Supplementary Appendix

Supplement to: Tuttle KR, Jones CR, Daratha KB, et al. Incidence of chronic kidney disease among adults with diabetes, 2015–2020. N Engl J Med 2022;387:1430-1. DOI: 10.1056/NEJMc2207018

This appendix has been provided by the authors to give readers additional information about the work.

Supplementary Appendix

Table of Contents

Background1	L
Data Source	L
Study Population	L
Statistical Analyses2)
Characteristics of the Study Population	3
CKD Incidence by Demographics and Time Trends	3
Summary, Context, Strengths, and Limitations	3
Disclosures	5
Figures S1 and S27	,
Table S18	;
Table S29)
Table S311	
Table S412)
Table S514	ŀ
References15	5

Background

National surveillance data indicate 15% of the United States (US) adult population had chronic kidney disease (CKD) in 2015–2018.¹ The burden of CKD is particularly high among persons with diabetes, occurring in approximately 40% of those with type 2 diabetes and 30% of those with type 1 diabetes.² Contemporary data for CKD incidence in diabetes is timely and important with the emergence of highly effective new therapies for prevention and treatment, such as sodium glucose co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and a non-steroidal mineralocorticoid receptor antagonist.³⁻⁹ The study aim was to estimate contemporary CKD incidence in diabetes by demographic characteristics based on real-world data from community, academic, and safety-net healthcare delivery sites with diverse patient populations. *Data Source*

Electronic health record (EHR) data from two healthcare systems, Providence and the University of California Los Angeles (UCLA) Health, were used to create the Center for Kidney Disease Research, Education, and Hope (CURE-CKD) registry with demographics, encounters, administrative codes, laboratory tests, and prescription medication.¹⁰ Data from Providence were obtained from sites in 5 western states (Washington, Montana, Oregon, Alaska, and California). The Providence and UCLA Health Institutional Review Boards approved CURE-CKD with a determination that written informed consent was not required for this limited dataset.

Study Population

Adults ≥ 20 years old with diabetes between January 1, 2015 and December 31, 2020 were the study population (n=654,459; **Fig. S1**). Race and ethnic identity were extracted from the EHR. Identification algorithms for diabetes and CKD have been published.¹⁰ Diabetes was identified by a high glycated hemoglobin level (HbA1c $\geq 6.5\%$) or sustained elevation of blood glucose levels (either two random blood glucose concentrations $\geq 200 \text{ mg/dL}$ or two fasting blood

glucose concentrations \geq 126 mg/dL between one day and two years apart). In those without high HbA1c or blood glucose levels, prescriptions for a glucose-lowering medication (excluding metformin prescribed for polycystic ovarian syndrome) or administrative codes identified diabetes (**Table S1**). Prescription medication data were collected at the time of diabetes identification. Incident CKD was defined by two laboratory tests \geq 90 days apart: estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m², urine albumin/creatinine ratio (UACR) \geq 30 mg/g, urine protein/creatinine ratio (UPCR) \geq 150 mg/g, or by an administrative code (**Table S2**). Persons with diabetes not meeting the criteria for CKD over a \geq 1-year observation window were considered CKD free at baseline. Incident CKD was determined by the second confirmatory abnormal laboratory value or the first CKD code after baseline. The 2021 Chronic Kidney Disease-Epidemiology (CKD-EPI) creatinine equation was used for eGFR.¹¹

Statistical Analyses

CKD Incidence was computed for January 1, 2015–December 31, 2020 and in three 2-year time periods (January 1, 2015–December 31, 2016, January 1, 2017–December 31, 2018, and January 1, 2019–December 31, 2020). For each, at-risk person-time extended from the date of the first encounter with diabetes to the encounter when incident CKD occurred, or in those who did not develop CKD, to the last encounter within the same time period. Persons were included in each time period in which they had at least two encounters (**Fig. S1**). Incidence rates were computed as the number of new cases of CKD/1,000 person-years at risk. Overall CKD incidence was standardized to the 2010 US Census Bureau population by age, race and ethnicity, and sex. Rates stratified by demographics (age, race and ethnicity, sex) were adjusted for the remaining two variables. CKD incidence was also computed in a sensitivity analysis including only persons with diabetes and normal laboratory tests for CKD at baseline due to missingness of these tests

(36.1%). Incidence estimates were computed using the SAS procedure PROC STDRATE. Other analyses were completed using SAS Enterprise Guide 7.1.

