIV and prevention of mother-to-child HIV transmission (PMTCT) outcomes beyond the uptake of services and breastfeeding practices (Hartley et al., 2010; Tuthill, Pellowski, Young, & Butler, 2017; Yotebieng et al., 2017).

*Corresponding Author: Jillian Pintye: jpintye@uw.edu.

Disclosures

The authors report no real or perceived vested interests related to this article that could be construed as a conflict of interest.

Author Manuscript

Even fewer data are currently available on PPD and PMTCT outcomes among mothers living with HIV in low and middle-income countries (LMICs; Hartley et al., 2010; Tuthill et al., 2017; Yotebieng et al., 2017). Therefore, the impact of PPD among mothers living with HIV on clinical PMTCT outcomes in LMICs is not well understood.

PPD can decrease a mother's engagement in health promotion activities (Madeghe, Kimani, Stoep, Nicodimos, & Kumar, 2016; Rahman, Bunn, Lovel, & Creed, 2007). Among mothers living with HIV, this could negatively influence uptake of and adherence to PMTCT services (including antenatal care attendance, HIV testing, and antiretrovirals [ARVs]), which, in turn, could increase mother-to-child transmission (MTCT). The impact of PPD on PMTCT outcomes could have significant implications, particularly in regions with high maternal HIV burden and where MTCT persists as a public health challenge. To date, few studies have reported the prevalence of PPD in Kenya and none have evaluated the relationship of PPD and PMTCT outcomes among mothers living with HIV (Yator, Mathai, Vander Stoep, Rao, & Kumar, 2016).

We assessed the prevalence of depressive symptoms among postpartum mothers living with HIV in Kenya and evaluated the relationship between maternal depressive symptoms and PMTCT outcomes, including uptake of maternal and infant ARVs for PMTCT, MTCT, and maternal health.

Methods

Study Design and Data Sources

We conducted a secondary analysis using data from a large cross-sectional survey of mother-infant pairs (McGrath et al., 2018). The parent survey was conducted in 141 maternal-child health clinics across Kenya between June and December 2013 and collected data from mother-infant pairs attending clinic for 6-week or 9-month infant immunizations. The overall aim of the parent study was to evaluate PMTCT programmatic effectiveness by administering questionnaires to determine prior maternal HIV testing and ARV use and conducting HIV virologic testing of infants to determine HIV status. Facility selection, sampling, and survey methods have been previously described (McGrath et al., 2018). Briefly, probability proportionate to size sampling was used to randomly sample facilities. All eligible mother-infant pairs attending selected facilities during a fixed 5-day period were recruited.

Standardized questionnaires were administered by study nurses to obtain information on socio-demographic characteristics, obstetric history, and maternal and infant health indicators. Maternal HIV status and ARV use by mothers and infants was self-reported by mothers and verified by the women's Maternal and Child Health Booklet. Dimensions of HIV-related stigma and discrimination were assessed using a validated tool developed to assess blame/judgment and moral values of shame (Kohler et al., 2014; Turan & Nyblade, 2013). Experience of intimate partner violence (IPV) within the past 6 months was assessed using the Hurt, insulted, Threatened with Harm, and Screamed (HiTS) domestic violence screening tool (Sherin, Sinacore, Li, Zitter, & Shakil, 1998). IPV was defined as a HiTS score higher than 10 (Sherin et al., 1998). Maternal depressive symptoms were assessed

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

using the Patient Health Questionnaire (PHQ)-9, which has been validated for use in Kenya (Monahan et al., 2009). According to Kroenke, Spitzer, and Williams (2001), having symptoms of moderate depression is indicated by a PHQ-9 score higher than 10. A meta-analysis of PHQ-9 utilization determined that an optimal cutoff score range between 8 and 11 yielded no differences in diagnostic performance for moderate depressive symptoms (sensitivity or specificity; Manea, Gilbody, & McMillan, 2012). We defined having moderate depressive symptoms as a PHQ-9 score greater than or equal to 8.

Laboratory procedures have previously been described in detail (McGrath et al., 2018). Briefly, infant HIV testing was conducted using a dry blood spot specimen for DNA polymerase chain reaction. Dry blood spot samples were sent to Kenya Medical Research Institute-Centers for Disease Control and Prevention national laboratory, and polymerase chain reaction results were returned to clinics, which then provided results to mothers per national guidelines. Support services and HIV care referrals were made for mothers whose infants tested positive (McGrath et al., 2018).

