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Abstract

Introduction: International Classification of Diseases (ICD) codes recorded in administrative 

data are often used to identify congenital heart defects (CHD). However, these codes may 

inaccurately identify true positive (TP) CHD individuals. CHD surveillance could be strengthened 

by accurate CHD identification in administrative records using machine learning (ML) algorithms.

Methods: To identify features relevant to accurate CHD identification, traditional ML models 

were applied to a validated dataset of 779 patients; encounter level data, including ICD-9-CM 

and CPT codes, from 2011 to 2013 at four US sites were utilized. Five-fold cross-validation 

determined overlapping important features that best predicted TP CHD individuals. Median values 

and 95% confidence intervals (CIs) of area under the receiver operating curve, positive predictive 

value (PPV), negative predictive value, sensitivity, specificity, and F1-score were compared across 

four ML models: Logistic Regression, Gaussian Naive Bayes, Random Forest, and eXtreme 

Gradient Boosting (XGBoost).
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Results: Baseline PPV was 76.5% from expert clinician validation of ICD-9-CM CHD-related 

codes. Feature selection for ML decreased 7138 features to 10 that best predicted TP CHD cases. 

During training and testing, XGBoost performed the best in median accuracy (F1-score) and PPV, 

0.84 (95% CI: 0.76, 0.91) and 0.94 (95% CI: 0.91, 0.96), respectively. When applied to the entire 

dataset, XGBoost revealed a median PPV of 0.94 (95% CI: 0.94, 0.95).

Conclusions: Applying ML algorithms improved the accuracy of identifying TP CHD cases 

in comparison to ICD codes alone. Use of this technique to identify CHD cases would improve 

generalizability of results obtained from large datasets to the CHD patient population, enhancing 

public health surveillance efforts.
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1 ∣ INTRODUCTION

Congenital heart defects (CHD) are the most common birth defect, with a prevalence of 

80 per 1000 live births, causing 25% of infant mortality in developed countries (Botto & 

Correa, 2003; Gilboa et al., 2016; Marelli et al., 2014; Müller et al., 2022; Oster et al., 

2013; Warnes et al., 2001; Yang et al., 2002). Despite improved survival of individuals with 

CHD and increasing prevalence of CHD across the lifespan (Gilboa et al., 2016), individuals 

with CHD still experience significant late morbidity and premature mortality (Müller et 

al., 2022). Surveillance of this population is constrained by difficulties identifying patients 

not included in birth defect registries (e.g., because they were born outside of a catchment 

area or diagnosed too late) and limited longitudinal surveillance of those who are in birth 

defect registries (Liberman et al., 2023; Massin & Dessy, 2006). Nevertheless, surveillance 

is important because individuals with CHD can experience a wide spectrum of long-term 

health outcomes. Compared to the general population, those with CHD have increased risk 

of developing cardiovascular comorbidities including atrial fibrillation, hypertension, heart 

failure, and other cardiac-related conditions (Billett et al., 2008). However, CHD is not a 

homogeneous disease, even among those with the same anatomic defect; thus long-term 

health outcomes are affected by many factors, including defect anatomy, the type of repair 

(if applicable), the number and nature of interventions, age, social determinants of health, 

access to care, and the therapeutic plan (Bhatt et al., 2015; Brida & Gatzoulis, 2019; Stout et 

al., 2019).

CHD surveillance on a population level often relies upon International Classification of 

Diseases, Ninth and Tenth Revision, Clinical Modification codes (ICD-9-CM and ICD-10-

CM) in large administrative and clinical datasets to estimate prevalence of CHD, healthcare 

utilization, and various health outcomes, yet this methodology may not accurately identify 

the population of interest (Mylotte et al., 2014). Some CHD-related ICD-9-CM codes have 

high false positive (FP) rates and cannot sufficiently distinguish individuals with a true 

positive (TP) CHD from those who do not have a CHD (Agarwal et al., 2016; Broberg et 

al., 2015; Khan et al., 2018; Rodriguez et al., 2018). ICD-9-CM code 745.5 that identifies 

secundum atrial septal defect (ASD) and patent foramen ovale has a FP for CHD as high as 

76% in an adult population (Rodriguez et al., 2018). High FP rates have also been shown 
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for subaortic stenosis and pulmonary valve stenosis (Khan et al., 2018) and the FP rate for 

ICD-9-CM codes for shunt lesions has been reported at 50% (Broberg et al., 2015). Though 

restricting datasets to patients with severe CHD codes can improve the FP rate, it also 

limits the understanding of outcomes in patients with non-severe defects such as bicuspid 

aortic valves (Udholm et al., 2019; Wallace et al., 2022), that can still cause considerable 

morbidity.

