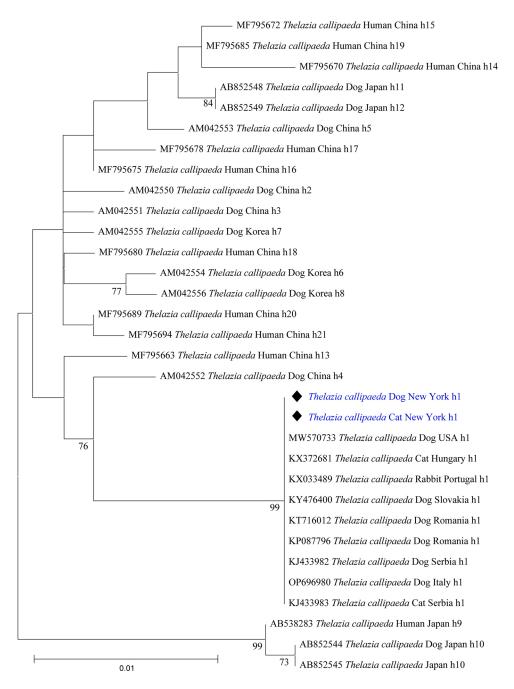

Article DOI: https://doi.org/10.3201/eid3003.230700


EID cannot ensure accessibility for Appendix materials supplied by authors. Readers who have difficulty accessing Appendix content should contact the authors for assistance.

Emergence of Thelaziosis Caused by Thelazia callipaeda in Dogs and Cats, United States

Appendix

Appendix Figure 1. Morphologic identification of *Thelazia callipaeda*. Specimens were examined under an Olympus compound microscope (BX53) (Olympus, https://www.olympus-lifescience.com), and images were captured with an Olympus DP73 camera. Morphometry was performed with Olympus cellSens software. A) Cephalic end of female worm with a wide, moderately deep buccal cavity. Original magnification ×200. B) Prominent tightly spaced cuticular striations. Red line indicates 50 μm. Original magnification ×200. C) Caudal end of male worm. Red arrow indicates long spicule; black arrow indicates short spicule. Original magnification ×100. D) Uterus of adult worm showing L1 (first) stage of parasite larvae. Original magnification ×500. E) Vulval opening at the esophageal region. Black arrow indicates the esophageal/intestinal junction; red arrow indicates the vulval opening. Original magnification ×100.

Appendix Figure 2. Phylogenetic analysis of the partial *cox1* gene sequence of *Thelazia callipaeda* detected in this study compared with other *T. callipaeda* haplotypes from GenBank. Analysis was conducted in MEGA11 (10, main text) by using the maximum-likelihood method (1,000 bootstrap replications) and the Hasegawa-Kishino-Yano model (11, main text). A discrete gamma distribution was used to model evolutionary rate differences among sites. Sequences from this study are highlighted in blue. Scale bar indicates nucleotide substitutions per site.