

Influenza (Flu) (/flu/index.htm)

[Influenza \(Flu\) Home \(/flu/index.htm\)](#)

FluView Summary ending on October 8, 2022

Updated October 14, 2022

Note: CDC is tracking the COVID-19 pandemic in a weekly publication called [COVID Data Tracker \(https://covid.cdc.gov/covid-data-tracker/#datatracker-home\)](#).

Key Updates for Week 40, ending October 8, 2022

Early increases in seasonal influenza activity have been reported in most of the United States, with the southeast and south-central areas of the country reporting the highest levels of activity.

Viruses

Clinical Lab	Public Health Lab	Virus Characterization
<p>3.3% positive for influenza this week (/flu/weekly/index.htm#ClinicalLaboratories)</p>	<p>The most frequently reported viruses this week were influenza A(H3N2). (/flu/weekly/index.htm#PublicHealthLaboratories)</p>	<p>Influenza virus characterization information will be reported later this season. (/flu/weekly/index.htm#VirusCharacterization)</p>

Illness

Outpatient Respiratory Illness
<p>2.6% of visits to a health care provider are for respiratory illness this week (above baseline) (/flu/weekly/index.htm#ILINet)</p>

Outpatient Respiratory Illness: Activity Map

This week, 3 jurisdictions experienced moderate activity and 6 jurisdictions experienced high or very high activity.

[\(/flu/weekly/index.htm#ORIAM\)](/flu/weekly/index.htm#ORIAM)

Long-term Care Facilities

0.3%

of facilities reported
≥ 1 influenza-positive test
among residents this week.

[\(/flu/weekly/index.htm#LTCF\)](/flu/weekly/index.htm#LTCF)

Severe Disease

FluSurv-NET

Hospitalization rates will be updated starting later this season.

[\(/flu/weekly/index.htm#FluSurvNet\)](/flu/weekly/index.htm#FluSurvNet)

HHS Protect Hospitalizations

1,322

patients admitted to hospitals with influenza
this week.

[\(/flu/weekly/index.htm#HHSProtect\)](/flu/weekly/index.htm#HHSProtect)

NCHS Mortality

8.7%

of deaths attributed to pneumonia, influenza, or COVID-19 this
week (**above threshold**)

[\(/flu/weekly/index.htm#NCHSMortality\)](/flu/weekly/index.htm#NCHSMortality)

Pediatric Deaths

3

influenza-associated deaths reported this week; all occurred
during the 2021-2022 season.

[\(/flu/weekly/index.htm#PedMortality\)](/flu/weekly/index.htm#PedMortality)

All data are preliminary and may change as more reports are received.

A description of the CDC influenza surveillance system, including methodology and detailed descriptions of each data component is available on the [surveillance methods](#) (/flu/weekly/overview.htm) page.

Additional information on the current and previous influenza seasons for each surveillance component are available on [FluView Interactive](#) (/flu/weekly/fluviewinteractive.htm).

Key Points

- This is the first FluView of the 2022-2023 influenza season.
- Influenza activity is low but increasing in most of the country. Regions 4 (southeast) and 6 (south-central) are reporting the highest levels of flu activity.
- An annual flu vaccine is the best way to protect against flu. Vaccination helps prevent infection and can also prevent serious outcomes in people who get vaccinated but still get sick with flu.
- CDC recommends that everyone ages 6 months and older get a flu vaccine, ideally by the end of October.
- There are also prescription flu antiviral drugs that can be used to treat flu illness; those need to be started as early as possible.

NCHS Virologic Surveillance

U.S. Virologic Surveillance

(<https://www.cdc.gov/flu/weekly/overview.htm#LabSurveillance>)

Nationally, the percentage of specimens testing positive for influenza in clinical laboratories is increasing; however, activity varies by region. Percent positivity increased this week in regions 3, 4, 6, 7, and 9, and was similar to or lower than the previous week in all other regions. For regional and state level data and age group distribution, please visit **FluView Interactive** (<https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>). Viruses known to be associated with recent live attenuated influenza vaccine (LAIV) receipt or found upon further testing to be a vaccine virus are not included, as they are not circulating influenza viruses.

