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Abstract

Most amyotrophic lateral sclerosis (ALS) cases are sporadic (~90%) and environmental exposures 

are implicated in their etiology. Large industrial facilities are permitted the airborne release of 

certain chemicals with hazardous properties and report the amounts to the US Environmental 

Protection Agency (EPA) as part of its Toxics Release Inventory (TRI) monitoring program. The 

objective of this project was to identify industrial chemicals released into the air that may be 

associated with ALS etiology. We geospatially estimated residential exposure to contaminants 

using a de-identified medical claims database, the SYMPHONY Integrated Dataverse®, with 

~26,000 nationally distributed ALS patients, and non-ALS controls matched for age and gender. 

We mapped TRI data on industrial releases of 523 airborne contaminants to estimate local 

residential exposure and used a dynamic categorization algorithm to solve the problem of 

zero-inflation in the dataset. In an independent validation study, we used residential histories 

to estimate exposure in each year prior to diagnosis. Air releases with positive associations in 

both the SYMPHONY analysis and the spatio-temporal validation study included styrene (false 

discovery rate (FDR) 5.4e-5), chromium (FDR 2.4e-4), nickel (FDR 1.6e-3), and dichloromethane 

(FDR 4.8e-4). Using a large de-identified healthcare claims dataset, we identified geospatial 

environmental contaminants associated with ALS. The analytic pipeline used may be applied to 
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other diseases and identify novel targets for exposure mitigation. Our results support the future 

evaluation of these environmental chemicals as potential etiologic contributors to sporadic ALS 

risk.
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1. Introduction

In amyotrophic lateral sclerosis (ALS), the progressive loss of both upper and lower motor 

neurons leads to spasticity, muscle atrophy, frequent respiratory failure and death over a 3–5 

year period. Only 10% of ALS cases can be attributed to a familial trait or gene (Mathis et 

al., 2019). Studies of monozygotic twins discordant for ALS demonstrate that environmental 

factors play a critical role in the majority of sporadic ALS (sALS) (Meltz Steinberg et al., 

2015), perhaps in the setting of also having some genetic predisposition for the disease 

(Al-Chalabi et al., 2014; Bradley et al., 2018).

Observational studies have revealed that the following environmental exposures are risk 

factors for ALS: lead and mercury, pesticides, solvents, cyanotoxins, and head trauma 

(reviewed in Wang et al. (2017)). A case-control study in Pennsylvania (n = 51 cases) 

showed a 5-fold increased risk of ALS associated with residing in census tracts with 

exposure to ‘aromatic solvents’ above vs. below the median (Malek et al., 2015). Because 

Malek et al. analyzed conglomerates of 6–13 chemicals, the identity of the risk-driving 

chemical(s) is unclear. Together, identifying potential causal exposures could help to prevent 

ALS and focus interventional studies to block progression.

We and others see each case of ALS and other neurodegenerative diseases as potentially 

having a variety of different causal environmental factors, centralizing on the ability of a 

particular stressor to induce a neuronal ‘environmental stress response’ that is not overcome 

by internal compensatory repair mechanisms. The classical response in this category is 

the ‘heat shock’ response, involving production of ‘heat shock proteins (HSP)’ that help 

with stress tolerance and the re-folding and repair of damaged proteins, promoting cell 

survival (Calabrese et al., 2000; Dattilo et al., 2015). Stressors that necessitate this response 

range from physical head injuries to chemical exposures (Andrew et al., 2021). Elucidating 

the relationship between environmental exposures and neurodegenerative disease remains 

a persistent challenge in the field. Identifying disease-related contaminants likely requires 

considering complex dose-response relationships in addition to more traditional linear low-

dose extrapolation models. These models include non-linear dose-response relationships, 

such as the biphasic ‘hormetic’ dose-response involving modest adaptive neuro-protective 

activity at low-doses, yet substantial cell death with exposure to levels of the same stress 

factor that exceed the limits of adaptation (Dattilo et al., 2015).