Machine learning methods can offer an alternative solution to improve TP CHD case 

detection in administrative and clinical data without restricting to the most severe cases. 

Using data from combined clinical and administrative sources, the current study aimed to 

develop and test algorithms that improve accuracy of detecting CHD using various machine 

learning models (Logistic Regression [LR], Gaussian Naive Bayes [GaussianNB], Random 

Forest [RF], and XGBoost), and identify the most salient features that aid in the accurate 

detection of a CHD.

2 ∣ METHODS

2.1 ∣ Data source

A de-identified validated dataset was sourced from the Centers for Disease Control and 

Prevention's (CDC's) Surveillance of Congenital Heart Disease Across the Lifespan project 

(CDC RFA DD15-1506). The dataset combined clinical and administrative data for patients 

suspected of having CHD over 3 years, 2011–2013, from four sites: Georgia (GA), North 

Carolina (NC), New York (NY), and Utah (UT). For CHD diagnosis validation through chart 

review, 200 cases were selected from each of four sites for a planned total of 800 cases. 

The total number of cases was based on the feasibility for chart abstraction and validation at 

the sites. Cases were selected randomly, while ensuring an approximately even distribution 

across four mutually exclusively CHD ICD code groups (severe, shunt, valve, and other) 

and, within those, an approximately even distribution by age groups. Anatomic groups were 

defined by a multi-site clinician group based on ICD-9-CM CHD codes. Severe CHD was 

defined as CHD that typically requires surgery in the first year of life to permit survival. For 

GA, NC, and NY, the age groups were 1–10-year-olds, 11–19-year-olds, 20–64-year-olds, 

and >64-year-olds, while ages for UT were 11–19-year-olds and 20–64-year-olds. Further 

methodological details can be found in Rodriguez et al. (2022). During the study period, all 

contributing healthcare systems utilized ICD-9-CM codes. Patients having at least 1 of 55 

ICD-9-CM codes for a CHD were reviewed; all patients had encounter level data spanning 3 

years, including all associated ICD-9-CM and Current Procedural Terminology (CPT) codes. 

Those with only a 745.5 code in isolation or in conjunction with other non-specific CHD 

ICD-9-CM codes were omitted from the original dataset due to known poor PPV of this 

code for secundum atrial septal defect (Rodriguez et al., 2018). From this validation dataset, 

features (predictive variables) were identified and used by machine learning algorithms to 

identify TP CHD cases. Race and ethnicity were self-reported in the contributing healthcare 

system data sources. Race and ethnicity data were collected to understand applicability 

of developed models to a population. The final data set available for analysis had five 

additional cases not included in Rodriguez et al. (2022).
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2.2 ∣ Exclusions

Of the 800 person planned cohort, a total of 21 patients were excluded leaving a total 

of 779 patients in the validated analytic dataset: 15 cases did not meet inclusion criteria 

(i.e., 12 cases had ICD-9-CM code 745.5 in isolation and three cases only had a fetal 

echocardiogram performed); three cases did not have any clinical data to review for 

validation; and three cases were inadvertently reviewed twice.

2.3 ∣ Feature generation

A variety of features (independent variables), totaling 29,693, for each patient were initially 

created by summarizing demographics, healthcare encounter types, ICD-9-CM codes, and 

CPT codes across all encounters. Discrepant values across data sources were reconciled, and 

healthcare utilization variables were summarized to the patient level by counting the number 

of encounters of a given type the patient had over the three-year surveillance window 

from 2011 to 2013, using days as the primary measure. To tabulate counts of diagnoses 

and symptoms as well as comorbidities and complications, several existing diagnostic 

classification schemes were applied. For instance, the Healthcare Cost and Utilization 

Project's (HCUP) Clinical Classification Software (CCS), a categorization scheme that 

collapses over 15,000 ICD-9-CM and CPT codes into 259 diagnostic categories, was used. 

The best categorization scheme for patient diagnoses and procedures was not determined a 

priori; instead, all considered schemes and resulting features were included in the dataset 

for training, testing, and algorithm development to determine which groupings were most 

helpful in identifying patients with CHD. Fully zero-features (i.e., no one had that feature) 

and features related to geographic location were removed from the dataset; this included 

15,638 ICD-9-CM codes, 76 CCS categorical codes, and 6821 CPT codes that did not 

appear on any encounters over the three-year study period as well as 20 demographic 

features. After excluding a total of 22,555 fully zero-features and geographic location 

features, the final analytic dataset contained 7138 features, including nine demographics, 

3200 ICD-9-CM codes, 15 health encounter types, 1056 CCS categorical codes, and 2858 

CPT codes, and was de-identified for machine learning training and validation.