Characteristics of the Study Population

Among racial and ethnic groups, the most common identity was White followed by persons who identified as Asian, Hispanic/Latino(a), and Black (**Table S3**). Identification as American Indian/Alaska Native and Native Hawaiian/Pacific Islander was $\leq 1\%$. HbA1c was $6.4\pm 1.4\%$ and systolic blood pressure was 129 ± 16 mm Hg at baseline.

CKD Incidence by Demographics and Time Trends

CKD incidence was higher among older age groups compared to the 20–39 year old reference group (**Fig. S2**). Except for the Asian group, higher CKD incidence was observed among non-White groups versus the White group. CKD incidence was lower in females than males. CKD incidence in diabetes trended downward across time periods overall and when stratified by age, race and ethnicity, and sex (**Table S4**). In a sensitivity analysis of those with normal baseline laboratory tests for CKD (n=65,854 in 2015–2016, n=123,253 in 2017–2018, and n=140,861 in 2019–2020), overall CKD incidence was 71.2 cases/1,000 person-years (95% CI 65.8–76.6) in 2015–2016, 70.2 cases/1,000 person-years (95% CI 67.6–72.8) in 2017–2018, and 65.4 cases/1,000 person-years (95% CI 63.1–67.7).

Summary, Context, Strengths, and Limitations

Among adults with diabetes treated at two US healthcare systems, CKD incidence was higher in American Indian/Alaska Native, Black, Hispanic/Latino(a), and Native Hawaiian/Pacific Islander groups compared to the White group during 2015–2020. Conversely, a lower rate of incident CKD was observed in the Asian group. CKD incidence was progressively higher with older age and males experienced incident CKD more often than females with diabetes. Overall CKD incidence declined between 2015 and 2020 with similar trends across demographic groups.

Prior CKD incidence estimates for diabetes were derived from studies that used an outcome of kidney failure^{12,13}, were remote in time, conducted in small or homogenous groups, or embedded within clinical trials of treatments that affect CKD.¹⁴⁻¹⁸ Therefore, those estimates do not necessarily reflect the CKD risks of larger, more diverse populations treated in contemporary US practice. By using the 2021 CKD-EPI equation that does not include a race term, we identified CKD by eGFR consistently across race groups.¹¹ Additionally, the laboratory criteria for CKD used in previous studies varied widely and rarely required persistence.

Strengths of CURE-CKD include a large study population, sequential years of follow-up, and curated patient-level data. Still, EHR data are inherently limited by retrospective and missing data. For example, laboratory tests for CKD were missing in about one-third of persons with diabetes at baseline. Diabetes could not be classified by type or duration due to misclassification and missingness. To address these limitations, diabetes was identified by laboratory tests and prescriptions for glucose-lowering medications in addition to administrative codes.¹⁰ A sensitivity analysis of a subset of patients with normal baseline CKD laboratory tests also found comparable CKD incidence estimates over time, supporting the primary analysis. Finally, CURE-CKD had higher numbers in Asian/Pacific Islander and White groups and fewer in Black or Hispanic/Latino(a) groups compared to the general US population with diabetes (**Table S5**).

Disclosures

The findings and conclusions are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). This work was supported by CDC project number 75D301-21-P-12254.

KRT is supported by NIH research grants R01MD014712, U2CDK114886, UL1TR002319, U54DK083912, U01DK100846, OT2HL161847, UM1AI109568 and the above CDC contract; and reports other support from Eli Lilly; personal fees and other support from Boehringer Ingelheim; personal fees and other support from AstraZeneca; grants, personal fees and other support from Bayer AG; grants, personal fees and other support from Novo Nordisk; grants and other support from Goldfinch Bio; other support from Gilead; and grants from Travere outside the submitted work. CRJ is supported by an NIH research grant R01MD014712 and the above CDC contract; and reports other support from Bayer AG, Goldfinch Bio and Travere outside the submitted work. KBD is supported by an NIH research grant R01MD014712 and the above CDC contract; and reports other support from Bayer AG, Goldfinch Bio and Travere outside the submitted work. AKK reports no disclosures. SBN is supported by NIH research grants R01MD014712, RF00250-2022-0038, U2CDK129496 and P50MD017366; and receives research support from Bayer AG, Goldfinch Bio, Travere and Terasaki Institute of Biomedical Innovation. RZA reports support from the above CDC contract, grants from Bayer AG, and Goldfinch Bio, and personal fees from Boehringer Ingelheim. OKD is supported by NIH research grants R25HL161609, R18DK122372, R01DK124503, R01DK127733, R01AI135029, P30AG021684, the CDC cooperative agreements U18DP006535 and U18DP006535, and receives research support from the Patient-Centered Outcomes Research Institute and the Terasaki Institute of Biomedical Innovation. JJN reports personal fees and other support from Bayer AG; personal fees from Sanofi; personal fees from Novo Nordisk; and

