1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Environ Res. Author manuscript; available in PMC 2021 June 30.

-, HHS Public Access
«

Published in final edited form as:
Environ Res. 2020 April ; 183: 109208. doi:10.1016/j.envres.2020.109208.

Characterization of trace elements exposure in pregnant women
in the United States, NHANES 1999-2016.

Christina Vaughan Watson?*, Michael Lewin?, Angela Ragin-Wilson?2, Robert JonesP®,
Jeffery M. Jarrett?, Kristen WallonP, Cynthia WardP, Nolan Hilliard®, Elizabeth Irvin-
Barnwell2

aDivision of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease
Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA

bDivision of Laboratory Sciences, National Center for Environmental Health, Centers for Disease
Control and Prevention, Atlanta, GA, USA

Abstract

Objective: The objective of the current study is to report on urine, blood and serum metal
concentrations to characterize exposures to trace elements and micronutrient levels in both

pregnant women and women of child-bearing age in the U.S. National Health and Nutrition
Examination Survey (NHANES) years 1999-2016.

Methods: Urine and blood samples taken from NHANES participants were analyzed for thirteen
urine metals, three blood metals, three serum metals, speciated mercury in blood and speciated
arsenic in urine. Adjusted and unadjusted least squares geometric means and 95% confidence
intervals were calculated for all participants among women aged 15-44 years. Changes in
exposure levels over time were also examined. Serum cotinine levels were used to adjust for
smoke exposure, as smoking is a source of metal exposure.

Results: Detection rates for four urine metals from the ATSDR Substance Priority List: arsenic,
lead, mercury and cadmium were ~83-99% for both pregnant and nonpregnant women of child
bearing age. A majority of metal concentrations were higher in pregnant women compared to non-
pregnant women. Pregnant women had higher mean urine total arsenic, urine mercury, and urine
lead; however, blood lead and mercury were higher in non-pregnant women. Blood lead,
cadmium, mercury, as well as urine antimony, cadmium and lead in women of childbearing age
decreased over time, while urine cobalt increased over time.

Conclusions: Pregnant women in the US have been exposed to several trace metals, with
observed concentrations for some trace elements decreasing since 1999.
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1. Introduction

The Agency for Toxic Substance and Disease Registry (ATSDR) includes trace metals on
the Substance Priority List based on frequency of occurrence at National Priorities List
(NPL) sites, toxicity, and potential for human exposure (ATSDR, 2019). Metals such as lead,
mercury, cadmium and arsenic are on the list. Trace elements from anthropogenic sources,
such as manufacturing and mining, have been shown to accumulate in the environment (Wu
et al., 2016). People can be exposed to these and other metals through soil, water, diet, air,
commercial products and occupational sources. Exposure sources for individual metals may
differ by geographical location and lifestyle characteristics (King et al., 2015; Callan et al.,
2013). For example, the primary routes of arsenic exposure in the United States are drinking
water and breathing airborne particles (ATSDR, 2007; Bloom et al., 2014), while exposure
to methylmercury is the result of dietary intake (Hong et al., 2012).

Pregnant women are particularly vulnerable to metal accumulation due to changing body
chemistry. For example, blood iron concentration can decrease during pregnancy, resulting
in an accumulation of blood cadmium (Lee and Kim, 2012). Additionally, metals, such as
arsenic and lead, can cross the placenta during pregnancy (Zhou et al., 2017). Maternal
exposure to heavy metals has been linked to adverse birth outcomes including low birth
weight, small head circumference, and developmental delays (Kumar et al., 2017; Shirai et
al., 2010). Even low dose exposure to cadmium, lead, mercury and arsenic has been linked
to low birth weight (King et al., 2015). Cadmium, in particular, has been linked to both low
birth weight and decreased head circumference (Cheng et al., 2017). Smoking remains a
non-occupational source of cadmium exposure (Ikeh-Tawari et al., 2013), and an estimated
13.8% of expectant mothers in the U.S. smoked while pregnant in 2005 (Centers for Disease
Control and Prevention, 2017). Some metals, e.g. mercury and arsenic, exist in both organic
and inorganic species and have different exposure routes and health effects depending on the
chemical characteristics of the specific species (Park and Zheng, 2012). For example, there
is little evidence linking elemental mercury exposure to adverse maternal health outcomes,
while mercury metabolites like methylmercury are highly teratogenic and have been linked
to developmental delays (Hinwood et al., 2013).

