1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Environ Pollut. Author manuscript; available in PMC 2023 December 27.

-, HHS Public Access
«

Published in final edited form as:
Environ Pollut. 2022 February 15; 295: 118658. doi:10.1016/j.envpol.2021.118658.

ALS risk factors: Industrial airborne chemical releasesx*

Angeline Andrew?”, Jie ZhouP, Jiang GuiP, Xun ShiP, Meifang Li°, Antoinette HarrisonC,

Bart Guetti?, Ramaa Nathant, Tanya Butt?, Daniel Peipert?, Maeve Tischbein?, Erik P.
Pioro®, Elijah Stommel?, Walter Bradleyf

a Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA

b Dartmouth College, Hanover, NH, USA

¢ Mitsubishi Tanabe Pharma America, Inc., Jersey City, NJ, USA

d Eversana, Wayne, PA, USA

€ Center for ALS and Related Disorders, Cleveland Clinic, Cleveland, OH, USA

f Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA

Abstract

Most amyotrophic lateral sclerosis (ALS) cases are sporadic (~90%) and environmental exposures
are implicated in their etiology. Large industrial facilities are permitted the airborne release of
certain chemicals with hazardous properties and report the amounts to the US Environmental
Protection Agency (EPA) as part of its Toxics Release Inventory (TRI) monitoring program. The
objective of this project was to identify industrial chemicals released into the air that may be
associated with ALS etiology. We geospatially estimated residential exposure to contaminants
using a de-identified medical claims database, the SYMPHONY Integrated Dataverse®, with
~26,000 nationally distributed ALS patients, and non-ALS controls matched for age and gender.
We mapped TRI data on industrial releases of 523 airborne contaminants to estimate local
residential exposure and used a dynamic categorization algorithm to solve the problem of
zero-inflation in the dataset. In an independent validation study, we used residential histories

to estimate exposure in each year prior to diagnosis. Air releases with positive associations in
both the SYMPHONY analysis and the spatio-temporal validation study included styrene (false
discovery rate (FDR) 5.4e-5), chromium (FDR 2.4e-4), nickel (FDR 1.6e-3), and dichloromethane
(FDR 4.8e-4). Using a large de-identified healthcare claims dataset, we identified geospatial
environmental contaminants associated with ALS. The analytic pipeline used may be applied to
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other diseases and identify novel targets for exposure mitigation. Our results support the future
evaluation of these environmental chemicals as potential etiologic contributors to sporadic ALS
risk.
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1. Introduction

In amyotrophic lateral sclerosis (ALS), the progressive loss of both upper and lower motor
neurons leads to spasticity, muscle atrophy, frequent respiratory failure and death over a 3-5
year period. Only 10% of ALS cases can be attributed to a familial trait or gene (Mathis et
al., 2019). Studies of monozygotic twins discordant for ALS demonstrate that environmental
factors play a critical role in the majority of sporadic ALS (SALS) (Meltz Steinberg et al.,
2015), perhaps in the setting of also having some genetic predisposition for the disease
(Al-Chalabi et al., 2014; Bradley et al., 2018).

Observational studies have revealed that the following environmental exposures are risk
factors for ALS: lead and mercury, pesticides, solvents, cyanotoxins, and head trauma
(reviewed in Wang et al. (2017)). A case-control study in Pennsylvania (n = 51 cases)
showed a 5-fold increased risk of ALS associated with residing in census tracts with
exposure to ‘“aromatic solvents’ above vs. below the median (Malek et al., 2015). Because
Malek et al. analyzed conglomerates of 6-13 chemicals, the identity of the risk-driving
chemical(s) is unclear. Together, identifying potential causal exposures could help to prevent
ALS and focus interventional studies to block progression.