Clinical Laboratories

The results of tests performed by clinical laboratories nationwide are summarized below. Data from clinical laboratories (the percentage of specimens tested that are positive for influenza) are used to monitor whether influenza activity is increasing or decreasing.

	Week 39	Week 40
No. of specimens tested	58,481	53,565
No. of positive specimens (%)	1,274 (2.2%)	1,766 (3.3%)
<i>Positive specimens by type</i>		
Influenza A	1,213 (95.2%)	1,686 (95.5%)
Influenza B	61 (4.8%)	80 (4.5%)

(<http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>)

[View Chart Data](/flu/weekly/weeklyarchives2022-2023/data/whoAllregt_cl40.html) | [View Full Screen](/flu/weekly/WeeklyArchives2022-2023/WHONPHL40.html)

Public Health Laboratories

The results of tests performed by public health laboratories nationwide are summarized below. Data from public health laboratories are used to monitor the proportion of circulating viruses that belong to each influenza subtype/lineage.

	Week 39	Week 40
No. of specimens tested	7,729	7,261
No. of positive specimens	133	83
<i>Positive specimens by type/subtype</i>		
Influenza A	130 (97.7%)	81 (97.6%)
(H1N1)pdm09	18 (26.9%)	16 (36.4%)
H3N2	49 (73.1%)	28 (63.6%)
H3N2v	0	0

Subtyping not performed	63	37
Influenza B	3 (2.3%)	2 (2.4%)
Yamagata lineage	0	0
Victoria lineage	1 (100%)	1 (100%)
Lineage not performed	2	1

(<http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>)

[View Chart Data](#) (/flu/weekly/weeklyarchives2022-2023/data/whoAllregt_phl40.html) | [View Full Screen](#) (/flu/weekly/weeklyarchives2022-2023/WhoPHL40.html)

Additional virologic surveillance information for current and past seasons:

Surveillance Methods (https://www.cdc.gov/flu/weekly/overview.htm#anchor_1539281228772) | FluView Interactive: National, Regional, and State Data (<http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>) or Age Data (http://gis.cdc.gov/grasp/fluview/flu_by_age_virus.html)

Influenza Virus Characterization ([/flu/weekly/overview.htm#VirusCharacterization](#))

CDC performs genetic (<https://www.cdc.gov/flu/about/professionals/genetic-characterization.htm>) and antigenic (<https://www.cdc.gov/flu/about/professionals/antigenic.htm>) characterization of U.S. viruses submitted from state and local public health laboratories according to the Right Size Roadmap submission guidance. These data are used to compare how similar the currently circulating influenza viruses are to the reference viruses representing viruses contained in the current influenza vaccines. The data are also used to monitor evolutionary changes that continually occur in influenza viruses circulating in humans. CDC also tests susceptibility of circulating influenza viruses to antiviral medications including the neuraminidase inhibitors (oseltamivir, zanamivir, and peramivir) and the PA endonuclease inhibitor baloxavir.

CDC has genetically characterized 396 influenza viruses collected since May 1, 2022. While there are little data to date, most of the H3N2 viruses so far are genetically closely related to the 2022-2023 Northern Hemisphere vaccine virus, but there are some antigenic differences that have developed as H3N2 viruses have continued to evolve.