Ethical Approval

This study was approved by the Kenya Medical Research Institute's Scientific and Ethics Review Unit, the U.S. Centers for Disease Control and Prevention Office of the Associate Director for Science, and the Committee on Human Research of the University of Washington.

Statistical Analysis

Analyses for our study included only mothers living with HIV. Descriptive statistics were used to identify differences between postpartum mothers with and without depressive symptoms. Logistic regression models were used to determine the association between maternal depressive symptoms and each respective dichotomized outcome (infant HIV-infection [*yes/no*] at 6 weeks, 9 months, or either; uptake of maternal ARVs at pregnancy, birth, and breastfeeding [*yes/no*]; and receipt of infant ARVs [*yes/no*]). All models accounted for clinic-level clustering. We performed sensitivity analyses by repeating the primary analysis using cutoff of PHQ-9 greater than 10 to reduce potential misclassification.

Results

Overall, 498 mothers were included in our analysis; 52% were attending 6-week postnatal visits and 48% 9-month visits. The median age of the mothers was 28 years (interquartile range [IQR] 24–32); 17% of the women were unmarried, and the median relationship length in those with male partners was 5 years (IQR 3–10). The average years of completed education was 8 (IQR 7–11). The women in the sample had a median of 3 (IQR 2–4) living children. Overall, 6% of the women had PHQ-9 scores of at least 8, 5% in women attending 6-week visits and 7% in those attending 9-month visits. Women who had experienced IPV in the past 6 months were more likely to have moderate depressive symptoms than women who did not experience IPV (39% vs. 12%, respectively, $p < 0.001$). We did not detect differences in other demographic, relationship, or clinical characteristics between women with and without moderate depressive symptoms (Table 1).

Stigma and Discrimination

One-fourth (26%) of the women agreed with the statement, *HIV is a punishment from God*. Women with depressive symptoms more frequently agreed with the statement, *People living with HIV are promiscuous*, than women without moderate depressive symptoms (28% vs. 11%, $p = 0.032$). We did not detect differences between women with and without moderate depressive symptoms in the frequency of other measures of externalized and internalized HIV stigma (Table 1). Overall, frequency of experiencing discrimination within the last year because of one's HIV status was less than 10% for all acts of discrimination assessed. Women with moderate depressive symptoms were significantly more likely to report that they experienced acts of discrimination due to their HIV status than women without moderate depressive symptoms, including being abandoned by family members ($p = 0.004$), being excluded from family and social gatherings ($p = 0.002$), and losing employment ($p = 0.001$), housing ($p < 0.001$), or standing in community ($p = 0.027$; Table 1). Among women with moderate depressive symptoms, the most frequently reported acts of discrimination were losing jobs/customers (26%), being abandoned by a spouse (23%), being excluded from social gatherings (19%), and losing standing within the family or community (19%).

PMTCT Outcomes

Overall, 81% of the women in our study reported use of maternal ARVs during all time points (pregnancy, labor, breastfeeding). We did not detect differences between maternal uptake of ARVs during pregnancy, labor, or breastfeeding among women with and without moderate depressive symptoms (Table 2). Women with moderate depressive symptoms were more likely to have infants who did not receive ARVs for prophylaxis than women without moderate depressive symptoms (13% vs 2%, *odds ratio* [OR] 6.14, 95% CI 1.76–21.64, $p = 0.005$). Overall, 4% of infants attending 6-week immunization visits were HIV infected and 5% of infants attending 9-month visits were HIV infected. The likelihood of having an infant with HIV was 3.89-fold higher for women with moderate depressive symptoms than for women without moderate depressive symptoms (OR 3.89, 95% CI 1.24–12.25, $p = 0.021$). Of the four infants living with HIV who had mothers with moderate depressive symptoms, three did not receive ARV prophylaxis and were diagnosed with HIV during study procedures; one 9-month-old infant was diagnosed with HIV prior to the survey. Analyses using a cutoff of PHQ-9 greater than 10 produced results that were very similar to our primary models, although statistical power was limited (data not shown).