We and others see each case of ALS and other neurodegenerative diseases as potentially
having a variety of different causal environmental factors, centralizing on the ability of a
particular stressor to induce a neuronal ‘environmental stress response’ that is not overcome
by internal compensatory repair mechanisms. The classical response in this category is

the *heat shock’ response, involving production of ‘heat shock proteins (HSP)’ that help
with stress tolerance and the re-folding and repair of damaged proteins, promoting cell
survival (Calabrese et al., 2000; Dattilo et al., 2015). Stressors that necessitate this response
range from physical head injuries to chemical exposures (Andrew et al., 2021). Elucidating
the relationship between environmental exposures and neurodegenerative disease remains
a persistent challenge in the field. Identifying disease-related contaminants likely requires
considering complex dose-response relationships in addition to more traditional linear low-
dose extrapolation models. These models include non-linear dose-response relationships,
such as the biphasic ‘hormetic’ dose-response involving modest adaptive neuro-protective
activity at low-doses, yet substantial cell death with exposure to levels of the same stress
factor that exceed the limits of adaptation (Dattilo et al., 2015).

The objective of the current study was to identify individual airborne contaminants
associated with ALS risk using the power of a large, nationally distributed and de-identified
healthcare claims dataset. Industrial facilities are permitted airborne release of certain
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chemicals with hazardous properties and are required to report these amounts to the

United States Environmental Protection Agency (US EPA) as part of its Toxics Release
Inventory (TRI) monitoring program. To assess ALS risk in relation to these releases, our
study used a two-phase, ‘discovery’ and ‘validation’ cohort approach. The SYMPHONY
Integrated Dataverse® served as the ‘discovery’ cohort to identify TRI airborne contaminant
releases associated with ALS rates. Our data analysis approach included a categorization
algorithm to accommodate the skewed and non-linear distribution of our geospatially
estimated contaminant levels. We then performed “validation’ of these top-hit contaminants
by calculating exposures prior to ALS onset in a study conducted in the Northern New
England and Ohio regions. The advantage of these regional cohorts is that we collected
address-level residential histories and could thus examine the relevance of spatial spreading
from an industrial site and temporal changes in exposure, focusing on the 5 to 15-year period
prior to diagnosis. Using this approach we identified airborne contaminants consistently
associated with ALS across the broad SYMPHONY and the detailed regional validation
datasets.

2. Materials and methods

Airborne contaminant releases:

We downloaded Toxics Release Inventory (TRI) airborne release data for 523 individual
contaminants from the US EPA for the period 1993-2019. For each year, we constructed
map based on the mandatory, yearly reporting to US EPA. The centroid of a given site

was the geospatial coordinate of each industrial site reporting an airborne contaminant
release. We next modeled the spatial spread of reported contaminants from the centroid
point assuming a 10k dispersion. Thus, we created annual raster maps with the pixel values
reflecting the estimated contaminant concentrations.

Discovery phase:

We used a large de-identified healthcare claims dataset from the SYMPHONY Integrated
Dataverse® (herein referred to as SYMPHONY) 2013-2019 as the ‘discovery’ cohort. ALS
patient inclusion criteria were a) minimum of two entries into the SYMPHONY database
classified as being due tolCD-9/10 codes for ALS at least 3 calendar months apart, b)
minimum of 6 months’ enroliment in the database prior to first ALS ICD code, c) age at first
ALS ICD code =18 yr. Supplemental Figure 1 summarizes the analytic pipeline described
below.

We randomly selected individuals in the overall SYMPHONY network that were similar to
the ALS patient cases in regards to age, gender and length of database history as controls.
We excluded patients >80 years old due to low coverage in the network as well as those
with ICD-9/10 codes for other neurodegenerative diseases, as there may be shared etiologic
factors. We then used the R-package “Matchlt” to perform propensity score matching with a
3:1 ratio to select a subset of controls with the nearest age and same gender as a comparison
group (Ho et al., 2007). The selected controls showed similar national distribution to the
cases, based on the coverage of the SYMPHONY network.
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Within each of the 863 zip3 regions nationwide, we calculated the logit of the proportion of
ALS cases to SYMPHONY network controls, r, in each region, i.e., Y = logﬁ (mapped in

Fig. 1). A histogram of the resulting Y values showed a normal distribution pattern. These Y
values were used as the outcome variable for the discovery phase analysis.