2.4 ∣ Feature selection

Feature selection was applied to identify the subset of the most relevant features from the 

analytic set of 7138 features by removing redundant and irrelevant features, which allowed 

those that best predicted a true CHD to be retained. First, a random search method and a 

five-fold cross-validation that split the whole dataset into five non-overlapping splits and 

trained on 4 splits, tested on 1 split then repeated for five times such that each split was 

included in the train and test datasets were conducted using the pooled data for all four sites 

to optimize XGBoost hyperparameters of the 7138 features. Then, XGBoost was applied 

on each site's data independently to evaluate feature importance. Specifically, the leave-one-

site-out strategy, which used three sites for model training and retained the remaining site 

for testing, was utilized. Features with less than 1% importance contribution score from 

XGBoost feature importance evaluations were removed for that site; feature importance 

scores were generated through gradient boosting after boosted trees were constructed, and 

they are indicative of how useful a given feature is within the model. Remaining features 
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were compared across sites and all features that overlapped for 2 or more sites (n = 10 

features) were selected and retained for algorithm development. Mean Shapley Additive 

exPlanation (SHAP) values for these 10 features were generated using the pooled data from 

all four sites and ranked by relative magnitude to show the impact of each selected feature 

on CHD prediction (Lundberg & Lee, 2017). This same set of 10 features was used for 

all four machine learning models (LR, GaussianNB, RF, and XGBoost) during algorithm 

development.

2.5 ∣ Algorithm development

2.5.1 ∣ Model development and cross-validation—The dataset was split using a 

five-fold cross validation approach (illustrated in Figure 1) to demonstrate generalizability 

of the learning algorithms, which split the dataset into five non-overlapping splits, took 

one unique split as test set and remaining splits as train set before repeated for five times 

such that each split was included in the train and test datasets. Since the available data 

was from four different sites, the four selected machine learning models were applied on 

each site's data independently to evaluate the performance of each model, again using the 

leave-one-site-out strategy with three sites for model training and the remaining site for 

testing. Five-fold cross validation was conducted on data from three sites for training the 

dataset to optimize the model parameters resulting in a less biased model by outliers, and 

then tested on the remaining site to estimate performance metrics including AUROC, PPV, 

NPV, sensitivity, specificity, and F1-score; this five-fold cross validation step was conducted 

a total of four times such that each site was left out once as the test dataset. The model 

operating point was selected when applying the algorithm to datasets to prioritize either PPV 

or to minimize false negative cases. By generating a plot of PPV versus false negative 

rate evaluated at different models, the trade-off between increasing in PPV and false 

negative classification can be visualized. In addition to assessing algorithm generalizability 

to distinguish between TP CHD and false positive (FP) CHD cases from datasets unseen 

(other sites), this strategy elucidated the statistical similarities and differences between the 

TP CHD and FP CHD populations from the studied sites. Medians and corresponding 95% 

confidence interval (CI) values were used to summarize the performance metrics across the 

five-folds for each of the four sites (i.e., 20 sets of performance metrics) for each model.

In addition, we evaluated the best performing machine learning model, XGBoost, on site-

specific data. The leave-one-site-out strategy was again adopted for each site, in which 

five-fold cross validation was used for training three sites with the XGBoost model and the 

remaining fourth site was used for testing. This strategy ensured a reliable and unbiased 

estimate of performance between the four sites. A visual on the process for testing inter-site 

capacity of the XGBoost model can be seen in the model development diagram (Figure 1).

3 ∣ RESULTS

3.1 ∣ Sample demographics

Table 1 displays the demographic characteristics of the analytic sample, overall and by CHD 

classification. A total of 779 patients across four sites comprised the analytic sample with 

a PPV of 76.5% (596/779) based on ICD-9-CM code classification. Overall, 48.8% were 
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male; the distribution of sex among TP and FP was similar in the bivariate analysis (p = .29). 

Mean age of the sample was 30.97 years (standard deviation [SD] ± 25.02 years). However, 

those with a FP CHD were significantly older compared to those with a TP CHD, X̄ = 43.86 

years (SD ± 27.64 years) versus X̄ X = 27.01 years (SD ± 22.76 years), respectively (t = 

8.31, p < .0001). The majority of the sample were White (n = 522; 67.0% overall, 78% 

excluding those with unknown race), non-Hispanic (n = 547; 70.2% overall, 86% excluding 

those with unknown ethnicity), and covered by public health insurance (n = 429; 55.1% 

overall, 60% excluding those with unknown insurance type).