Discussion

In our study, 6% of women living with HIV surveyed at 6 weeks or 9 months postpartum had symptoms of moderate depression. Having moderate depressive symptoms was significantly associated with externalized stigma and discrimination but not internalized stigma. Maternal depressive symptoms were also associated with non-use of infant ARV prophylaxis and higher likelihood of infant HIV infection. To our knowledge, no other studies to date have evaluated the relationship between postpartum depression and MTCT. Our results highlight the need for additional research and mental health services for mothers living with HIV and experiencing depressive symptoms, especially within the context of sub-Saharan Africa where MTCT persists as a public health problem.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

LMIC settings have limited resources for mental health care, as few practitioners are trained on screening and treating mental health issues (Almond, 2009). PPD affects women at a critical period in the lives of both mothers and infants and is common, with some studies reporting rates of PPD between 5% and 35% in LMICs (Adewuya, Ola, Aloba, Mapayi, & Okeniyi, 2008). In uninfected populations, PPD has been associated with risk of poor infant outcomes, including poor postnatal growth, obesity, and neurocognitive delays (Adewuya et al., 2008; Ciesla & Roberts, 2001; Gold, Spangenberg, Wobil, & Schwenk, 2013; Guo et al., 2013). PPD among mothers living with HIV has been associated with adverse outcomes such as increased infant withdrawal symptoms, higher rates of infant wheezing, and lower rates of exclusive breastfeeding (Hartley et al., 2010; Tuthill et al., 2017). In general, PLWH experience nearly twice the rate of depression compared to uninfected individuals (Bernard, Dabis, & de Rekeneire, 2017; Boarts et al., 2009; Ciesla & Roberts, 2001; Endeshaw et al., 2014; Nyirenda et al., 2013). In the context of high HIV burden, this could translate to a substantial burden of PPD and sequelae among mothers living with HIV and underscores the need for improving PPD screening and treatment services for this population (Bernard et al., 2017).

Using the PHQ-9 tool, we found that prevalence of PPD was less than 10% among postpartum women across 141 clinics in Kenya. To date, only one small study has evaluated PPD among women living with HIV in Kenya, finding that 48% of attendees at the Kenyatta National Hospital PMTCT clinic, located in Nairobi, screened positive for depressive symptoms using the Edinburgh Postnatal Depression Scale (EPDS; Yator et al., 2016). The EPDS has not been validated in Kenya and the study was solely based in one large, urban facility, which may account for the differences in PPD prevalence. Future validation studies that assess the PHQ-9 and EPDS in the same study population could help to understand the most culturally appropriate and valid tool for PPD screening in Kenya.

We found that women with moderate depressive symptoms more frequently experienced acts of discrimination because of their HIV status than women without depression, consistent with other studies (Kohler et al., 2014). This included substantial losses: being abandoned by one's partner and family, isolation, and losing houses, property, jobs, and social standing. However, unlike other studies, we did not detect differences in internalized or externalized stigma between mothers with and without depression (Goodin et al., 2018; Onyebuchi-Iwudibia & Brown, 2014). This could be due to our sampling, which only included mother-infant pairs attending scheduled immunization appointments at maternal-child health clinics. It is possible that stigmatized mothers were less likely to attend clinic. Despite ongoing global efforts to reduce HIV-related stigma and discrimination, our results indicate that additional programs are needed. Nearly one-fourth of women with depressive symptoms reported they had been abandoned by a spouse due to their HIV status. Consistent with findings in other parts of sub-Saharan Africa, we found an association between IPV and PPD (Goodin et al., 2018; Mahenge, Stöckl, Mizinduko, Mazalale, & Jahn, 2018; Rogathi et al., 2017). Screening for both IPV and PPD within the context of PMTCT programs could help identify postpartum women in greatest need of interventions.

Our study had limitations. We used cross-sectional data and, therefore, MTCT could have occurred before the mothers' depressive symptoms and led to maternal depression. However,

three of the four cases of infant HIV among women with depression were detected after the assessment of depressive symptoms at the survey, making this unlikely. Although the PHQ-9 depression-screening tool has been validated in Kenya, other screening tools, such as the EPDS, may yield different results. Additionally, statistical power was limited due to the relatively small number of infant HIV infections; therefore, we could not conduct multivariate statistical models.

Conclusion

Moderate depressive symptoms among postpartum mothers living with HIV were associated with lower likelihood of infant receipt of ARV prophylaxis for PMTCT and increased likelihood of MTCT. Postpartum mothers with moderate depressive symptoms were also more likely to experience discrimination. Our results underscore the need for continued efforts to reduce HIV-related stigma and discrimination. Our findings also support expanding depression screening and psychosocial services within the context of PMTCT clinical settings to improve both maternal mental health and infant outcomes.