Virus Subtype or Lineage	Genetic Characterization				
	Total No. of Subtype/Lineage Tested	HA Clade	Number (% of subtype/lineage tested)	HA Subclade	Number (% of subtype/lineage tested)
A/H1	21				
		6B.1A	21 (100%)	5a.1	5 (23.8%)
				5a.2	16 (76.2%)
A/H3	373				
		3C.2a1b	373 (100%)	1a	0
				1b	0
				2a	0
				2a.1	0
				2a.2	373 (100%)
		3C.3a	0	3a	0
B/Victoria	2				
		V1A	2 (100%)	V1A	0
				V1A.1	0
				V1A.3	0
				V1A.3a	0
				V1A.3a.1	0
				V1A.3a.2	2 (100%)
B/Yamagata	0				

Y3

0

CDC antigenically characterizes (<https://www.cdc.gov/flu/about/professionals/antigenic.htm>) influenza viruses by hemagglutination inhibition (HI) (<https://www.cdc.gov/flu/about/professionals/antigenic.htm>) (H1N1pdm09, B/Victoria, and B/Yamagata viruses) or neutralization-based HINT (<https://archive.cdc.gov/#/details?url=https://www.cdc.gov/flu/spotlights/2018-2019/new-lab-method-test-flu.html>) (H3N2 viruses) using antisera that ferrets make after being infected with reference viruses representing the 2022-2023 Northern Hemisphere recommended egg-based and cell- or recombinant-based vaccine viruses. Antigenic differences between viruses are determined by comparing how well the antibodies made against the vaccine reference viruses recognize the circulating viruses that have been grown in cell culture. Ferret antisera are useful because antibodies raised against a particular virus can often recognize small changes in the surface proteins of other viruses. In HI assays, viruses with similar antigenic properties have antibody titer differences of less than or equal to 4-fold when compared to the reference (vaccine) virus. In HINT, viruses with similar antigenic properties have antibody neutralization titer differences of less than 8-fold. Viruses selected for antigenic characterization are a subset representing the genetic changes in the surface proteins seen in genetically characterized viruses.

Influenza A Viruses

- **A (H1N1)pdm09:** Two A(H1N1)pdm09 viruses were antigenically characterized by HI, and none were well recognized (reacting at titers that were within 4-fold of the homologous virus titer) by ferret antisera to cell-grown A/Wisconsin/588/2019-like reference viruses representing the A(H1N1)pdm09 component for the cell- and recombinant-based influenza vaccines or by ferret antisera to egg-grown A/Victoria/2570/2019-like reference viruses representing the A(H1N1)pdm09 component for the egg-based influenza vaccines.
- **A (H3N2):** Twenty-four A(H3N2) viruses were antigenically characterized by HINT; all were well-recognized (reacting at titers that were within 8-fold of the homologous virus titer) by ferret antisera to cell-grown A/Darwin/6/2021-like reference viruses representing the A(H3N2) component for the cell- and recombinant-based influenza vaccines and 22 (92%) were well-recognized by ferret antisera to egg-grown A/Darwin/9/2021-like reference viruses representing the A(H3N2) component for egg-based influenza vaccines.

Influenza B Viruses

- **B/Victoria:** No influenza B/Victoria-lineage viruses were antigenically characterized by HI.
- **B/Yamagata:** No influenza B/Yamagata-lineage viruses were available for antigenic characterization.

Virus antiviral susceptibility data will be reported later this season when a sufficient number of specimens have been tested.

Outpatient Respiratory Illness Surveillance

(<https://www.cdc.gov/flu/weekly/overview.htm#ILINet>)

The U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet) monitors outpatient visits for respiratory illness referred to as influenza-like illness [ILI (fever plus cough or sore throat)], not laboratory-confirmed influenza, and will therefore capture respiratory illness visits due to infection with any pathogen that can present with similar symptoms, including influenza, SARS-CoV-2, and RSV. Due to the COVID-19 pandemic, health care-seeking behaviors have changed, and people may be accessing the health care system in alternative settings not captured as a part of ILINet or at a different point in their illness than they might have before the pandemic. Therefore, it is important to evaluate syndromic surveillance data, including that from ILINet, in the context of other sources of surveillance data to obtain a complete and accurate picture of influenza, SARS-CoV-2, and other respiratory virus activity. CDC is tracking the COVID-19 pandemic in a weekly publication called [COVID Data Tracker Weekly Review](https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html) (<https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html>). Information about other respiratory virus activity can be found on [CDC's National Respiratory and Enteric Virus Surveillance System \(NREVSS\) website](https://www.cdc.gov/surveillance/nrevss/index.html) (<https://www.cdc.gov/surveillance/nrevss/index.html>).