3.2 ∣ Feature importance

Mean absolute SHAP values for the 10 features with the most influence on CHD prediction 

across data from all sites are presented in Figure 2; this bar plot depicts how much each 

selected feature contributes to the prediction of CHD, ordered from most influential to 

least (Explaining Machine Learning Models: A Non-Technical Guide to Interpreting SHAP 

Analyses, 2021). Number of outpatient healthcare encounters with at least one documented 

CHD code (hereafter referred to as “CHD-coded”) had the highest mean absolute SHAP 

value, with a magnitude of 0.5. Other relevant features contributing to CHD positive or 

negative classification prediction included: having diagnosis codes for a CHD in the “other” 

anatomic complexity group (as defined in Appendix A); number of CHD-coded healthcare 

encounters overall; age as continuous variable (older age less predictive of CHD); having 

ICD-9-CM diagnosis codes belonging to the CCS categories for musculoskeletal system and 

connective tissue, circulatory diseases, and respiratory system comorbidity groups; having a 

documented electrocardiogram; and number of emergency department (ED) visits.

Another visualization of the 10 features is displayed in a SHAP summary plot (Figure 3), 

with features seen along the y-axis and SHAP values displayed along the x-axis. Each dot 

represents the SHAP value of that feature for one of the 779 individuals in the dataset. 

SHAP values closer to zero suggest that that instance contributes little to the prediction of 

a TP or FP, SHAP values closer to one suggest greater influence toward the prediction of a 

TP, and SHAP values closer to negative one suggest greater influence toward the prediction 

of a FP. The blue to red color range represents the value of the feature for that person. For 

example, a case with 0 CHD-coded outpatient healthcare encounters is represented by a blue 

dot, a case with 3 CHD-coded outpatients encounters is represented by a shade of purple, 

and a case with 13 CHD-coded outpatient healthcare encounters (i.e., the maximum) would 

be represented by a red dot. As number of CHD-coded outpatient healthcare encounters, 

overall CHD-coded healthcare encounters, and ED visits increased, the model more often 

predicted the case to be a TP. On the other hand, the model more often predicted cases to 

be FP as age increased or if “other” CHD codes were detected—that is, these features are 

negative predictors of correct classification.

3.3 ∣ Model performance

Median performance metrics summarizing the 20 metrics across the five folds per site for 

the four machine learning models, LR, GaussianNB, RF, and XGBoost, are presented in 

Table 2. Median PPV in each test dataset varied from a high of 0.94 in XGBoost to a low of 

0.78 in the LR model, and the F1-score, a combined measure of precision and recall, varied 
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from 0.84 for XGBoost to 0.52 for GaussianNB. Having outperformed the other models with 

the test datasets, XGBoost was then used on the entire dataset and yielded a PPV of 0.94 

(437/465) and an NPV of 0.49 (155/314). In Figure 4, we present the receiver operating 

curve (ROC) analyses corresponding to the median AUROC values in Table 2 for the four 

models on the test datasets. In Figure 5, we present the area under the precision-recall curves 

(AUPRC) for the four models on the test datasets; the XGBoost model again had the best 

performance with an AUPRC = 0.88, despite the imbalanced dataset in which TP and FP 

cases were unevenly split (Figure 5). The average PPV-false negative rate curve with CI for 

the XGBoost model is in Figure 6. The red dot denotes the optimal operating point selected 

using the PPV from our final XGBoost model (PPV = 0.94), which has a corresponding 

false negative rate = 0.27. Further, increases in PPV are associated with exponentially higher 

false negative rates; thus this point, and the curve, represents a trade-off between PPV and 

false negative classification.

Table 3 includes metrics describing XGBoost's performance on the four site-specific 

datasets. PPV varied across sites from a high of 0.94 (116/124) in GA to a low of 0.86 

(101/117) in NY, and F1 score varied from a high of 0.86 for GA to 0.79 for NY. We found 

XGBoost for GA to have the best performance with an AUROC value of 0.84, which was 

larger than NC (0.81), NY (0.82), and UT (0.81) (Table 3). While there are some slight 

differences in terms of AUROC, PPV, NPV, sensitivity, specificity, and F1 score values, 

performance metric values were similar across sites.