Acknowledgements

This work has been supported in part by the U.S. President's Emergency Plan for AIDS Relief (PEPFAR) through the U.S. Centers for Disease Control and Prevention (CDC) under the terms of COAG#U2GPS002047 (PI: Grace John-Stewart). JP was supported by a NIH training grant F32NR017125 (PI: Jillian Pintye), CJM by the University of Washington STD/AIDS Research Training Fellowship (NIH NRSA T32AI007140; PI: Sheila Lukehart), and GJS by a NIH K24 grant (K24HD054314; PI: Grace John-Stewart). The CHIME Team was supported by the University of Washington's Global Center for Integrated Health of Women Adolescents and Children (Global WACH) and Center for AIDS Research (CFAR; P30 AI027757; PI: Jared M. Baeten).

We thank all study participants for their contributions, and staff at all participating institutions for their support. The study team acknowledges the Director of Kenya Medical Research Institute for support.

Disclaimer

The findings and conclusions in this paper are those of the author(s) and do not necessarily represent the official position of the funding agencies/Government of Kenya.

References

- Adewuya AO, Ola BO, Aloba OO, Mapayi BM, & Okeniyi JA (2008). Impact of postnatal depression on infants' growth in Nigeria. *Journal of Affective Disorders*, 108(1–2), 191–193. doi:10.1016/j.jad.2007.09.013 [PubMed: 17997163]
- Almond P (2009). Postnatal depression: A global public health perspective. *Perspectives in Public Health*, 129(5), 221–227. doi:10.1177/1757913909343882 [PubMed: 19788165]
- Bernard C, Dabis F, & de Rekeneire N (2017). Prevalence and factors associated with depression in people living with HIV in sub-Saharan Africa: A systematic review and meta-analysis. *PLoS One*, 12(8), e0181960. doi:10.1371/journal.pone.0181960
- Boarts JM, Buckley-Fischer BA, Armelie AP, Bogart LM, & Delahanty DL (2009). The impact of HIV diagnosis-related vs. non-diagnosis related trauma on PTSD, depression, medication adherence, and HIV disease markers. *Journal of Evidence-Based Social Work*, 6(1), 4–16. doi:10.1080/15433710802633247 [PubMed: 19199133]
- Ciesla JA, & Roberts JE (2001). Meta-analysis of the relationship between HIV infection and risk for depressive disorders. *American Journal of Psychiatry*, 158(5), 725–730. [PubMed: 11329393]
- Global Burden of Disease Study 2013 Collaborators. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188

countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. *Lancet*, 386(9995), 743–800. doi:10.1016/S0140-6736(15)60692-4 [PubMed: 26063472]

Endeshaw M, Walson J, Rawlins S, Dessie A, Alemu S, Andrews N, & Rao D (2014). Stigma in Ethiopia: Association with depressive symptoms in people with HIV. *AIDS Care*, 26(8), 935–939. doi:10.1080/09540121.2013.869537 [PubMed: 24382290]

Gold KJ, Spangenberg K, Wobil P, & Schwenk TL (2013). Depression and risk factors for depression among mothers of sick infants in Kumasi, Ghana. *International Journal of Gynecology & Obstetrics*, 120(3), 228–231. doi:10.1016/j.ijgo.2012.09.016 [PubMed: 23228821]

Goodin BR, Owens MA, White DM, Strath LJ, Gonzalez C, Rainey RL, ... Merlin JS (2018). Intersectional health-related stigma in persons living with HIV and chronic pain: Implications for depressive symptoms. *AIDS Care*, 30(Suppl. 2), 66–73. doi:10.1080/09540121.2018.1468012 [PubMed: 29848042]

Guo N, Bindt C, Te Bonle M, Appiah-Poku J, Hinz R, Barthel D, ... Ehrhardt S (2013). Association of antepartum and postpartum depression in Ghanaian and Ivorian women with febrile illness in their offspring: A prospective birth cohort study. *American Journal of Epidemiology*, 178(9), 1394–1402. doi:10.1093/aje/kwt142 [PubMed: 24013202]