The objective of the current study was to identify individual airborne contaminants 

associated with ALS risk using the power of a large, nationally distributed and de-identified 

healthcare claims dataset. Industrial facilities are permitted airborne release of certain 
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chemicals with hazardous properties and are required to report these amounts to the 

United States Environmental Protection Agency (US EPA) as part of its Toxics Release 

Inventory (TRI) monitoring program. To assess ALS risk in relation to these releases, our 

study used a two-phase, ‘discovery’ and ‘validation’ cohort approach. The SYMPHONY 

Integrated Dataverse® served as the ‘discovery’ cohort to identify TRI airborne contaminant 

releases associated with ALS rates. Our data analysis approach included a categorization 

algorithm to accommodate the skewed and non-linear distribution of our geospatially 

estimated contaminant levels. We then performed ‘validation’ of these top-hit contaminants 

by calculating exposures prior to ALS onset in a study conducted in the Northern New 

England and Ohio regions. The advantage of these regional cohorts is that we collected 

address-level residential histories and could thus examine the relevance of spatial spreading 

from an industrial site and temporal changes in exposure, focusing on the 5 to 15-year period 

prior to diagnosis. Using this approach we identified airborne contaminants consistently 

associated with ALS across the broad SYMPHONY and the detailed regional validation 

datasets.

2. Materials and methods

Airborne contaminant releases:

We downloaded Toxics Release Inventory (TRI) airborne release data for 523 individual 

contaminants from the US EPA for the period 1993–2019. For each year, we constructed 

map based on the mandatory, yearly reporting to US EPA. The centroid of a given site 

was the geospatial coordinate of each industrial site reporting an airborne contaminant 

release. We next modeled the spatial spread of reported contaminants from the centroid 

point assuming a 10k dispersion. Thus, we created annual raster maps with the pixel values 

reflecting the estimated contaminant concentrations.

Discovery phase:

We used a large de-identified healthcare claims dataset from the SYMPHONY Integrated 

Dataverse® (herein referred to as SYMPHONY) 2013–2019 as the ‘discovery’ cohort. ALS 

patient inclusion criteria were a) minimum of two entries into the SYMPHONY database 

classified as being due toICD-9/10 codes for ALS at least 3 calendar months apart, b) 

minimum of 6 months’ enrollment in the database prior to first ALS ICD code, c) age at first 

ALS ICD code ≥18 yr. Supplemental Figure 1 summarizes the analytic pipeline described 

below.

We randomly selected individuals in the overall SYMPHONY network that were similar to 

the ALS patient cases in regards to age, gender and length of database history as controls. 

We excluded patients >80 years old due to low coverage in the network as well as those 

with ICD-9/10 codes for other neurodegenerative diseases, as there may be shared etiologic 

factors. We then used the R-package “MatchIt” to perform propensity score matching with a 

3:1 ratio to select a subset of controls with the nearest age and same gender as a comparison 

group (Ho et al., 2007). The selected controls showed similar national distribution to the 

cases, based on the coverage of the SYMPHONY network.
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Within each of the 863 zip3 regions nationwide, we calculated the logit of the proportion of 

ALS cases to SYMPHONY network controls, r, in each region, i.e., Y = log r
1 − r  (mapped in 

Fig. 1). A histogram of the resulting Y  values showed a normal distribution pattern. These Y
values were used as the outcome variable for the discovery phase analysis.

Airborne contaminant exposure estimates –—We averaged the annual point-level 

release amounts (i.e. from industrial facilities) over the 10-years prior to the diagnostic 

period of the ALS cases 2002–2012. Then we took the average of the values of each of 

the 523 contaminants released within each zip3 polygon region. The zip3 polygon included 

all zip-codes that shared the same first three integers. We estimated residential exposure 

level at the zip3 location, as this was the only spatiotemporal information available for the 

SYMPHONY cohort.