Outpatient Respiratory Illness Visits

Nationwide during week 40, 2.6% of patient visits reported through ILINet were due to respiratory illness that included fever plus a cough or sore throat, also referred to as ILI. This increased compared to week 39 and is above the national baseline of 2.5%. Eight of the 10 HHS regions are below their region-specific baselines; regions 3 and 4 are above their respective baselines. Multiple respiratory viruses are co-circulating, and the relative contribution of influenza virus infection to ILI varies by location.

(<http://gis.cdc.gov/grasp/fluvieview/fluportaldashboard.html>)

* Effective October 3, 2021 (week 40), the ILI definition (fever plus cough or sore throat) no longer includes "without a known cause other than influenza."

[View Chart Data \(current season only\)](#) (</flu/weekly/weeklyarchives2022-2023/data/senAllregt40.html>) | [View Full Screen](#) (</flu/weekly/weeklyarchives2022-2023/ILI40.html>)

Outpatient Respiratory Illness Visits by Age Group

More than 70% of ILINet participants provide both the number of patient visits for respiratory illness and the total number of patient visits for the week broken out by age group. Data from this subset of providers are used to calculate the percentages of patient visits for respiratory illness by age group.

The percentage of visits for respiratory illness reported in ILINet is trending upward in all age groups (0-4 years, 5-24 years, 25-49 years, 50-64 years, and 65+ years).

[\(http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html\)](http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html)

* Effective October 3, 2021 (week 40), the ILI definition (fever plus cough or sore throat) no longer includes "without a known cause other than influenza."

[View Chart Data \(/flu/weekly/weeklyarchives2022-2023/data/iliage40.html\)](/flu/weekly/weeklyarchives2022-2023/data/iliage40.html) | [View Full Screen \(/flu/weekly/weeklyarchives2022-2023/ILIAge40.html\)](/flu/weekly/weeklyarchives2022-2023/ILIAge40.html)

Outpatient Respiratory Illness Activity Map

Data collected in ILINet are used to produce a measure of ILI activity* (https://www.cdc.gov/flu/weekly/overview.htm#anchor_1633697504110) by state/jurisdiction and Core Based Statistical Areas (CBSA).

	Number of Jurisdictions		Number of CBSAs	
	Week 40	Week 39	Week 40	Week 39

Activity Level	(Week ending Oct. 8, 2022)	(Week ending Oct. 1, 2022)	(Week ending Oct. 8, 2022)	(Week ending Oct. 1, 2022)
Very High	1	0	7	4
High	5	4	24	25
Moderate	3	2	36	36
Low	14	11	106	92
Minimal	32	38	490	507
Insufficient Data	0	0	266	265

*Data collected in ILINet may disproportionately represent certain populations within a jurisdiction or CBSA, and therefore, may not accurately depict the full picture of influenza activity for the entire jurisdiction or CBSA. Differences in the data presented here by CDC and independently by some health departments likely represent differing levels of data completeness with data presented by the health department likely being the more complete.

Additional information about medically attended visits for ILI for current and past seasons:

Surveillance Methods (/flu/weekly/overview.htm#anchor_1539281266932) | FluView Interactive: National, Regional, and State Data (<http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>) or ILI Activity Map (<https://gis.cdc.gov/grasp/fluview/main.html>)

Long-term Care Facility (LTCF) Surveillance

(<https://www.cdc.gov/flu/weekly/overview.htm#LongTermCare>)

LTCFs (e.g., nursing homes/skilled nursing, long-term care for the developmentally disabled, and assisted living facilities) from all 50 states and U.S. territories report data on influenza virus infections among residents through the **National Healthcare Safety Network (NHSN) Long-term Care Facility Component** (<https://www.cdc.gov/nhsn/ltc/index.html>). During week 40, 41 (0.3%) of 14,331 reporting LTCFs reported at least one influenza positive test among their residents.