Hartley C, Pretorius K, Mohamed A, Laughton B, Madhi S, Cotton MF, ... Seedat S (2010). Maternal postpartum depression and infant social withdrawal among human immunodeficiency virus (HIV) positive mother-infant dyads. *Psychology, Health, and Medicine*, 15(3), 278–287. doi:10.1080/13548501003615258

Kingori C, Haile ZT, & Ngatia P (2015). Depression symptoms, social support and overall health among HIV-positive individuals in Kenya. *International Journal of STD & AIDS*, 26(3), 165–172. doi:10.1177/0956462414531933 [PubMed: 24759561]

Kohler PK, Ondenge K, Mills LA, Okanda J, Kinuthia J, Olilo G, ... John-Stewart G (2014). Shame, guilt, and stress: Community perceptions of barriers to engaging in prevention of mother to child transmission (PMTCT) programs in western Kenya. *AIDS Patient Care and STDs*, 28(12), 643–651. doi:10.1089/apc.2014.0171 [PubMed: 25361205]

Kroenke K, Spitzer RL, & Williams JB (2001). The PHQ-9: Validity of a brief depression severity measure. *Journal of General Internal Medicine*, 16(9), 606–613. doi:10.1046/j.1525-14972001016009606x [PubMed: 11556941]

Madege BA, Kimani VN, Stoep AV, Nicodimos S, & Kumar M (2016). Postpartum depression and infant feeding practices in a low income urban settlement in Nairobi-Kenya. *BMC Research Notes*, 9(1), 506. doi:10.1186/s13104-016-2307-9 [PubMed: 27931248]

Mahenge B, Stöckl H, Mizinduko M, Mazalale J, & Jahn A (2018). Adverse childhood experiences and intimate partner violence during pregnancy and their association to postpartum depression. *Journal of Affective Disorders*, 229, 159–163. doi:10.1016/j.jad.2017.12.036 [PubMed: 29310065]

Manea L, Gilbody S, & McMillan D (2012). Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): A meta-analysis. *Canadian Medical Association Journal*, 184(3), E191–196. doi:10.1503/cmaj.110829 [PubMed: 22184363]

McGrath CJ, Singa B, Langat A, Kinuthia J, Ronen K, Omolo D, ... John-Stewart GC (2018). Non-disclosure to male partners and incomplete PMTCT regimens associated with higher risk of mother-to-child HIV transmission: A national survey in Kenya. *AIDS Care*, 30(6), 765–773. doi:10.1080/09540121.2017.1400642 [PubMed: 29130333]

Monahan PO, Shacham E, Reece M, Kroenke K, Ong'or WO, Omollo O, ... Ojwang C (2009). Validity/reliability of PHQ-9 and PHQ-2 depression scales among adults living with HIV/AIDS in western Kenya. *Journal of General Internal Medicine*, 24(2), 189–197. doi:10.1007/s11606-008-0846-z [PubMed: 19031037]

Nyirenda M, Chatterji S, Rochat T, Mutevedzi P, & Newell ML (2013). Prevalence and correlates of depression among HIV-infected and -affected older people in rural South Africa. *Journal of Affective Disorders*, 151(1), 31–38. doi:10.1016/j.jad.2013.05.005 [PubMed: 23726780]

Onyebuchi-Iwudibia O, & Brown A (2014). HIV and depression in Eastern Nigeria: The role of HIV-related stigma. *AIDS Care*, 26(5), 653–657. doi:10.1080/09540121.2013.844761 [PubMed: 24134053]

Rahman A, Bunn J, Lovel H, & Creed F (2007). Maternal depression increases infant risk of diarrhoeal illness: A cohort study. *Archives of Disease in Childhood*, 92(1), 24–28. doi:10.1136/adc.2005.086579 [PubMed: 16966339]

Rogathi JJ, Manongi R, Mushi D, Rasch V, Sigalla GN, Gammeltoft T, & Meyrowitsch DW (2017). Postpartum depression among women who have experienced intimate partner violence: A prospective cohort study at Moshi, Tanzania. *Journal of Affective Disorders*, 218, 238–245. doi:10.1016/j.jad.2017.04.063 [PubMed: 28477502]

Sherin KM, Sinacore JM, Li XQ, Zitter RE, & Shakil A (1998). HITS: A short domestic violence screening tool for use in a family practice setting. *Family Medicine*, 30(7), 508–512. [PubMed: 9669164]