Airborne contaminant exposure estimates —We averaged the annual point-level
release amounts (i.e. from industrial facilities) over the 10-years prior to the diagnostic
period of the ALS cases 2002—2012. Then we took the average of the values of each of

the 523 contaminants released within each zip3 polygon region. The zip3 polygon included
all zip-codes that shared the same first three integers. We estimated residential exposure
level at the zip3 location, as this was the only spatiotemporal information available for the
SYMPHONY cohort.

Because industrial facilities only released each chemical in a small proportion of the

zip3 regions, the exposure dataset distribution is skewed and shows a high degree of
‘zero-inflation” (Fig. 2). To address this analytical challenge, we applied a categorization
procedure. For chemicals with very sparse observations (defined as nonzero observations
comprising less than 1% of the zip3 regions), we divided the observations into just

two categories (e.g. present/absent). For all of the more frequently released chemicals,

we applied the dynamic categorization algorithm that we developed recently to address

a similar “zero-inflation’ issue in the context of microbiome data analysis (Zhou et al.,
2020). In our optimization of this algorithm, a maximum of 6 binned categories effectively
captured the variation in the datasets tested to date. This algorithm efficiently converted
the log-transformed continuous concentration of each contaminant into up to K= 6 binned
categories based on the distribution of that particular contaminant across the 863 zip3
regions. This algorithm runs iteratively with increasing values of Kand calculates the
within-group variance. The Kthat minimizes the variance of the contaminant levels within
each bin is selected for each contaminant (see Supplement 1 for more details). Fig. 2B
shows an example of the continuous levels of a contaminant with a skewed distribution that
the algorithm binned into four categories (K= 4).

Statistical analysis —To prioritize the most informative contaminants, we performed

a sample-size weighted L1-penalized lasso using the categorized contaminant values as
predictors and the logit of the zip3 ALS rate as the outcome. The subset of top-ranking
contaminants selected by lasso were subsequently assessed using weighted univariate
regression for main-effects on ALS rate, allowing us to assess the direction of the
association with ALS and the effect size. We used False Discovery Rate (FDR) correction

to account for multiple comparisons, using a significance threshold of <0.05. Weighted pair-
wise regression with interaction terms evaluated combinations of contaminants associated
with ALS. We also applied nonparametric Bayesian Kernal Machine Regression (BKMR) to
assess non-linear relationships (Bobb et al., 2018).

Validation phase:

We used an independent cohort with residential history information for the validation. We
obtained mortality records attributed to ‘motor neuron disease’ using ICD-10 code G12.2
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from the following states and years available: New Hampshire (2009-2018 n = 337),
Vermont (2008-2016 n = 216), and Ohio (2016-2019 n = 799). From among the same
catchment counties as the ALS cases, population controls were identified as residents of
New Hampshire (NH)/Vermont (VT) (n = 762), or Ohio (OH) (n = 1336) using the US
Postal Service Delivery Sequence file licensed to Marketing Systems Group (Horsham, PA).
The sampling algorithm was designed to randomly sample individuals in the population
based on the expected demographic distribution of the ALS cases, with over-sampling of
50-75 year-olds and males.

Residential history —We obtained the geocodes of addresses held by each validation
cohort subject over the 15-year period prior to the index date from a commercial financial
marketing database query LexisNexis (Dayton, Ohio). We observed similar results when we
tested other periods up to 25-years. We then mapped those addresses into zip3 polygons.

Airborne contaminant exposure estimates —For the validation cohort, we had
residential history information comprised of the geospatial coordinates of each residence
for both ALS cases and population controls. To estimate the exposure in each year prior to
diagnosis, we read the contaminant amount from the raster maps representing the dispersed
contaminant for each case or control residence in each year. We then calculated the median
exposure to each contaminant across his/her multiple residences in epochs representing the
period prior to the index year (i.e. for the 5-year epoch of a case diagnosed in 2016, we
compiled estimated exposures for residences held from 2010 to 2015). We chose to use

the median value rather than the cumulative value to avoid introducing bias due to missing
residences.