(</flu/weekly/weeklyarchives2022-2023/LTCF40.html>) View Chart Data (</flu/weekly/weeklyarchives2022-2023/data/LTCFData40.csv>) | View Full Screen (</flu/weekly/weeklyarchives2022-2023/LTCF40.html>)

Additional information about long-term care facility surveillance:

Surveillance Methods (</flu/weekly/overview.htm#LongTermCare>) | Additional Data (<https://data.cms.gov/covid-19/covid-19-nursing-home-data>)

Hospitalization Surveillance

(<http://www.cdc.gov/flu/weekly/overview.htm#HospitalizationSurv>)

FluSurv-NET

The Influenza Hospitalization Surveillance Network (FluSurv-NET) conducts population-based surveillance for laboratory-confirmed influenza-related hospitalizations in selected counties in 14 states and represents approximately 9% of the U.S. population. FluSurv-NET estimated hospitalization rates will be updated weekly starting later this season.

Additional FluSurv-NET hospitalization surveillance information for current and past seasons and additional age groups:

Surveillance Methods ([/flu/weekly/overview.htm#FluSurvNet](#)) | FluView Interactive: Rates by Age, Sex, and Race/Ethnicity

(<http://gis.cdc.gov/GRASP/Fluview/FluHospRates.html>) or Data on Patient Characteristics (<http://gis.cdc.gov/grasp/fluview/FluHospChars.html>)

HHS Protect Hospitalization Surveillance

Hospitals report to HHS Protect the number of patients admitted with laboratory-confirmed influenza. During week 40, 1,322 patients with laboratory-confirmed influenza were admitted to a hospital.

[\(/flu/weekly/weeklyarchives2022-2023/Protect40.html\)](/flu/weekly/weeklyarchives2022-2023/Protect40.html) [View Chart Data](#) [\(/flu/weekly/weeklyarchives2022-2023/data/ProtectData40.csv\)](/flu/weekly/weeklyarchives2022-2023/data/ProtectData40.csv) | [View Full Screen](#)
[\(/flu/weekly/weeklyarchives2022-2023/Protect40.html\)](/flu/weekly/weeklyarchives2022-2023/Protect40.html)

Additional HHS Protect hospitalization surveillance information:

[Surveillance Methods](#) [\(/flu/weekly/overview.htm#HHSPprotect\)](#) | [Additional Data](#) [\(<https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u>\)](https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u)

Mortality Surveillance

(<https://www.cdc.gov/flu/weekly/overview.htm#MortalitySurveillance>)

National Center for Health Statistics (NCHS) Mortality Surveillance

Based on NCHS mortality surveillance data available on October 13, 2022, 8.7% of the deaths that occurred during the week ending October 8, 2022 (week 40), were due to pneumonia, influenza, and/or COVID-19 (PIC). This percentage is above the epidemic threshold of 5.8% for this week. Among the 1,928 PIC deaths reported for this week, 898 had COVID-19 listed as an underlying or contributing cause of death on the death certificate, and nine listed influenza, indicating that current PIC mortality is due primarily to COVID-19 and not influenza. The data presented are preliminary and may change as more data are received and processed.

(<http://gis.cdc.gov/GRASP/Fluview/mortality.html>)

[View Chart Data](#) (</flu/weekly/weeklyarchives2022-2023/data/NCHSData40.csv>) | [View Full Screen](#) (</flu/weekly/weeklyarchives2022-2023/NCHS40.html>)

Additional pneumonia, influenza and COVID-19 mortality surveillance information for current and past seasons:

Surveillance Methods (/flu/weekly/overview.htm#anchor_1539281356004) | FluView Interactive (<https://gis.cdc.gov/grasp/fluview/mortality.html>)

Influenza-Associated Pediatric Mortality

Three influenza-associated pediatric deaths occurring during the 2021-2022 season were reported to CDC during week 40. The deaths were associated with influenza A (H3) viruses and occurred during weeks 5, 16, and 21 of 2022 (weeks ending February 5, April 23, and May 28 respectively).