Because industrial facilities only released each chemical in a small proportion of the 

zip3 regions, the exposure dataset distribution is skewed and shows a high degree of 

‘zero-inflation’ (Fig. 2). To address this analytical challenge, we applied a categorization 

procedure. For chemicals with very sparse observations (defined as nonzero observations 

comprising less than 1% of the zip3 regions), we divided the observations into just 

two categories (e.g. present/absent). For all of the more frequently released chemicals, 

we applied the dynamic categorization algorithm that we developed recently to address 

a similar ‘zero-inflation’ issue in the context of microbiome data analysis (Zhou et al., 

2020). In our optimization of this algorithm, a maximum of 6 binned categories effectively 

captured the variation in the datasets tested to date. This algorithm efficiently converted 

the log-transformed continuous concentration of each contaminant into up to K = 6 binned 

categories based on the distribution of that particular contaminant across the 863 zip3 

regions. This algorithm runs iteratively with increasing values of K and calculates the 

within-group variance. The K that minimizes the variance of the contaminant levels within 

each bin is selected for each contaminant (see Supplement 1 for more details). Fig. 2B 

shows an example of the continuous levels of a contaminant with a skewed distribution that 

the algorithm binned into four categories (K = 4).

Statistical analysis –—To prioritize the most informative contaminants, we performed 

a sample-size weighted L1-penalized lasso using the categorized contaminant values as 

predictors and the logit of the zip3 ALS rate as the outcome. The subset of top-ranking 

contaminants selected by lasso were subsequently assessed using weighted univariate 

regression for main-effects on ALS rate, allowing us to assess the direction of the 

association with ALS and the effect size. We used False Discovery Rate (FDR) correction 

to account for multiple comparisons, using a significance threshold of <0.05. Weighted pair-

wise regression with interaction terms evaluated combinations of contaminants associated 

with ALS. We also applied nonparametric Bayesian Kernal Machine Regression (BKMR) to 

assess non-linear relationships (Bobb et al., 2018).

Validation phase:

We used an independent cohort with residential history information for the validation. We 

obtained mortality records attributed to ‘motor neuron disease’ using ICD-10 code G12.2 

Andrew et al. Page 4

Environ Pollut. Author manuscript; available in PMC 2023 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the following states and years available: New Hampshire (2009–2018 n = 337), 

Vermont (2008–2016 n = 216), and Ohio (2016–2019 n = 799). From among the same 

catchment counties as the ALS cases, population controls were identified as residents of 

New Hampshire (NH)/Vermont (VT) (n = 762), or Ohio (OH) (n = 1336) using the US 

Postal Service Delivery Sequence file licensed to Marketing Systems Group (Horsham, PA). 

The sampling algorithm was designed to randomly sample individuals in the population 

based on the expected demographic distribution of the ALS cases, with over-sampling of 

50–75 year-olds and males.

Residential history –—We obtained the geocodes of addresses held by each validation 

cohort subject over the 15-year period prior to the index date from a commercial financial 

marketing database query LexisNexis (Dayton, Ohio). We observed similar results when we 

tested other periods up to 25-years. We then mapped those addresses into zip3 polygons.

Airborne contaminant exposure estimates –—For the validation cohort, we had 

residential history information comprised of the geospatial coordinates of each residence 

for both ALS cases and population controls. To estimate the exposure in each year prior to 

diagnosis, we read the contaminant amount from the raster maps representing the dispersed 

contaminant for each case or control residence in each year. We then calculated the median 

exposure to each contaminant across his/her multiple residences in epochs representing the 

period prior to the index year (i.e. for the 5-year epoch of a case diagnosed in 2016, we 

compiled estimated exposures for residences held from 2010 to 2015). We chose to use 

the median value rather than the cumulative value to avoid introducing bias due to missing 

residences.

Statistical analysis –—The subset of contaminants identified by the ‘discovery phase’ 

entered the ‘validation phase’ analysis, which used the residential history epoch estimates 

of exposure for the case-control study subjects. The median exposure estimate of each 

contaminant over the residence prior to diagnosis was binned into categories based on 

the quartile distribution of each contaminant in the controls. Chi-square tests assessed 

the univariate difference in proportion of cases and controls by quantile, followed by 

logistic regression analysis that adjusted for age and gender. These analyses were all 

performed using R: A Language and Environment for Statistical Computing, version 4.0.2 

(R Foundation for Statistical Computing, Vienna, Austria).