Other elements, such as iodine, copper, selenium, zinc, cobalt, and molybdenum are
essential micronutrients and are particularly important during pregnancy, provided exposure
does not exceed recommended levels. Micronutrient deficiencies have a range of negative
health implications and can lead to low birth weight, preterm birth, fetal malformations,
developmental delays, and miscarriage (Cetin et al., 2010; Gernand et al., 2016). lodine is
necessary for thyroid hormone synthesis; maternal iodine deficiency can lead to neurological
complications and mental retardation in the developing fetus (Bailey et al., 2015). Zinc is a
component of over 300 enzymes and is involved in DNA/RNA transcription (Zimmermann
and Andersson, 2012; Andersson et al., 2010; Hu et al., 2014). Zinc deficiency in the
maternal diet has been linked to intrauterine growth retardation and teratogenesis (Uriu-
Adams and Keen, 2010). Copper helps ensure normal fetal hematopoiesis, and low copper
levels have been linked to low birth weight (Bermudez et al., 2015). However, high levels of
maternal copper have been linked to congenital heart defects (Hu et al., 2014). Selenium
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helps prevent free radical accumulation, and cobalt is used in the formation of vitamin B12
and red cell production (Fort et al., 2015; Mistry et al., 2014).

The objective of the current study is to report on trace element concentrations in urine, blood
and serum in pregnant women of childbearing age (here defined as age 15-44 years) in the
U.S compared to non-pregnant women of childbearing age. The National Health and
Nutrition Examination Survey (NHANES) screens for chemicals and trace elements in the
U.S. general population and the data is publicly available (National Center for Health
Statistics, 2008). While the aim of NHANES is to collect data from 5000 participants
annually and report the data biannually (also referred to as a “cycle”), the urine metal
analyses are conducted on subsamples of this population, while the blood metals analysis
captures the entire population. To increase sample sizes, multiple NHANES cycles from
1999 to 2016 were used in this analysis. This paper reports on trace metal exposure in
preghant women, compares the concentrations to non-pregnant women, and includes an
analysis of geometric means by NHANES cycle for maternal exposure to metals since 1999.

2. Methods

2.1. Study populations

NHANES is administered by the National Center for Health Statistics, Centers for Disease
Control and Prevention (CDC) and combines questionnaires, medical examinations, and
laboratory biomonitoring methods to determine the prevalence of diseases and
environmental exposures in the civilian, non-institutionalized general U.S. population.
Participants receive a health examination at mobile examination centers (MECs). At the time
of the exam, pregnancy status is ascertained by urine pregnancy tests and self-reported
pregnancy status for women aged 8-44. Though NHANES documentation notes that
pregnancy status is publicly released only for women aged 20-44 (National Center for
Health Statistics, 2009-2010), data is in fact available for women outside of that range in
some public release datasets as well as from the Research data Center upon request.
NHANES cycles typically capture small numbers of pregnant women; though in the 1999-
2006 cycles, pregnant women were sampled at a higher rate than usual.

To increase samples sizes of pregnant women for this analysis, groupings of NHANES
cycles spanning the years 1999-2016 (referred to here as “multicycles”) were combined for
analysis. The number of cycles available for inclusion in any multicycle was analyte-
dependent, reflecting whether NHANES collected data on the analyte in a particular year.
For this analysis, eight multicycle groups were formed (Table 1). Non-pregnant women of
childbearing age, defined as women aged 15-44, were included as a comparison population.
The study population for geometric means plots included all women aged 15-44. In order to
assess the effect of covariates, the analysis population was further restricted to those women
who had non-missing values of age, race/ethnicity, household poverty-to-income ratio, body
mass index (BMI), and serum In-cotinine.
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2.2. Analytical measures