Turan JM, & Nyblade L (2013). HIV-related stigma as a barrier to achievement of global PMTCT and maternal health goals: A review of the evidence. *AIDS and Behavior*, 17(7), 2528–2539. doi:10.1007/s10461-013-0446-8 [PubMed: 23474643]

Tuthill EL, Pellowski JA, Young SL, & Butler LM (2017). Perinatal depression among HIV-infected women in KwaZulu-Natal South Africa: Prenatal depression predicts lower rates of exclusive breastfeeding. *AIDS and Behavior*, 21(6), 1691–1698. doi:10.1007/s10461-016-1557-9 [PubMed: 27752868]

Yator O, Mathai M, Vander Stoep A, Rao D, & Kumar M (2016). Risk factors for postpartum depression in women living with HIV attending prevention of mother-to-child transmission clinic at Kenyatta National Hospital, Nairobi. *AIDS Care*, 28(7), 884–889. doi:10.1080/09540121.2016.1160026 [PubMed: 27045273]

Yotebieng KA, Fokong K, & Yotebieng M (2017). Depression, retention in care, and uptake of PMTCT service in Kinshasa, the Democratic Republic of Congo: A prospective cohort. *AIDS Care*, 29(3), 285–289. doi:10.1080/09540121.2016.1255708 [PubMed: 27819151]

Table 1

Characteristics of Mothers Living with HIV, by Postpartum PHQ-9 Score (n = 498)

	N (%) or Median (IQR)			Logistic Regression Models	
	N (n = 498)	Overall < 8 (n = 467)	8 (n = 31)	PHQ-9 score	p-value
<i>Demographics</i>					
Age (years)	498	28 (24–32)	28 (24–32)	26 (24–32)	0.98 (0.92–1.04)
Unmarried	498	86 (17%)	82 (18%)	4 (13%)	0.70 (0.24–2.02)
Relationship duration (years)	420	5 (3–10)	5 (3–10)	4 (2–10)	0.96 (0.90–1.03)
Education (years completed)	498	8 (7–11)	8 (7–11)	8 (6–10)	0.92 (0.83–1.01)
Currently employed ¹	492	207 (42%)	193 (42%)	14 (45%)	1.14 (0.56–2.22)
<i>Partner/relationship characteristics</i>					
Partner age (years) ²	349	35 (30–40)	35 (30–40)	34 (30–36)	1.00 (0.94–1.06)
Partner HIV status unknown ²	420	104 (25%)	94 (24%)	10 (37%)	0.53 (0.22–1.28)
Partner living with HIV ^{2,3}	316	228 (75%)	216 (72%)	12 (71%)	0.92 (0.26–3.24)
Disclosed HIV status to partner ²	498	411 (83%)	389 (83%)	22 (71%)	0.49 (0.18–1.30)
Experienced IPV in past 6 months ⁴	498	66 (13%)	54 (12%)	12 (39%)	4.83 (2.30–10.16) <0.001
<i>Obstetric history</i>					
Current postpartum visit					
6-week	498	260 (52%)	246 (53%)	14 (45%)	0.74 (0.36–1.54)
9-month	498	238 (48%)	221 (47%)	17 (55%)	ref
Number of living children	492	3 (2–4)	3 (2–4)	2 (2–4)	0.88 (0.71–1.09)
4 ANC visits ⁵	498	273 (54%)	257 (54%)	16 (53%)	0.85 (0.40–1.82)
Health facility delivery ⁵	498	411 (83%)	387 (83%)	24 (77%)	0.71 (0.30–1.66)
<i>Stigma and discrimination</i>					
<i>Externalized stigma</i>					
HIV is a punishment from God	480	124 (26%)	113 (25%)	11 (38%)	1.83 (0.73–4.58)
HIV is a punishment for bad behavior	483	118 (24%)	109 (24%)	9 (31%)	1.42 (0.56–3.61)