Statistical analysis —The subset of contaminants identified by the “discovery phase’
entered the “validation phase’ analysis, which used the residential history epoch estimates
of exposure for the case-control study subjects. The median exposure estimate of each
contaminant over the residence prior to diagnosis was binned into categories based on

the quartile distribution of each contaminant in the controls. Chi-square tests assessed

the univariate difference in proportion of cases and controls by quantile, followed by
logistic regression analysis that adjusted for age and gender. These analyses were all
performed using R: A Language and Environment for Statistical Computing, version 4.0.2
(R Foundation for Statistical Computing, Vienna, Austria).

3. Results

Table 1 shows that the age- and gender-distribution of the n =26,199 ALS cases we
identified is similar to that of the controls sampled from the SYMPHONY network. The
majority (63%) of the cases and controls were 55-75 years of age and approximately 57%
were male, as expected based on ALS literature (McCombe and Henderson, 2010). Fig. 1
shows a map of the geospatial variation in the logit of the ALS rate among the 863 zip3
regions.

Fig. 2A shows a map of the average airborne releases of one example contaminant
(dichloromethane) across the zip3 regions nationwide. Fig. 2B shows the skewed and
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‘zero-inflated’, non-normal distribution of contaminant levels that led to our dynamic
categorization analysis approach. Fig. 3 shows the weighted univariate regression results
of the top-ranking contaminants selected by the lasso algorithm, and Supplemental Table
1 contains the full list of coefficients and FDR values, along with the distribution of
contaminant levels. Certain identified chemicals had reported releases in many of the 863
counties (e.g. styrene in 578 counties, Supplemental Figure 3), whereas others were rarely
reported (e.g. potassium bromate in 2 counties).

Ten contaminants met the FDR cutoff <0.05 from the nationwide SYMPHONY database
‘discovery phase’ and went into the ‘validation phase’ of analysis, which used residential
history of NH/VVT/OH patients and controls. Fig. 4 shows the increased ALS risk for the

five contaminants (styrene, nitric acid, nickel, dichloromethane, and chromium) confirmed
in the ‘validation phase’ (Fig. 4). History of residence in areas with styrene release in the 3rd
quartile vs. below the median in the 15-years prior to diagnosis was associated increased risk
of ALS (1.24-fold). 5-year exposure history in the 50-75th percentile was also associated
increased risk of ALS for nitric acid (OR 1.36), nickel (OR 1.27), dichloromethane (OR
1.12), and chromium (OR 1.26) (Fig. 4, Supplemental Table 2). Maps showing the average
pounds of dichloromethane and styrene released 2002—2012 across the zip3 regions can be
found in Supplemental Figure 3.

We then evaluated the effects of exposure to combinations of the top-ranking contaminants
in the SYMPHONY dataset using a pairwise interaction-effects model. As shown in Fig.
5, we did not identify any pairs of contaminants with positive interaction coefficients.
Chloromethane paired with either nickel or chromium as the two combinations of
contaminants with the lowest interaction p-values corrected for multiple comparisons
(FDR) in SYMPHONY (Table 2). Neither pair met our FDR significance threshold of
<0.05. Supplemental Table 3 shows the results for the top 20 pairs of contaminants in
SYMPHONY.

Supplemental Figure 2 shows graphs of the non-linear and pairwise relationships among
contaminants generated by non-parametric regression in SYMPHONY. This BKMR model
did not show evidence of positive interactions among pairs of contaminants. Styrene does
show a non-linear relationship with ALS, with effects peaking in the middle of the estimated
exposure range of the SYMPHONY dataset.

4. Discussion

The role of environmental exposure in the etiology of sporadic ALS remains unexplained in
many cases. The objective of this study was to take an unsupervised approach to assess links
to airborne releases of contaminants reported to the US EPA in the TRI program. Unique
aspects of our study include the use of a large, nationally distributed and de-identified
healthcare claims dataset, an analysis pipeline with a dynamic categorization algorithm
allowing for non-linear effects, and a validation phase using residential history based
exposure assessment. Across these datasets, we observed consistent positive associations
for airborne releases of a variety of potential environmental stressors: nitric acid, styrene,
chromium, nickel, and dichloromethane.
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1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Andrew et al.