4 ∣ DISCUSSION

Using ICD-9-CM codes alone, the PPV of CHD in the administrative and clinical dataset 

was 76.5%. When the ‘other’ CHD category is excluded, the PPV increased to 86.5% 

but with 83 false negatives (10.7% of the data set, 14.0% of the TP). Using an XGBoost 

machine learning model, we improved this PPV to 94% while keeping the NPV at 49%, 

demonstrating the utility of machine learning in increasing the accuracy of administrative 

data for surveillance of individuals with CHD. However, with the increase in PPV to 94%, 

22% of TP CHD cases (131/596) were incorrectly labeled as not having CHD. An operating 

point can be selected when applying the algorithm to datasets to prioritize either PPV or to 

minimize false negative cases; in our case, we decided that the threshold of PPV = 0.94, 

corresponding to a false negative rate = 0.27, is an optimal operating point when applying 

the XGBoost model to future analyses to prioritize PPV. Figure 6 illustrates the trade-off 

between increases in PPV and false negative classification; each point on the curve created 

by a model. Increases in PPV beyond this operating point are associated with exponentially 

higher false negative rates.

Public health surveillance of CHD is important to understand factors contributing to short-

term and long-term health-related outcomes following diagnosis and repair, defect-specific 

survival, comorbidities, and healthcare utilization. Capturing as many CHD cases as possible 

while ensuring accuracy of CHD datasets is important to public health CHD surveillance 

efforts. Administrative and clinical data are often used for CHD surveillance efforts because 

they offer large quantities of readily available longitudinal information on patients with 

CHD. However, unlike some homogenous populations readily identified by ICD codes, 
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CHD represents a heterogenous spectrum of native anatomy complexity, with surgical 

repairs that vary by surgical era and geography, and differences in billing practices and 

coding styles that impact how the dozens of CHD-related ICD-9-CM codes are used. 

Though excluded from our data, non-specific CHD codes, codes for extra-cardiac vascular 

anomalies, and the code used to indicate a normal patent foramen ovale variant (745.5) 

are often included in ICD-9-CM code group (745.XX–747.XX) used to identify CHD 

in administrative and clinical data despite evidence that the PPV of code group 745.XX–

747.XX for a CHD is as low as 48.7% (Khan et al., 2018). After excluding the non-CHD 

codes in ICD-9-CM code group 745.XX–747.XX, and excluding isolated 745.5 from our 

data, the PPV was still less than ideal at 76.5%, although this was further improved to 

86.5% by excluding the entire group of ‘other’ CHD codes in Rodriguez et al. (2022). 

While PPV can be increased by restricting the data to certain codes, or to specific encounter 

types and numbers of encounters with CHD codes, entire subsets of TP CHD cases (e.g., 

all individuals with atrial septal defects) would be excluded and the resulting data would be 

skewed toward more severe cases. Our results show that machine learning algorithms can 

be applied to large national datasets to increase accuracy of case identification and improve 

surveillance of CHD across the lifespan as a better alternative.

The performance of XGBoost was compared with LR, GaussianNB, and RF. LR is a 

statistical tool that helps identify relationships between multiple variables; it is a relatively 

fast model to apply compared to other models such as RF and XGBoost, which are 

often time consuming (Logistic Regression Analysis—an Overview ∣ ScienceDirect Topics, 

2020). However, LR may be limited in performance accuracy, especially for multiple 

complex variables (Logistic Regression Analysis—an Overview ∣ ScienceDirect Topics, 

2020). GaussianNB is a model that is based on Gaussian distribution presumptions of the 

feature sets and is considered an efficient machine learning model (Jahromi & Taheri, 2017). 

Although GaussianNB is efficient in time (faster in processing and training time) to classify, 

it suffers from weak conditional independence, which impacts model performance (Jahromi 

& Taheri, 2017). RF classification is an ensemble learning technique that uses combinations 

of decision trees for classification (Nguyen et al., 2013). It is a popular model for diagnosis 

classification because it incorporates large amounts of data, while limiting data overfitting 

which is a common, yet undesirable phenomenon inherent to machine learning models that 

can occur when the algorithm learns the details of a particular training dataset so well 

that it fails to be predictive and generalizable when tested with novel datasets (Dreiseitl 

& Ohno-Machado, 2002; Jabbar & Khan, 2014; Nguyen et al., 2013; Zhang et al., 2017). 

However, RF can be challenging as large datasets require high amounts of memory (Santur 

et al., 2016). Therefore, gradient tree boosting, specifically XGBoost, is often used to 

reduce overfitting and increase classification efficiency (Chen & Guestrin, 2016). XGBoost 

combines boosting, which applies classifications to reweighted versions of training data 

to increase performance, with incorporated regularized modeling to prevent overfitting of 

the model (Chen & Guestrin, 2016; Friedman et al., 2000). Due to issues associated with 

multiple complex variables, we did not expect favorable results from the GaussianNB or 

the LR models, and we expected comparable results from the RF and XGBoost models 

(Lundberg, 2020). Ultimately, we found that XGBoost outperformed all the other models 

considered.
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While some researchers have utilized machine learning to evaluate risk factors for CHD and 

predict a pregnant person's risk of having an infant with CHD (Luo et al., 2017; Rani & 