3. Results

Table 1 shows that the age- and gender-distribution of the n =26,199 ALS cases we 

identified is similar to that of the controls sampled from the SYMPHONY network. The 

majority (63%) of the cases and controls were 55–75 years of age and approximately 57% 

were male, as expected based on ALS literature (McCombe and Henderson, 2010). Fig. 1 

shows a map of the geospatial variation in the logit of the ALS rate among the 863 zip3 

regions.

Fig. 2A shows a map of the average airborne releases of one example contaminant 

(dichloromethane) across the zip3 regions nationwide. Fig. 2B shows the skewed and 
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‘zero-inflated’, non-normal distribution of contaminant levels that led to our dynamic 

categorization analysis approach. Fig. 3 shows the weighted univariate regression results 

of the top-ranking contaminants selected by the lasso algorithm, and Supplemental Table 

1 contains the full list of coefficients and FDR values, along with the distribution of 

contaminant levels. Certain identified chemicals had reported releases in many of the 863 

counties (e.g. styrene in 578 counties, Supplemental Figure 3), whereas others were rarely 

reported (e.g. potassium bromate in 2 counties).

Ten contaminants met the FDR cutoff <0.05 from the nationwide SYMPHONY database 

‘discovery phase’ and went into the ‘validation phase’ of analysis, which used residential 

history of NH/VT/OH patients and controls. Fig. 4 shows the increased ALS risk for the 

five contaminants (styrene, nitric acid, nickel, dichloromethane, and chromium) confirmed 

in the ‘validation phase’ (Fig. 4). History of residence in areas with styrene release in the 3rd 

quartile vs. below the median in the 15-years prior to diagnosis was associated increased risk 

of ALS (1.24-fold). 5-year exposure history in the 50–75th percentile was also associated 

increased risk of ALS for nitric acid (OR 1.36), nickel (OR 1.27), dichloromethane (OR 

1.12), and chromium (OR 1.26) (Fig. 4, Supplemental Table 2). Maps showing the average 

pounds of dichloromethane and styrene released 2002–2012 across the zip3 regions can be 

found in Supplemental Figure 3.

We then evaluated the effects of exposure to combinations of the top-ranking contaminants 

in the SYMPHONY dataset using a pairwise interaction-effects model. As shown in Fig. 

5, we did not identify any pairs of contaminants with positive interaction coefficients. 

Chloromethane paired with either nickel or chromium as the two combinations of 

contaminants with the lowest interaction p-values corrected for multiple comparisons 

(FDR) in SYMPHONY (Table 2). Neither pair met our FDR significance threshold of 

<0.05. Supplemental Table 3 shows the results for the top 20 pairs of contaminants in 

SYMPHONY.

Supplemental Figure 2 shows graphs of the non-linear and pairwise relationships among 

contaminants generated by non-parametric regression in SYMPHONY. This BKMR model 

did not show evidence of positive interactions among pairs of contaminants. Styrene does 

show a non-linear relationship with ALS, with effects peaking in the middle of the estimated 

exposure range of the SYMPHONY dataset.

4. Discussion

The role of environmental exposure in the etiology of sporadic ALS remains unexplained in 

many cases. The objective of this study was to take an unsupervised approach to assess links 

to airborne releases of contaminants reported to the US EPA in the TRI program. Unique 

aspects of our study include the use of a large, nationally distributed and de-identified 

healthcare claims dataset, an analysis pipeline with a dynamic categorization algorithm 

allowing for non-linear effects, and a validation phase using residential history based 

exposure assessment. Across these datasets, we observed consistent positive associations 

for airborne releases of a variety of potential environmental stressors: nitric acid, styrene, 

chromium, nickel, and dichloromethane.
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Airborne styrene was among a group of aromatic solvents implicated in increased risk of 

ALS in a study of environmental airborne contaminants in the Pittsburgh area (Malek et 

al., 2015), supporting the styrene association that came up in our nationwide unsupervised 

analysis of 523 airborne contaminants and ALS also in the residential history validation. 