Page 7

Airborne styrene was among a group of aromatic solvents implicated in increased risk of
ALS in a study of environmental airborne contaminants in the Pittsburgh area (Malek et

al., 2015), supporting the styrene association that came up in our nationwide unsupervised
analysis of 523 airborne contaminants and ALS also in the residential history validation.
Styrene is used in rubber, plastic and fiberglass laminate, and disposable drinking glass
manufacturing. Neurotoxicity in styrene-exposed workers has been established with clear
symptoms of central nervous system depression, and anesthetic effects that include
peripheral nerve conduction velocities and sensorimotor neuropathies (Kovarik et al., 1989;
Matikainen et al., 1993). Peripheral markers also document these effects, with significantly
lower serum dopamine-beta-hydroxylase activity in exposed vs control workers p < 0.001
(Bergamaschi et al., 1996). Ambient airborne styrene levels estimated in the highest quartile
using the National Air Toxics Assessment were associated with self-reported central nervous
system symptoms among residents of the US Gulf coast (Werder et al., 2018). Styrene oxide
is a glutathione-depleting epoxide with cytotoxic effects that are exacerbated in cell lines
with abnormal SOD-1 activity (Durham et al., 1995). In our environmental exposure setting,
we observed a non-linear relationship with the highest ALS risk associated with doses in
the middle of the exposure range. This may be indicative of a hormetic dose-response
described by Calabrese et al., where low-levels of exposure activate a protective cellular
stress response, inducing production of molecules under control of the “vitagenes” such as
HSPs and glutathione, which have antioxidant and anti-apoptotic capabilities (Calabrese et
al., 2010). Controlled laboratory experiments are needed to elucidate these mechanisms and
clarify the dose response relationship between styrene exposure and levels of cytoprotective
proteins such as glutathione.

The epidemiological literature covers several additional contaminants that ranked highly
in the SYMPHONY analysis and validated using residential histories. In our assessment
of 523 contaminants, dichloromethane exposure was identified as one such risk factor.
Interestingly, Dickerson et al. linked dichloromethane (methylene chloride) to ALS in

a Danish occupational cohort (Dickerson et al., 2020b). Dichloromethane was used in
paint removers, until the EPA banned its use in 2019, and is also an aerosol spray
propellant. It acts as a central nervous system toxin causing narcosis, and breaks down

into carbon monoxide, impairing oxygen delivery by hemoglobin and myoglobin (Durrani
et al., 2020). Hypoxic stress activates a cascade anti-proliferative cellular response initially
mediated by hypoxia inducible factor-1a (HIF-1a) induction (Durrani et al., 2020). Yet,
carbon monoxide is also considered a “nonconventional neurotransmitter” that can activate
mitochondrial redox signaling (Calabrese et al., 2010).

We also found a statistically significant increased risk of ALS associated with chromium
estimated over 5-years of prior residences. An analysis of occupational history using the
Danish Pension Fund found chromium exposure in the third and fourth quartiles trended
towards increased ALS risk, compared to those with no exposure (adjusted ORs = 1.24;
95% C10.91, 1.69; 1.19; 95% CI: 0.80, 1.76, respectively) (Dickerson et al., 2020a). Both
our geospatial and the Danish occupational studies included a mixture of different forms of
these metals, which may obscure the effects. For example, chromium(VI) kills neurons in
Drosophila, but chromium(111) does not (Singh and Chowdhuri, 2017). A geospatial study
in Spain also linked chromium in river water to a 15.7% increased risk of death from
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motor neuron disease (Sanchez-Diaz et al., 2018). At the cellular level, chromium(VI) is
reduced to chromium (I11) producing reactive oxygen species. In a recent review on the
neurotoxic effects of chromium, Wise et al. shows substantial evidence of neurodegenerative
changes, neuroinflammation, decreased acetylcholinesterase activity, and induction of stress
response genes including Arf2and HO-1 and pro-apoptotic caspases (Wise et al., 2021).
While several animal studies show that levels of the antioxidant glutathione decreased

after chromium(V/1) exposure, others show increases in the cortex, perhaps demonstrating a
hormetic adaptive response under certain conditions (Wise et al., 2021).