5

personal fees from Dexcom outside of the submitted work. KCN is supported in part by NIH research grants UL1TR001881, P30AG021684, U2CDK129496 and P50MD017366. NRB has no disclosures to report. MEP has no disclosures to report.

Figure S1. Flow diagram for study population with diabetes who developed incident CKD.

Figure S2. CKD incidence with 95% CIs in diabetes over time. A. Overall CKD incidence standardized to the 2010 US Census Bureau population by age, race and ethnicity, and sex. B. Age-specific, adjusted for sex and race and ethnicity. C. Race and ethnicity-specific, adjusted for sex and age. D. Sex-specific, adjusted for age and race and ethnicity. (AI/AN – American Indian/Alaskan Native; NH/PI – Native Hawaiian/Pacific Islander)

ICD Code
ICD 9
249
250
251.3
357.2
362.0, .0107
366.41
648.0, .0004
V58.67
ICD 10
E08
E09
E10
E11
E13
E89.1
O24
P70.2
R73.9
T38.3
Z79.4
Z86.31

Table S1. ICD-9 and 10 codes series for identification of diabetes.

ICD-International Classification of Diseases.

ICD Code Series
ICD 9
249.4, 4041
250.4, 4043
285.21
403
404
405.01, .11, .91
446.21, .4
580
581
582
583
584
585
586
587
588
589
593
599
634.3, 3032
635.3. 3032
636.3, .3032
637.3, .3032
638.3
639.3
642.1, .1114
646.2, .2024
669.3, 30, .32, .34
710.02
753
791.0
866
958.5
996.73, 81
V42.0
V45.1, .1112
V56
ICD 10
E08.2, .2122, .29
E09.2, .2122, .29
E10.2, 2122, .29
E11.2, .2122, .29
E13.2, .2122, .29
D63.1
112
115.01
M32.1415
M35.04, 0A

Table S2. ICD-9 and 10 code series for identification of CKD.

N00			
N01			
N02			
N03			
N04			
N05			
N06			
N07			
N08			
N10			
N11			
N12			
N12			
N14			
N15			
N15 N16			
N10 N17			
IN1 / N10			
IN18 N10			
N19			
N20.0, .2			
N23			
N25			
N26			
N27			
N28.0, .1, .8, .81, .83, .89, .9			
N29			
003.32, .82			
004.82			
007.32			
O08.4			
010.2, .21, .211213, .219, .2223, .3, .31, .311313, .319, .32, .33			
012.1, .1015, .2, .2025			
O23.0, .0003			
026.83, .831833, .839			
O90.4			
Q60			
Q61			
Q62.0, .1, .1012, .3, .3132 .39			
Q63			
R31			
R80			
\$37.0, .00, .001, .001A, .001D, .001S, .002, .002A, .002D, .002S,			
.009, .009A, .009D, .009S, .09, .091, .091A, .091D, .091S, .092,			
.092A, .092D, .092S, .099, .099A, .099D, .099S			
T79.5, .5XXA, .5XXD, .5XXS			
T86.1, .1013, .19			
Z48.22			
749			
Z91.15			
Z94.0			
Z99.2			