Styrene is used in rubber, plastic and fiberglass laminate, and disposable drinking glass 

manufacturing. Neurotoxicity in styrene-exposed workers has been established with clear 

symptoms of central nervous system depression, and anesthetic effects that include 

peripheral nerve conduction velocities and sensorimotor neuropathies (Kovarik et al., 1989; 

Matikainen et al., 1993). Peripheral markers also document these effects, with significantly 

lower serum dopamine-beta-hydroxylase activity in exposed vs control workers p < 0.001 

(Bergamaschi et al., 1996). Ambient airborne styrene levels estimated in the highest quartile 

using the National Air Toxics Assessment were associated with self-reported central nervous 

system symptoms among residents of the US Gulf coast (Werder et al., 2018). Styrene oxide 

is a glutathione-depleting epoxide with cytotoxic effects that are exacerbated in cell lines 

with abnormal SOD-1 activity (Durham et al., 1995). In our environmental exposure setting, 

we observed a non-linear relationship with the highest ALS risk associated with doses in 

the middle of the exposure range. This may be indicative of a hormetic dose-response 

described by Calabrese et al., where low-levels of exposure activate a protective cellular 

stress response, inducing production of molecules under control of the “vitagenes” such as 

HSPs and glutathione, which have antioxidant and anti-apoptotic capabilities (Calabrese et 

al., 2010). Controlled laboratory experiments are needed to elucidate these mechanisms and 

clarify the dose response relationship between styrene exposure and levels of cytoprotective 

proteins such as glutathione.

The epidemiological literature covers several additional contaminants that ranked highly 

in the SYMPHONY analysis and validated using residential histories. In our assessment 

of 523 contaminants, dichloromethane exposure was identified as one such risk factor. 

Interestingly, Dickerson et al. linked dichloromethane (methylene chloride) to ALS in 

a Danish occupational cohort (Dickerson et al., 2020b). Dichloromethane was used in 

paint removers, until the EPA banned its use in 2019, and is also an aerosol spray 

propellant. It acts as a central nervous system toxin causing narcosis, and breaks down 

into carbon monoxide, impairing oxygen delivery by hemoglobin and myoglobin (Durrani 

et al., 2020). Hypoxic stress activates a cascade anti-proliferative cellular response initially 

mediated by hypoxia inducible factor-1α (HIF-1α) induction (Durrani et al., 2020). Yet, 

carbon monoxide is also considered a “nonconventional neurotransmitter” that can activate 

mitochondrial redox signaling (Calabrese et al., 2010).

We also found a statistically significant increased risk of ALS associated with chromium 

estimated over 5-years of prior residences. An analysis of occupational history using the 

Danish Pension Fund found chromium exposure in the third and fourth quartiles trended 

towards increased ALS risk, compared to those with no exposure (adjusted ORs = 1.24; 

95% CI 0.91, 1.69; 1.19; 95% CI: 0.80, 1.76, respectively) (Dickerson et al., 2020a). Both 

our geospatial and the Danish occupational studies included a mixture of different forms of 

these metals, which may obscure the effects. For example, chromium(VI) kills neurons in 

Drosophila, but chromium(III) does not (Singh and Chowdhuri, 2017). A geospatial study 

in Spain also linked chromium in river water to a 15.7% increased risk of death from 
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motor neuron disease (Sanchez-Diaz et al., 2018). At the cellular level, chromium(VI) is 

reduced to chromium (III) producing reactive oxygen species. In a recent review on the 

neurotoxic effects of chromium, Wise et al. shows substantial evidence of neurodegenerative 

changes, neuroinflammation, decreased acetylcholinesterase activity, and induction of stress 

response genes including Nrf2 and HO-1 and pro-apoptotic caspases (Wise et al., 2021). 

While several animal studies show that levels of the antioxidant glutathione decreased 

after chromium(VI) exposure, others show increases in the cortex, perhaps demonstrating a 

hormetic adaptive response under certain conditions (Wise et al., 2021).