A total of 43 influenza-associated pediatric deaths occurring during the 2021-2022 season have been reported to CDC. No influenza-associated pediatric deaths occurring during the 2022-2023 season have been reported to CDC.

[\(http://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html\)](http://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html)

[View Full Screen \(/flu/weekly/weeklyarchives2022-2023/PedFlu40.html\)](/flu/weekly/weeklyarchives2022-2023/PedFlu40.html)

Additional pediatric mortality surveillance information for current and past seasons:

[Surveillance Methods \(/flu/weekly/overview.htm#anchor_1571168571051\)](/flu/weekly/overview.htm#anchor_1571168571051) | [FluView Interactive \(https://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html\)](https://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html)

Additional National and International Influenza Surveillance Information

FluView Interactive: FluView includes enhanced web-based interactive applications that can provide dynamic visuals of the influenza data collected and analyzed by CDC. These [FluView Interactive applications \(/flu/weekly/fluviewinteractive.htm\)](/flu/weekly/fluviewinteractive.htm) allow people to create customized, visual interpretations of influenza data, as well as make comparisons across flu seasons, regions, age groups and a variety of other demographics.

National Institute for Occupational Safety and Health: Monthly surveillance data on the prevalence of health-related workplace absenteeism among full-time workers in the United States are [available from NIOSH \(/niosh/topics/absences/default.html\)](https://niosh/topics/absences/default.html).

U.S. State and local influenza surveillance: Select a jurisdiction below to access the latest local influenza information.

[Alabama](http://adph.org/influenza/) (http://adph.org/influenza/)[Alaska](http://dhss.alaska.gov/dph/Epi/id/Pages/influenza/fluinfo.aspx) (http://dhss.alaska.gov/dph/Epi/id/Pages/influenza/fluinfo.aspx)[Arizona](#)

[Colorado](https://www.colorado.gov/pacific/cdphe/influenza) (https://www.colorado.gov/pacific/cdphe/influenza)[Connecticut](https://portal.ct.gov/DPH/Epidemiology-and-Emerging-Infections/Influenza-Surveillance-and-Statistics) (https://portal.ct.gov/DPH/Epidemiology-and-Emerging-Infections/Influenza-Surveillance-and-Statistics)[Delaware](#)

[Georgia](https://dph.georgia.gov/epidemiology/influenza/flu-activity-georgia) (https://dph.georgia.gov/epidemiology/influenza/flu-activity-georgia)[Hawaii](http://health.hawaii.gov/docd/resources/reports/influenza-reports/) (http://health.hawaii.gov/docd/resources/reports/influenza-reports/)[Idaho](#)

[Iowa](https://idph.iowa.gov/immtb/immunization/influenza) (https://idph.iowa.gov/immtb/immunization/influenza)[Kansas](http://www.kdheks.gov/flu/surveillance.htm) (http://www.kdheks.gov/flu/surveillance.htm)[Kentucky](#)

[Maryland](https://phpa.health.maryland.gov/influenza/fluwatch/) (https://phpa.health.maryland.gov/influenza/fluwatch/)[Massachusetts](https://www.mass.gov/influenza) (https://www.mass.gov/influenza)[Michigan](#)

[Missouri](http://health.mo.gov/living/healthcondiseases/communicable/influenza/reports.php) (http://health.mo.gov/living/healthcondiseases/communicable/influenza/reports.php)[Montana](https://dphhs.mt.gov/publichealth/cdep/diseases/influenza/index) (https://dphhs.mt.gov/publichealth/cdep/diseases/influenza/index)[Nebraska](#)