ICD-International Classification of Diseases

	2015-2020	2015-2016	2017-2018	2019-2020
	N=353,565	N=107,667	N=178,640	N=198,288
Demographic Characteristics				
Sex, n (%)				
Female	195,318 (55.2)	59,984 (55.7)	97,318 (54.5)	106,590 (53.8)
Male	158,247 (44.8)	47,683 (44.3)	81,322 (45.5)	91,698 (46.2)
Age, years, n (%)				
20-39	38,173 (10,8)	13.132 (12.2)	20.209 (11.3)	21.776 (11.0)
40-59	111.479 (31.5)	36,784 (34,2)	61.338 (34.3)	66.520 (33.5)
60-79	166.539 (47.1)	48,509 (45.1)	83.086 (46.5)	94,714 (47.8)
80+	37.374 (10.6)	9.242 (8.6)	14.007 (7.8)	15.278 (7.7)
Age, years, mean, SD	61, 15	59, 15	60, 15	60, 15
Race and ethnicity, n (%)				
American Indian/Alaska Native	3,249 (0.9)	1,120 (1.0)	1,604 (0.9)	1,636 (0.8)
Asian	34,731 (9.8)	9,693 (9.0)	18,575 (10.4)	21,032 (10.6)
Black	16,190 (4.6)	5,101 (4.7)	8,611 (4.8)	9,118 (4.6)
Hispanic/Latino(a)	18,026 (5.1)	4,852 (4.5)	8,883 (5.0)	11,237 (5.7)
Native Hawaiian/Pacific Islander	2,657 (0.8)	824 (0.8)	1,396 (0.8)	1,616 (0.8)
White	241,293 (68.2)	75,838 (70.4)	120,210 (67.3)	131,881 (66.5)
Other ^a	37,419 (10.6)	10,239 (9.5)	19,361 (10.8)	21,768 (11.0)
Baseline Clinical Characteristics	· · · · ·	· , , , ,		
eGFR, mL/min/1.73m ²				
n (%)	188,473 (53.3)	56,510 (52.5)	98,178 (55.0)	107,720 (54.3)
mean, SD	90.7, 17.9	90.5, 18.2	91.4, 17.1	91.9, 16.5
SBP, mm Hg				
n (%)	231,816 (65.6)	66,507 (61.8)	119,056 (66.6)	131,453 (66.3)
mean, SD	129, 16	129, 16	129, 16	129, 16
HbA1c, %				
n (%)	113,254 (32.0)	34,098 (31.7)	61,192 (34.3)	67,464 (34.0)
mean, SD	6.4, 1.4	6.5, 1.4	6.6, 1.5	6.6, 1.5
UACR, mg/g				
n (%)	14,179 (4.0)	4,552 (4.2)	9,950 (5.6)	9,777 (4.9)
median (IQR)	8.0 (4.3-17.5)	8.7 (4.9-18.7)	7.4 (4.1-15.3)	7.2 (4.1-14.7)
Medications, n (%)				
ACE inhibitor or ARB	116,430 (32.9)	36,992 (34.4)	60,104 (33.6)	66,444 (33.5)
MRA	8,347 (2.4)	2,419 (2.2)	3,864 (2.2)	4,405 (2.2)
NSAID	117,806 (33.3)	31,125 (28.9)	54,819 (30.7)	64,796 (32.7)
PPI	83,995 (23.8)	26,220 (24.4)	40,807 (22.8)	44,314 (22.3)
Metformin	83,221 (23.5)	28,313 (26.3)	43,837 (24.5)	48,395 (24.4)
Insulin	44,709 (12.6)	13,762 (12.8)	21,582 (12.1)	25,537 (12.9)
Sulfonylurea	16,864 (4.8)	6,749 (6.3)	9,292 (5.2)	9,627 (4.9)
DPP-4 inhibitor	7,303 (2.1)	2,544 (2.4)	3,945 (2.2)	4,459 (2.2)
GLP-1 receptor agonist	4,136 (1.2)	971 (0.9)	1,895 (1.1)	2,826 (1.4)
SGLT2 inhibitor	4,115 (1.2)	926 (0.9)	1,852 (1.0)	3,036 (1.5)

Table S3. Characteristics of persons with diabetes and without CKD at baseline by time period.

CKD-chronic kidney disease; N-overall sample size; n-by group sample size; SD-standard deviation; eGFRestimated glomerular filtration rate; SBP-systolic blood pressure; Hb-hemoglobin; UACR-urine albumin/creatinine ratio; IQR-interquartile range; ACE-angiotensin-converting enzyme; ARB-angiotensin II receptor blocker; NSAIDnonsteroidal anti-inflammatory drug; PPI-proton-pump inhibitor; MRA-mineralocorticoid receptor antagonist; DPPdipeptidyl peptidase; GLP-glucagon-like peptide; SGLT-sodium-glucose co-transporter.

^aincludes persons who did not identify with main US Census Bureau categories.