Likewise, for nickel, we found an adjusted ALS OR 1.27 95%CI 1.06–1.52 associated with 

5-year exposure history in the 50th-75th percentile. Among Danish women, occupational 

nickel exposure was associated with increased ALS risk in the third quartile (adjusted OR 

= 2.21; 95% CI: 1.14, 4.28), but not the fourth (Dickerson et al., 2020a). Investigation 

of the neurotoxic effects of nickel is on-going (reviewed (Salimi et al., 2020)). Notably 

studies of animal models demonstrate that nickel treatment induces oxidative stress and 

histopathological damage to brain tissue, including mitochondrial damage (Ijomone et al., 

2018; Song et al., 2017). We and others have demonstrated that nickel can stabilize HIF-1α, 

mimicking the hypoxic response that switches cellular metabolism from mitochondrial 

oxidative phosphorylation to anaerobic glycolysis, greatly reducing the amount of energy 

produced (Andrew et al., 2001; Song et al., 2017). Nickel exposure also induces production 

of serum nitric oxide synthase (iNOS) and production of serum nitric oxide concentrations 

(Cruz et al., 2004; Hattiwale et al., 2013). Nitric oxide and mitochondrial superoxide can 

combine to form reactive peroxynitrite, which may regulate neurotransmission (Calabrese et 

al., 2010).

Lastly, we also identified and validated nitric acid as a risk factor. The primary industrial 

use of nitric acid is in the production of ammonium nitrate for fertilizers, but it is also 

produced in manufacturing dyes, fungicides, and polymers (National_Research_Council, 

2013). The fumes are highly corrosive and damage the respiratory tract, however evidence 

for neurotoxicity in the literature is lacking (National_Research_Council, 2013). It is 

possible that nitric acid releases are not causal themselves, but are acting as a surrogate for 

another chemical produced by the same industrial processes, such as nitrous oxide. Nitrous 

oxide is an anesthetic that inhibits NMDA-receptor mediated currents and is associated with 

slowed motor neuron conduction velocities and reduced amplitudes (Li et al., 2016).

Together our analysis identified multiple releases that are associated with ALS and may 

be relevant to ALS etiology. Neurotoxic effects of solvents occur in workers with high, 

chronic exposures and include long-term effects on motor neurons. A group of n = 87 

workers presented with neurological symptoms and suspected chronic poisoning from 

either trichloroethylene, perchloroethylene, and/or a mixture of solvents (including butyl 

acetate). Both at baseline exam, and when re-examined approximately 5 years after exposure 

cessation, electroneuromyography (EMG) fibrillations indicating denervation of the muscle 

were observed in 46% of subjects, with loss of motor units documented in 61% of subjects. 

Among the n = 53 exposed to the solvent mixture, 37% had motor neuropathy, 16% had 

sensory neuropathy, and 45% had involvement of both (Seppalainen and Antti-Poika, 1983). 

It is unclear, however, whether the levels of solvents and other airborne contaminants 
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released from industrial facilities into the general environment can cause neurodegenerative 

injuries. Our results do support a relationship between residential history in areas with 

airborne releases of certain contaminants to the environment and increased ALS risk.

As motor neurons transmit signals long distances and have high energy demands, they are 

particularly vulnerable to the effects of mitochondrial damage, which can be caused by 

contaminant exposures (Calabrese et al., 2010). Mechanistically, ALS may be the failure 

of motor neurons to counteract cellular stressors productively. Calabrese et al. suggest the 

importance of a hormetic response, where low-levels of a stressor may induce a positive, 

protective response boosting repair factors, whereas high doses of the same chemical cause 

levels of protein misfolding that overwhelm the capacity of the system (Calabrese et al., 

2010). Because of the tradition and ease of linear extrapolation, a hormetic effect may be 

one of the reasons why identifying neurodegenerative risk factors and therapeutic strategies 

has been so historically challenging (Calabrese et al., 2010; Martin et al., 2017).

Advantages of our study include a large de-identified database with over 26,000 ALS 

patients occurring in the nationally distributed SYMPHONY healthcare network based 

population. Our analytic approach used a dynamic categorization algorithm to accommodate 

the zero-inflated, skewed, and varied distributions of the levels of 523 contaminants. We 

used a sample-size weighting during our contaminant selection to minimize chance findings 

associated with small numbers. However, the geospatial data for the SYMPHONY dataset 

was limited to the zip3 location at diagnosis. Some of the contaminants selected in the 

nationally distributed SYMPHONY analysis were released at only a small number of 

sites, particularly potassium bromate and catechol. Thus, we were unable to validate these 

findings using our regional datasets.