		N (%) or Median (IQR)				Logistic Regression Models	
		N	Overall (n = 498)	< 8 (n = 467)		Odds Ratio (95% CI)	p-value
				< 8 (n = 31)	8 (n = 31)		
	Prostitutes spread HIV	480	99 (21%)	91 (20%)	8 (28%)	1.51 (0.62–3.68)	0.364
	PLWH are promiscuous	485	59 (12%)	51 (11%)	8 (28%)	3.03 (1.10–8.30)	0.032
Internalized stigma							
I am ashamed of being infected with HIV		492	65 (13%)	59 (13%)	6 (19%)	1.64 (0.57–4.68)	0.356
I would be ashamed if a person in my family has HIV		491	46 (9%)	41 (9%)	5 (16%)	1.97 (0.66–5.82)	0.220
PLWH should be ashamed		490	28 (6%)	26 (6%)	2 (6%)	1.15 (0.244–5.39)	0.859
Discrimination due to HIV status⁶							
Excluded from a social gathering		498	25 (5%)	19 (4%)	6 (19%)	5.67 (1.90–16.88)	0.002
Abandoned by spouse/partner		498	39 (8%)	32 (7%)	7 (23%)	3.37 (1.41–8.07)	0.007
Abandoned by family/sent away		498	16 (3%)	12 (3%)	4 (13%)	5.62 (1.76–17.93)	0.004
Isolated in household		498	18 (4%)	14 (3%)	4 (13%)	4.79 (1.46–15.70)	0.010
No longer visited by family/friends		498	21 (4%)	15 (3%)	6 (19%)	7.23 (2.57–10.36)	<0.001
Teased or sworn at		498	41 (8%)	37 (8%)	4 (13%)	1.72 (0.54–5.49)	0.355
Lost customers/job		498	47 (9%)	39 (8%)	8 (26%)	4.09 (1.76–9.50)	0.001
Lost housing		498	9 (2%)	5 (1%)	4 (13%)	13.69 (3.91–47.86)	<0.001
Denied religious rites/services		498	7 (1%)	6 (1%)	1 (3%)	1.67 (0.33–3.38)	0.530
Had property taken away		498	10 (2%)	7 (1%)	3 (10%)	7.04 (1.84–27.01)	0.005
Gossiped about		498	31 (6%)	27 (6%)	4 (13%)	1.58 (0.82–3.05)	0.171
Lost standing within family/community		498	37 (7%)	31 (6%)	6 (19%)	2.90 (1.13–7.42)	0.027
Threatened with violence		498	17 (3%)	14 (3%)	3 (10%)	3.47 (0.88–13.71)	0.076

Note. PHQ = Patient Health Questionnaire; IPV = intimate partner violence; ANC = antenatal care; PLWH = people living with HIV.

¹Employed defined as currently generating income through salaried or self-employment.

²Among women who currently have a partner.

³Among women who know their male partner's HIV status.

⁴IPV defined as having a score 10.5 on HTS scale.

⁵During the most recent pregnancy.

Association of Maternal Postpartum Depression With PMTCT Uptake and Outcomes¹

Table 2

	Overall (n = 498)	N (%)			p-value		
		PHQ-9 < 8 (n = 467)	PHQ-9 ≥ 8 (n = 31)	Odds Ratio (95% CI) ⁴			
<i>Maternal or infant ARV use</i>							
Maternal ARV use (ART or PMTCT)							
During pregnancy	450	426 (95%)	400 (94%)	26 (100%)	-		
During labor	494	445 (90%)	419 (90%)	26 (87%)	0.69 (0.24–2.05)		
During breastfeeding	498	433 (87%)	408 (87%)	25 (81%)	0.60 (0.21–1.74)		
All time points	491	399 (81%)	375 (82%)	24 (77%)	0.78 (0.30–2.03)		
Infant did not receive ARV prophylaxis	498	15 (3%)	11 (2%)	4 (13%)	6.14 (1.76–21.38) 0.005		
<i>Infant outcomes</i>							
HIV infection							
6-weeks ²	244	10 (4%)	9 (4%)	1 (8%)	2.06 (0.23–18.53) 0.516		
9-months ³	233	11 (5%)	8 (4%)	3 (18%)	5.57 (1.48–21.02) 0.012		
6-weeks or 9-months	477	21 (4%)	17 (4%)	4 (13%)	3.89 (1.24–12.25) 0.021		

Note. PHQ = Patient Health Questionnaire; ARV = antiretroviral; ART = antiretroviral therapy; PMTCT = prevention of mother-to-child transmission of HIV.

¹Postpartum depression defined as a PHQ-9 score ≥ 8.

²Among infants attending 6-week immunization visit.

³Among infants attending 9-month immunization visit.

⁴All models adjusted for clinic-level clustering.