Masood, 2020), the present study is the first, to our knowledge, to use machine learning to 

detect individuals who actually have a CHD in administrative records and distinguish them 

from individuals who have CHD codes but do not have CHD, for the purpose of enhancing 

CHD surveillance across the lifespan. We have demonstrated improved accuracy of CHD 

case identification in administrative data from diverse sources by developing a machine 

learning algorithm using XGBoost to detect TP CHD cases, yielding a PPV of 94%, and an 

F1-score of 0.84. PPV can be further increased at the expense of sensitivity, but optimization 

of F1-score is needed to represent the desired population most accurately.

In this analysis, the overlapping features most helpful in distinguishing TP and FP cases 

in development of the machine learning algorithm, and those that were included in the 

model were as follows: number of outpatient CHD-coded encounters, having a CHD of 

“other” anatomic group, number of CHD-coded healthcare encounters, age, a diagnosis 

in the CCS musculoskeletal group, circulatory group, electrocardiography group, factors 

influencing healthcare (medication management) group, respiratory system group, and 

number of ED visits were. Different features could be positive or negative predictors of true 

CHD classification. For example, increasing CHD-coded outpatient healthcare encounters, 

overall CHD-coded healthcare encounters, and ED visits led to more predictions of TP. On 

the other hand, the model more often predicted cases to be FP as age increased or if “other” 

CHD codes were detected. This feature reduction process helps avoid a ‘black box’ where 

there is uncertainty about the variables driving the algorithmic results. By using overlapping 

features identified as important in all datasets, we could ensure generalizability of the model 

and avoid reliance on a model that performs well in one dataset but whose results cannot 

be replicated in a different dataset. Principal component analysis (PCA) was applied to all 

the features, but a large number of principal components are required to account for 90% 

of total variance contribution, which means PCA would not be a good method for feature 

reduction and the dataset is too complex to be described by a few principal components. 

After reducing the model to features deemed important for each site, the XGBoost model 

had an AUPRC of 0.88 and a PPV of 94%. When further trained on data from three sites and 

applied to a fourth site, accuracy was maintained.

5 ∣ LIMITATIONS

The small size of the validated dataset limited the number of methods that could be applied 

in model development. Even after feature reduction, the reduced feature set, totaling 7138 

features, was larger than the cohort size of 779 patients. This limits the rank of the feature 

space to the number of patients, which technically limits the use of statistical feature 

selection algorithms (e.g., based on eigen-analysis). We had a large number of missing 

values on race and ethnicity variables, which limits understanding of the performance of 

the models by race or ethnicity. This may limit the robustness and generalizability of the 

selected feature set when applied to other cohorts. We utilized ICD-9-CM codes for this 

project, which would not be directly applicable to datasets with ICD-10-CM codes. The 

original dataset had excluded 745.5 (secundum ASD), thus results are not applicable to 

datasets that include this code. Future applications of ML to datasets inclusive of 745.5 
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would improve usefulness of ML in developing more accurate CHD datasets. Some of the 

selected features (e.g., number of ED visits, a diagnosis in respiratory system group) may 

not perform as expected during the coronavirus disease 2019 pandemic.

6 ∣ CONCLUSIONS

Accuracy of administrative datasets to detect CHD can be improved with machine learning 

techniques, which may be further improved with larger validated datasets. Use of machine 

learning techniques for CHD case classification in administrative data has the potential to 

enhance public health surveillance efforts. More machine learning studies conducted using 

different datasets from other locations and other time spans with a more variety of patients 

will be needed to verify this finding.

ACKNOWLEDGMENTS

The authors would like to thank participating sites and CDC.

FUNDING INFORMATION

Centers for Disease Control and Prevention, Cooperative Agreement: Congenital Heart Defects Surveillance across 
Time And Regions (CHD STAR) – Component B (DD19-1902B) ∣ 9/30/2020-9/29/2023 ∣ Book (PI).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from Centers for Disease 

Control and Prevention. Restrictions apply to the availability of these data, which were used 

under license for this study. Data are available from the author(s) with the permission of 

Centers for Disease Control and Prevention.

APPENDIX A: Mutually exclusive congenital heart defect severity 

categories by International Classification of Disease version 9.0 Clinical 

Modification codes.