In our regional validation case-control studies, we used commercial financial credit and 

marketing databases to ascertain exact location coordinates with residential histories for 

the ~15-year pre-diagnostic period. The address information from the credit reporting 

company, LexisNexis (Dayton, Ohio), compared well to self-reported address information. 

Among 1099 Michigan bladder cancer study participants with both types of data collected 

over similar periods of time, 96.8% of the LexisNexis three most recent addresses were 

concordant with those reported in the survey (Jacquez et al., 2011). Our validation study 

used ALS mortality to identify patients, which had the advantage of including all patients 

who died in each state, independent of diagnosing facility, although it may contain some 

misclassification of ‘motor neuron disease’ as the cause of death.

5. Conclusions

We demonstrated an analytic pipeline using a dynamic categorization algorithm to identify 

contaminants geospatially associated with risk of ALS in a large healthcare claims network, 

and validation using residential histories. This analytic approach is applicable to other 

contaminant datasets and additional disease outcomes in the future. Our analysis identified 

industrial releases of nitric acid, styrene, chromium, nickel, and dichloromethane (methylene 

chloride) as ALS risk factors that particularly warrant further investigation in the laboratory 
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to assess mechanisms, as potential etiologic contributors to sporadic ALS risk, and as targets 

for exposure mitigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
ALS rate in 863 zip3 polygons calculated in the SYMPHONY dataset. Within each of the 

863 zip3 regions nationwide, we calculated the logit of the proportion of ALS cases to 

SYMPHONY network controls, r, in each region, i.e., Y = log r
1 − r .
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Fig. 2. 
US EPA TRI reported contaminant levels are zero-inflated and right-skewed. A) Average 

dichloromethane release concentrations by zip3 region over the period 2002–2012, as an 

example contaminant. B) Example showing that the distribution of contaminant levels is 

skewed and shows a high degree of ‘zero-inflation’. We used an algorithm to bin the 

continuous values into four categories, as shown by the colored symbols. The purple ‘+’ 

represents the bin with the highest contaminant level.
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Fig. 3. 
Volcano plot showing top-ranking contaminants selected from SYMPHONY by the lasso 

algorithm. We performed weighted univariate regression of airborne contaminants using 

the logit of the ALS rate in the SYMPHONY dataset as the outcome. The y-axis 

shows increasing statistical significance, while the x-axis reflects the size of the effect. 

Contaminants with increasing ALS risk are shown in the top right portion of the plot.
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Fig. 4. 
Top-ranking contaminants validated in NH/VT/OH residential history studies of ALS. We 

used residential history data for the epochs prior to the index date to estimate exposure at 

the geospatial coordinates of each residence. Bars depict the Odds Ratio (OR) and 95% 

confidence interval by quartile, using exposure below the median as the reference. We show 

the epochs with the largest magnitude effect size, which was 15-years for styrene, and 

5-years for the other contaminants.
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Fig. 5. 
Volcano plot showing combinations of contaminants in the SYMPHONY dataset. We 

assessed a pair-wise interaction-effects model of airborne contaminants using the logit of 

the ALS rate as the outcome. Higher vertical points depict stronger statistical significance, 

however none of the pairs of contaminants met our FDR significance threshold. Positive 

interaction coefficients indicating synergistic combinations are shown to the right of the plot.
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Table 1

SYMPHONY population characteristics.

Controls ALS patients p-Value

N = 78,597 (%) N = 26,199 (%)

Age <45 5823 (7.4) 1941 (7.4) 1

45–55 12,816 (16.3) 4272 (16.3)

55–65 24,561 (31.2) 8187 (31.2)

65–75 25,269 (32.2) 8423 (32.2)

75 + 10,128 (12.9) 3376 (12.9)

Sex Female 33,264 (42.3) 11,286 (43.1) 0.033

Male 45,328 (57.7) 14,912 (56.9)
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