Likewise, for nickel, we found an adjusted ALS OR 1.27 95%CI 1.06-1.52 associated with
5-year exposure history in the 50th-75th percentile. Among Danish women, occupational
nickel exposure was associated with increased ALS risk in the third quartile (adjusted OR
=2.21; 95% ClI: 1.14, 4.28), but not the fourth (Dickerson et al., 2020a). Investigation

of the neurotoxic effects of nickel is on-going (reviewed (Salimi et al., 2020)). Notably
studies of animal models demonstrate that nickel treatment induces oxidative stress and
histopathological damage to brain tissue, including mitochondrial damage (Ijomone et al.,
2018; Song et al., 2017). We and others have demonstrated that nickel can stabilize HIF-1a,
mimicking the hypoxic response that switches cellular metabolism from mitochondrial
oxidative phosphorylation to anaerobic glycolysis, greatly reducing the amount of energy
produced (Andrew et al., 2001; Song et al., 2017). Nickel exposure also induces production
of serum nitric oxide synthase (iNOS) and production of serum nitric oxide concentrations
(Cruz et al., 2004; Hattiwale et al., 2013). Nitric oxide and mitochondrial superoxide can
combine to form reactive peroxynitrite, which may regulate neurotransmission (Calabrese et
al., 2010).

Lastly, we also identified and validated nitric acid as a risk factor. The primary industrial
use of nitric acid is in the production of ammonium nitrate for fertilizers, but it is also
produced in manufacturing dyes, fungicides, and polymers (National_Research_Council,
2013). The fumes are highly corrosive and damage the respiratory tract, however evidence
for neurotoxicity in the literature is lacking (National_Research_Council, 2013). It is
possible that nitric acid releases are not causal themselves, but are acting as a surrogate for
another chemical produced by the same industrial processes, such as nitrous oxide. Nitrous
oxide is an anesthetic that inhibits NMDA-receptor mediated currents and is associated with
slowed motor neuron conduction velocities and reduced amplitudes (Li et al., 2016).

Together our analysis identified multiple releases that are associated with ALS and may

be relevant to ALS etiology. Neurotoxic effects of solvents occur in workers with high,
chronic exposures and include long-term effects on motor neurons. A group of n =87
workers presented with neurological symptoms and suspected chronic poisoning from
either trichloroethylene, perchloroethylene, and/or a mixture of solvents (including butyl
acetate). Both at baseline exam, and when re-examined approximately 5 years after exposure
cessation, electroneuromyography (EMG) fibrillations indicating denervation of the muscle
were observed in 46% of subjects, with loss of motor units documented in 61% of subjects.
Among the n = 53 exposed to the solvent mixture, 37% had motor neuropathy, 16% had
sensory neuropathy, and 45% had involvement of both (Seppalainen and Antti-Poika, 1983).
It is unclear, however, whether the levels of solvents and other airborne contaminants
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released from industrial facilities into the general environment can cause neurodegenerative
injuries. Our results do support a relationship between residential history in areas with
airborne releases of certain contaminants to the environment and increased ALS risk.

As motor neurons transmit signals long distances and have high energy demands, they are
particularly vulnerable to the effects of mitochondrial damage, which can be caused by
contaminant exposures (Calabrese et al., 2010). Mechanistically, ALS may be the failure

of motor neurons to counteract cellular stressors productively. Calabrese et al. suggest the
importance of a hormetic response, where low-levels of a stressor may induce a positive,
protective response boosting repair factors, whereas high doses of the same chemical cause
levels of protein misfolding that overwhelm the capacity of the system (Calabrese et al.,
2010). Because of the tradition and ease of linear extrapolation, a hormetic effect may be
one of the reasons why identifying neurodegenerative risk factors and therapeutic strategies
has been so historically challenging (Calabrese et al., 2010; Martin et al., 2017).

Advantages of our study include a large de-identified database with over 26,000 ALS
patients occurring in the nationally distributed SYMPHONY healthcare network based
population. Our analytic approach used a dynamic categorization algorithm to accommaodate
the zero-inflated, skewed, and varied distributions of the levels of 523 contaminants. We
used a sample-size weighting during our contaminant selection to minimize chance findings
associated with small numbers. However, the geospatial data for the SYMPHONY dataset
was limited to the zip3 location at diagnosis. Some of the contaminants selected in the
nationally distributed SYMPHONY analysis were released at only a small number of

sites, particularly potassium bromate and catechol. Thus, we were unable to validate these
findings using our regional datasets.