[New Jersey](http://www.nj.gov/health/cd/topics/flu.shtml) (http://www.nj.gov/health/cd/topics/flu.shtml)[New Mexico](https://nmhealth.org/about/erd/ideb/isp/) (https://nmhealth.org/about/erd/ideb/isp/)[New York](#)

[Ohio](https://odh.ohio.gov/know-our-programs/seasonal-influenza) (https://odh.ohio.gov/know-our-programs/seasonal-influenza)[Oklahoma](https://oklahoma.gov/health/services/personal-health/immunizations/provider/influenza-.html) (https://oklahoma.gov/health/services/personal-health/immunizations/provider/influenza-.html)[Oregon](#)

[South Carolina](http://www.scdhec.gov/Health/DiseasesandConditions/InfectiousDiseases/Flu/FluData/) (http://www.scdhec.gov/Health/DiseasesandConditions/InfectiousDiseases/Flu/FluData/)[South Dakota](http://doh.sd.gov/diseases/infectious/flu/default.aspx) (http://doh.sd.gov/diseases/infectious/flu/default.aspx)[Tennessee](#)

[Vermont](http://www.healthvermont.gov/immunizations-infectious-disease/influenza/flu-activity-and-surveillance) (http://www.healthvermont.gov/immunizations-infectious-disease/influenza/flu-activity-and-surveillance)[Virginia](http://www.vdh.virginia.gov/epidemiology/influenza-flu-in-virginia/influenza-surveillance/) (http://www.vdh.virginia.gov/epidemiology/influenza-flu-in-virginia/influenza-surveillance/)[Washington](#)
(http://www.washington.gov/)

[Wyoming](https://health.wyo.gov/publichealth/infectious-disease-epidemiology-unit/disease/influenza/) (https://health.wyo.gov/publichealth/infectious-disease-epidemiology-unit/disease/influenza/)[New York City](http://www1.nyc.gov/site/doh/providers/health-topics/flu-alerts.page) (http://www1.nyc.gov/site/doh/providers/health-topics/flu-alerts.page)[Puerto Rico](#)

World Health Organization:

Additional influenza surveillance information from participating WHO member nations is available through FluNet [🔗](https://www.who.int/tools/flunet) and the Global Epidemiology Reports. [🔗](https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring)

WHO Collaborating Centers for Influenza:

Australia [🔗](http://www.influenzacentre.org/), China [🔗](https://ivdc.chinacdc.cn/cnic/), Japan [🔗](http://idsc.nih.go.jp/index.html), the United Kingdom [🔗](https://www.crick.ac.uk/research/worldwide-influenza-centre), and the United States [\(/flu\)](/flu) (CDC in Atlanta, Georgia)

Europe:

The most up-to-date influenza information from Europe is available from WHO/Europe and the European Centre for Disease Prevention and Control [🔗](http://www.fluneweurope.org/).

Public Health Agency of Canada:

The most up-to-date influenza information from Canada is available in Canada's weekly FluWatch report [🔗](http://www.phac-aspc.gc.ca/fluwatch/).

Public Health England:

The most up-to-date influenza information from the United Kingdom is available from Public Health England [🔗](http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/SeasonalInfluenza/).

Any links provided to non-Federal organizations are provided solely as a service to our users. These links do not constitute an endorsement of these organizations or their programs by CDC or the Federal Government, and none should be inferred. CDC is not responsible for the content of the individual organization web pages found at these links.

A description of the CDC influenza surveillance system, including methodology and detailed descriptions of each data component is available on the [surveillance methods](/flu/weekly/overview.htm) [\(/flu/weekly/overview.htm\)](/flu/weekly/overview.htm) page.

Last Reviewed: October 14, 2022, 11:00 AM

Source: Centers for Disease Control and Prevention (<https://www.cdc.gov/>), National Center for Immunization and Respiratory Diseases (NCIRD) (<https://www.cdc.gov/ncird/index.html>)