CVD incidence (050/ confidence internet)	2015 2016	2017 2019	2010 2020
<u>UND Incidence (95% confidence interval)</u> Overall*	2013-2016	2017-2018	2019-2020
New cases of $CKD(n)$	7 530	13 001	13 620
Person-vears	7,332	143 627	170 039
Incidence rate/1 000 person-years	81 6 (78 0-85 2)	73 7 (71 5-75 8)	64 0 (62 2-65 9)
Sex-specific [†]	01.0 (70.0-03.2)	15.1 (11.5-15.0)	02.200.9)
Male			
New cases of CKD (n) and 95% CIs	3,723	6,798	7,097
Person-vears	32 302	64 414	77 858
Incidence rate/1.000 person-years	87.3 (80.8-93.8)	78.0 (74.5-81.6)	68.3 (65.2-71.3)
Female	07.5 (00.0 75.0)	/0.0 (/ 1.2 01.0)	00.5 (05.2 / 1.5)
New cases of CKD (n)	3,809	6,293	6,532
Person-years	42,569	79,213	92,181
Incidence rate/1,000 person-years	76.2 (72.7-79.7)	69.6 (67.1-72.1)	60.1 (57.9-62.3)
Age-specific [‡]		× /	
20-39 years			
New cases of CKD (n)	421	682	705
Person-years	8,640	15,158	16,775
Incidence rate/1,000 person-years	53.1 (46.9-59.4)	47.1 (43.0-51.2)	44.1 (40.3-47.8)
40-59 years			
New cases of CKD (n)	1,633	3,130	3,096
Person-years	26,236	50,804	58,161
Incidence rate/1,000 person-years	64.4 (61.1-67.8)	62.5 (60.2-64.9)	54.3 (52.3-56.4)
60-79 years	2.025	7.075	7 (20
New cases of CKD (n)	3,935	7,075	7,638
Person-years	34,135	0/,880	83,339
Incidence rate/1,000 person-years	118.4 (114.4-122.3)	106.4 (103.8-109.1)	92.8 (90.5-95.0)
New cases of $CKD(n)$	1 5/3	2 204	2 100
Person-years	5 860	2,204	2,190
Incidence rate/1 000 person-years	269 6 (254 5-284 7)	225 3 (215 0-235 6)	189 3 (180 5-198 1)
Race and ethnicity-specific [§]	207.0 (254.5-204.7)	225.5 (215.0-255.0)	107.5 (100.5-170.1)
American Indian/Alaska Native			
New cases of CKD (n)	88	117	126
Person-vears	758	1,219	1.298
Incidence rate/1,000 person-years	98.5 (68.5-128.6)	85.1 (62.6-107.6)	85.2 (61.5-108.9)
Asian			
New cases of CKD (n)	538	1,064	1,153
Person-years	6,685	15,039	18,246
Incidence rate/1,000 person-years	66.6 (51.2-81.9)	55.2 (48.3-62.1)	47.3 (41.5-53.1)
Black			
New cases of CKD (n)	398	700	707
Person-years	3,500	7,089	7,783
Incidence rate/1,000 person-years	109.8 (88.8-130.7)	82.2 (72.9-91.5)	74.3 (65.8-82.7)
Hispanic/Latino(a)			
New cases of CKD (n)	717	1,647	1,828
Person-years	7,475	16,556	22,282
Incidence rate/1,000 person-years	71.2 (61.0-81.3)	75.8 (69.1-82.5)	66.4 (60.5-72.3)
Native Hawaiian/Pacific Islander	51	1.40	105
New cases of CKD (n)	51	140	135
Person-years))) 115 0 (<i>45 7</i> 196 1)	1,038	1,250
White	113.9 (43./-180.1)	104.3 (83.1-120.0)	oo.u (05./-110.3)
vv IIIte			

Table S4. CKD incidence among persons with diabetes by demographics and time period.

New cases of CKD (n)	5,499	9,002	9,260
Person-years	53,624	98,048	114,075
Incidence rate/1,000 person-years	79.8 (76.7-83.0)	73.0 (70.6-75.3)	63.1 (61.2-65.0)

CKD-chronic kidney disease; CI-confidence interval. *adjusted by age, race and ethnicity; \$adjusted by age and sex confidence interval. *adjusted by sex, race and ethnicity; \$adjusted by age and sex