In our regional validation case-control studies, we used commercial financial credit and
marketing databases to ascertain exact location coordinates with residential histories for
the ~15-year pre-diagnostic period. The address information from the credit reporting
company, LexisNexis (Dayton, Ohio), compared well to self-reported address information.
Among 1099 Michigan bladder cancer study participants with both types of data collected
over similar periods of time, 96.8% of the LexisNexis three most recent addresses were
concordant with those reported in the survey (Jacquez et al., 2011). Our validation study
used ALS mortality to identify patients, which had the advantage of including all patients
who died in each state, independent of diagnosing facility, although it may contain some
misclassification of ‘motor neuron disease’ as the cause of death.

5. Conclusions

We demonstrated an analytic pipeline using a dynamic categorization algorithm to identify
contaminants geospatially associated with risk of ALS in a large healthcare claims network,
and validation using residential histories. This analytic approach is applicable to other
contaminant datasets and additional disease outcomes in the future. Our analysis identified
industrial releases of nitric acid, styrene, chromium, nickel, and dichloromethane (methylene
chloride) as ALS risk factors that particularly warrant further investigation in the laboratory
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to assess mechanisms, as potential etiologic contributors to sporadic ALS risk, and as targets
for exposure mitigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
ALS rate in 863 zip3 polygons calculated in the SYMPHONY dataset. Within each of the

863 zip3 regions nationwide, we calculated the logit of the proportion of ALS cases to

SYMPHONY network controls, 7, in each region, i.e., ¥ = log .
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US EPA TRI reported contaminant levels are zero-inflated and right-skewed. A) Average
dichloromethane release concentrations by zip3 region over the period 2002-2012, as an
example contaminant. B) Example showing that the distribution of contaminant levels is
skewed and shows a high degree of ‘zero-inflation’. We used an algorithm to bin the
continuous values into four categories, as shown by the colored symbols. The purple ‘+’

represents the bin with the highest contaminant level.
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Fig. 3.

Voglcano plot showing top-ranking contaminants selected from SYMPHONY by the lasso
algorithm. We performed weighted univariate regression of airborne contaminants using
the logit of the ALS rate in the SYMPHONY dataset as the outcome. The y-axis

shows increasing statistical significance, while the x-axis reflects the size of the effect.
Contaminants with increasing ALS risk are shown in the top right portion of the plot.
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Exposure percentile using residential history
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Fig. 4.
Top-ranking contaminants validated in NH/VVT/OH residential history studies of ALS. We

used residential history data for the epochs prior to the index date to estimate exposure at
the geospatial coordinates of each residence. Bars depict the Odds Ratio (OR) and 95%
confidence interval by quartile, using exposure below the median as the reference. We show
the epochs with the largest magnitude effect size, which was 15-years for styrene, and
5-years for the other contaminants.
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-Log10(P)

\Volcano plot showing combinations of contaminants in the SYMPHONY dataset. We
assessed a pair-wise interaction-effects model of airborne contaminants using the logit of
the ALS rate as the outcome. Higher vertical points depict stronger statistical significance,
however none of the pairs of contaminants met our FDR significance threshold. Positive
interaction coefficients indicating synergistic combinations are shown to the right of the plot.
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Table 1

SYMPHONY population characteristics.

Controls

AL Spatients p-Value

N = 78,597 (%)

N = 26,199 (%)

Age

Sex

<45
45-55
55-65
65-75
75+
Female

Male

5823 (7.4)

12,816 (16.3)
24,561 (31.2)
25,269 (32.2)
10,128 (12.9)
33,264 (42.3)
45,328 (57.7)

1941 (7.4) 1
4272 (16.3)

8187 (31.2)

8423 (32.2)

3376 (12.9)

11,286 (43.1)  0.033
14,912 (56.9)
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