Category ICD-9-CMa 
code

Code description

Severe (if case has a severe code, regardless of presence of 
shunt, valve, or other codes)

745.0 Common truncus

745.1 Transposition of the great 
arteries (TGA)

745.10 Complete TGA (dextro-TGA), 
not otherwise specified (NOS) 
or classical

745.11 Double outlet right ventricle, or 
incomplete TGA

745.12 Corrected TGA (levo-TGA)

745.19 TGA other

745.2 Tetralogy of Fallot

745.3 Single ventricle, or cor 
triloculare
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Category ICD-9-CMa 
code

Code description

745.6 Endocardial cushion defect

745.60 Endocardial cushion defect 
unspecified

745.69 Endocardial cushion defect, 
other

746.01 Pulmonary valve atresia or 
absence

746.1 Tricuspid atresia, stenosis or 
absence

746.7 Hypoplastic left heart syndrome

747.11 Interrupted aortic arch

747.41 Total anomalous pulmonary 
venous return

Shunt + valve (case has shunt AND valve codes) A combination of 
the shunt/valve 
codes below

A combination of the shunt/
valve defects below

Shunt (case has at least one shunt code, no valve or severe 
codes)

745.4 Ventricular septal defect (VSD)

745.61 ASD primum

745.8 Other specified defect of septal 
closure

745.9 Unspecified defect of septal 
closure

747.0 Patent ductus arteriosus (PDA)

747.42 Partial anomalous venous return

Valve (case has at least one valve code, no shunt or severe 
codes)

746.0 Anomalies of pulmonary valve

746.00 Pulmonary valve anomaly, 
unspecified

746.02 Pulmonary valve stenosis

746.09 Pulmonary valve anomaly, other

746.2 Ebstein Anomaly

746.3 Aortic valve stenosis

746.4b Aortic insufficiency or bicuspid/
unicuspid aortic valveb

746.5 Mitral stenosis or mitral valve 
abnormalities

746.6b Mitral insufficiencyb

764.81 Subaortic stenosis

746.83 Infundibular or subvalvar 
pulmonary stenosis

747.1/747.10 Coarctation of aorta

747.22 Atresia or stenosis of aorta

747.3b Anomalies of pulmonary 
arteryb

747.31 Pulmonary artery atresia, 
coarctation, or hypoplasia

747.39 Anomalies of pulmonary artery, 
other

Other only (case only has one or more codes in this category) 745.7 Cor biloculare
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Category ICD-9-CMa 
code

Code description

746.8 Other specified anomalies of 
heart

746.82 Cor triatriatum

746.84 Obstructive anomalies of heart

746.85 Coronary artery anomaly

746.87 Malposition of heart or apex

746.89b Other specified anomaly of 
heart (various types)b

746.9b Unspecified defect of heartb

747.2 Other anomalies of the aorta

747.20 Anomalies of aorta, unspecified

747.21 Anomaly of aortic arch

747.29 Other anomalies of aorta, other 
specified

747.4 Anomalies of great veins

747.40 Anomalies of great veins, 
unspecified

747.49 Other anomalies of great veins

747.9 Unspecified anomalies of 
circulatory system

648.5x Congenital cardiovascular 
disorders in the mother

V13.5 Personal history of (corrected) 
congenital malformations of 
heart and circulatory system

Note: Individuals were ascertained by the site-specific surveillance system if they had any ICD-9-CM CHD diagnosis 
codes between 745.XX and 747.XX documented in a healthcare encounter between January 1, 2011 and December 31, 
2013, excluding: Atrial septal defect (ASD) secundum or Patent Foramen Ovale (745.5) congenital heart block (746.86), 
absent/hypoplastic umbilical artery (747.5), pulmonary arteriovenous malformation (747.32), other anomalies of peripheral 
vascular system (747.6X), and other specified anomalies of circulatory system (747.8X).
a
International Classification of Disease version 9.0 Clinical Modification.

b
Codes considered to be minor. All other listed codes considered to be major.
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FIGURE 1. 
Machine learning model development for CHD prediction. Depiction of algorithm 

development and cross-validation procedures. CHD, congenital heart defects; GA, Georgia; 

GaussianNB, Gaussian Naive Bayes; LR, Logistic Regression; NC, North Carolina; NY, 

New York; RF, Random Forest; SHAP, SHapley Additive exPlanation values generated 

using XGBoost; UT, Utah. Six performance metrics: AUROC, area under the receiver 

operating characteristic curve; PPV (positive predictive value), 100 × TP/(TP + FP); NPV 

(negative predictive value), 100 × TN/(TN + FN); sensitivity, 100 × TP/(TP + FN); 

specificity, 100 × TN/(TN + FP); F1 score, 2 × (PPV × sensitivity)/(PPV + sensitivity).
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FIGURE 2. 
Bar plot of mean absolute SHAP values for common relevant features for congenital heart 

defect (CHD) prediction using the XGBoost model. This bar plot shows the mean absolute 