	CURE-CKD	US population*	Comments
			The CURE-CKD study population is derived from clinical populations in two large US healthcare systems, whereas US national data is obtained by community-based surveys. CURE-CKD excluded persons with diabetes who had prevalent CKD. The US national data report is a general summary without exclusion by comorbidities, and thus, is expected to contain some persons with prevalent CKD.
Demographics			
Sex (%)	55.0	40.0	
Female Male	55.2 44.8	48.8 51.2	likely reflects the sex distribution of persons with diabetes who access healthcare systems compared to the general population with diabetes.
Age vears $(\%)$			
20-44	16.2	14.9	In contrast to the general population with
45-64	38.8	47.3	diabetes, the overall age distribution in CURE-
≥65	45.0	39.2	CKD was shifted toward more people with age ≥ 65 years and fewer people in the 45-64 year age range, but the mean age was similar.
Age, years (mean)	61.0	60.5	
Race and Ethnicity (%)			
American Indian/Alaska Native	0.9	0.9	The CURE-CKD population with diabetes has
Asian/Pacific Islander	10.6	4.0	more persons in the Asian/Pacific Islander and
Black	4 6	15.6	White groups than the US general population with
Hispanic or Latino(a)	5.1	14.7	diabetes. Conversely, the proportions who
White	68.2	64.8	identify as Black or Hispanic or Latino(a) are
Other [†]	10.6	-	lower. The Other category is not represented in the Diabetes in America Report. The race and ethnic distribution in CURE-CKD may represent regional differences as well as differences between those who access healthcare and the US general population. To align with the US National Data Report, the data source for the most recent Diabetes in America Report, Asian and Pacific Islander groups were combined here, which differs from the US Census Bureau classification used in the main study analyses. Race and ethnic identities were self-reported in the US National Data Report and derived from electronic health

Table S5. Summary table of representativeness by demographics among adults ≥ 20 years with diabetes in CURE-CKD and in the US general population.

*Diabetes in America 3rd edition. National Institute of Diabetes and Digestive and Kidney Diseases; 2018 PMID: 33651524.

[†]Persons who did not identify with main US Census Bureau categories.

Supplementary References

- Center for Disease Control and Prevention. National Diabetes Statistics Report [Internet]. 2022. [cited 2022 Feb 18]; Available from: https://www.cdc.gov/diabetes/data/statisticsreport/index.html.
- 2. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017;12:2032–45.
- 3. Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019;7:845–54.
- 4. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020;383:1436–46.
- Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 2021;9:653– 62.
- 6. Alicic RZ, Cox EJ, Neumiller JJ, Tuttle KR. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat Rev Nephrol 2021;17:227–44.
- 7. Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 2020; 383: 2219–29.
- 8. Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 2021;385:2252–63.
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 2020;98(4S):S1–S115.
- Norris KC, Duru OK, Alicic RZ, et al. Rationale and design of a multicenter Chronic Kidney Disease (CKD) and at-risk for CKD electronic health records-based registry: CURE-CKD. BMC Nephrol 2019;20:416.
- 11. Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 2021;385:1737–49.
- McCullough KP, Morgenstern H, Saran R, Herman WH, Robinson BM. Projecting ESRD incidence and prevalence in the United States through 2030. J Am Soc Nephrol 2019;30:127–35.
- Burrows NR, Hora I, Geiss LS, Gregg EW, Albright A. Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes – United States and Puerto Rico, 2000-2014. MMWR 2017;66:1165–70.

- 14. Vijayakumar P, Hoyer A, Nelson RG, Brinks R, Pavkov ME. Estimation of chronic kidney disease incidence from prevalence and mortality data in American Indians with type 2 diabetes. PLoS One 2017;12:e0171027.
- 15. Tsai MH, Hsu CY, Lin MY, et al. Incidence, prevalence, and duration of chronic kidney disease in Taiwan: Results from a community-based screening program of 106,094 Individuals. Nephron 2018;140:175–84.
- Gerber C, Cai X, Lee J, et al. Incidence and progression of chronic kidney disease in Black and White individuals with type 2 diabetes. Clin J Am Soc Nephrol 2018;13:884– 92.
- 17. González-Pérez A, Saéz ME, Vizcaya D, Lind M, García Rodríguez LA. Impact of chronic kidney disease definition on assessment of its incidence and risk factors in patients with newly diagnosed type 1 and type 2 diabetes in the UK: A cohort study using primary care data from the United Kingdom. Prim Care Diabetes 2020;14:381–87.
- An J, Nichols GA, Qian L, et al. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diabetes Res Care 2021;9:e001847.