SHAP values for common relevant features (variable) across all the data using the XGBoost 

model for CHD prediction. The key aspects of this bar plot are the ordering of features and 

the relative magnitude (positive or negative) of the mean absolute SHAP values; the mean 

absolute SHAP value quantifies, on average, how much the feature impacts prediction in 

the positive or negative direction. Features with higher mean absolute SHAP values like 

# CHD-coded outpatient healthcare encounters, ‘other’ CHD anatomic group diagnosis, 

and # CHD-coded healthcare encounters are more influential. Other features that influence 

prediction include several CCS categories: having a musculoskeletal system and connective 

tissue diagnosis; a circulatory disease diagnosis; an electrocardiography diagnosis; “factors 

influencing healthcare” which includes a subcategory “medication management”; and a 

respiratory system diagnosis (Rodriguez et al., 2022). CHD, congenital heart defects; SHAP, 

SHapley Additive exPlanation values.
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FIGURE 3. 
SHAP summary plot of common relevant features for congenital heart defect (CHD) 

prediction using the XGBoost model. This figure shows the SHAP summary plot of the 10 

common relevant features across all the data using an XGBoost model for CHD prediction. 

The color bars represent raw SHAP values for each feature. Each dot represents one person; 

red color represents cases are present, while blue color represents cases who are absent. 

Features with higher predicted CHD risk, including # outpatient CHD healthcare encounters, 

# CHD healthcare encounters, circulatory diseases diagnosis, electrocardiography diagnosis, 

factors influencing healthcare (medication management), and emergency department visit, 

are denoted by SHAP values whose bars have red portions to the right of ‘0’, whereas 

features with lower predicted CHD risk, including having a CHD ‘other’ group diagnosis, 

age (in years), musculoskeletal system and connective tissue diagnosis, and respiratory 

system diagnosis, are denoted by SHAP values whose bars have red portions to the left of 

‘0’. CHD, congenital heart defects; SHAP, SHapley Additive exPlanation values.
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FIGURE 4. 
Receiver operating curve (ROC) analyses with area under the receiver operating curve 

(AUROC) values for four machine learning models. This figure shows the ROC curve for 

four different machine learning models for CHD prediction. XGBoost model has the highest 

AUROC, 0.81, compared to other models. AUROC, area under the receiver operating curve; 

GaussianNB, Gaussian Naïve Bayes; ROC, receiver operating curve.
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FIGURE 5. 
Area under the precision-curve (AUPRC) analyses for four machine learning models. This 

figure shows the precision-recall curve for four machine leaning models for CHD prediction. 

XGBoost model has the highest AUPRC, 0.88, compared to other machine learning models. 

AUPRC, area under the precision-recall curve; GaussianNB, Gaussian Naïve Bayes.
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FIGURE 6. 
Positive predictive value (PPV)–false negative (FN) rate analyses for the XGBoost model 

for four sites. This figure shows the PPV–FN rate curve for CHD prediction for pooled 

data across four sites. The operating point is at the threshold of PPV = 0.94 and FN rate 

= 0.35, as seen by the red dot. Less increase in PPV is associated with per unit FN rates 

increase since PPV reaches a plateau. For any point beyond 0.94, substantially more FN will 

be sacrificed to achieve a higher PPV. The dark blue line shows the mean of the five-fold 

cross validation, while the light blue shaded area represents the range of values within 1 

SD of the mean. The dark blue line is the mean of the five-fold cross validation rather than 

real model performances. The dot is the model with the highest PPV and the lowest false 

negative rate among five-fold cross validation, thus does not appear on the dark blue line. 

FN, false negative; PPV, positive predictive value; SD, standard deviation. TP (true positive), 

individual correctly identified as having CHD FP (false positive), individual incorrectly 

identified as having CHD (FP/FP + TN); TN (true negative), individual correctly identified 

as not having CHD FN (false negative), individual incorrectly identified as not having CHD 

(FN/FN + TP); PPV = 100 × TP/(TP + FP) = 100 × 437/(437 + 28) = 94%; NPV = 100 × 

TN/(TN + FN) = 100 × 155/(155 + 159) = 49%; accuracy = 100 × (TP + TN)/N = 100 × 

(437 + 155)/779 = 80%; ensitivity = 100 × TP/(TP + FN) = 100 × 437/(437 + 159) = 73%; 

pecificity = 100 × TN/(TN + FP) = 100 × 155/(28 + 155) = 85%; CHD prevalence = 100 × 

(TP + FN)/N = 100 × (437 + 159)/779 = 75%.
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