Urine and blood samples obtained from NHANES participants were analyzed by the
Division of Laboratory Sciences in the National Center for Environmental Health at the
CDC. Elemental analysis was performed using either graphite furnace atomic absorption
spectroscopy (GFAAS), flow injection cold vapor atomic absorption spectroscopy
(FICVAA), inductively coupled plasma mass spectrometry (ICP-MS), high pressure liquid
chromatography ICP-MS (HPLC-ICP-MS), or isotope dilution solid-phase microextraction
ICP-MS (ID-SPME-ICP-MS) (Stoeppler M, 1980; Guo and Baasner, 1993; Caldwell et al.,
2003; Caldwell et al., 2005; Jarrett et al., 2008; Jarrett et al., 2007; Jones et al., 2017; Verdon
et al., 2009; Sommer et al., 2014; Miller et al., 1987). The complete analytical methods for
each panel can be found on the NHANES website (National Center for Health Statistics,
2011). The urine total element analytes include arsenic, barium, cadmium, cobalt, cesium,
mercury, iodine, molybdenum, lead, antimony, thallium, tungsten and uranium. Urine
beryllium and platinum were part of NHANES from 1999 to 2010 but were dropped from
later cycles due to low detection rates. Cadmium, lead, and mercury were evaluated from the
whole blood metals panel. Zinc, copper and selenium are analyzed in the serum metals
panel. Speciated arsenic and mercury are also measured in urine and blood, respectively.
Creatinine was analyzed for all urine samples; the analytical method can also be found on
the NHANES website (National Center for Health Statistics, 2011). Urine samples were
ratio adjusted for creatinine to account for urinary dilution (National Center for Health
Statistics, 2011). Serum cotinine was included in the analysis as smoking is a source of
exposure to metals; the analytical method is published elsewhere (Bernert et al., 2009).

2.3. Statistical methods

We used linear regression on In-transformed analytes to estimate adjusted and unadjusted
least squares geometric means of analyte concentration by pregnancy status. For each
analyte, the percent of respondents with concentrations above the LOD was calculated.
When the concentration of an analyte was below the LOD, NHANES substitutes the value of
the LOD divided by the square root of 2 for that concentration (National Center for Health
Statistics, 2011). For analytes with less than 40% detection rate, GMs were not calculated,
per NHANES guidelines (National Center for Health Statistics, 2011). All statistical
analyses were conducted using SAS Version 9.4 survey procedures (SAS Institute Inc., Cary,
NC, 2012). NHANES-assigned weights were modified for combined cycles as described on
the NHANES website (National Center for Health Statistics, 2011). Weights and design
variables were used to account for NHANES’s complex sample design and make results
generalizable to the respective groups in the U.S. civilian, non-institutionalized population.
Adjusted least squares geometric means were adjusted for age, race/ethnicity, household
poverty-to-income ratio, body mass index (BMI), and serum In-cotinine. The household
poverty-to-income ratio is calculated by dividing family income by the poverty guidelines
set forth by the Department of Health and Human Services specific to family size, as well as
the appropriate year and state. BMI is calculated as weight (kg) divided by height in meters
squared (National Center for Healt, 2009-2010). For urinary analytes, both ratio creatine-
adjusted and non-creatinine-adjusted estimates were calculated. Wald’s F tests were
calculated to test for the effect of pregnancy status on analyte least squares geometric means.
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Additionally, plots of geometric means of analyte levels among women of childbearing age
were plotted by NHANES cycle to assess changes over time for select analytes.

3. Results

Covariate sample sizes, means (continuous variables) and percent estimates (classification
variables) are reported in Table 2. Estimates of least squares regression covariates in Table 2
from combined years represent the average over the time period covered by a particular
multicycle, and thus these estimates vary somewhat across multicycles. Nevertheless, Table
2 shows a general pattern in which pregnant women tended to be younger, to be non-White,
and to have lower cotinine levels across the various multicycles when compared to their non-
pregnant counterparts. Cotinine levels were analyzed for all women included in this study.
For the multicycle spanning 1999-2016, the GM (and 95% confidence interval) for cotinine
for pregnant women was 0.112 (0.082, 0.153) ng/ml compared to 0.338 (0.292, 0.392) ng/
ml for non-pregnant women. The 90th percentile (and 95% confidence interval) for cotinine
in pregnant women was 48.2 (14.4, 81.9) ng/ml compared to 203 (189,217) ng/ml for non-
pregnant women. Among pregnant women, 12.9% (9.30%, 15.7%) had a cotinine level
greater than 10 ng/ml (an indicator of smoke exposure), compared to 24.8% (23.3%, 26.3%)
among non-pregnant women.

Detection rates for urine total metals ranged from 79 to 100% in pregnant women and 78—
100% in non-pregnant women (Table 3). The creatinine and covariate-adjusted least squares
GMs for antimony in pregnant women versus non-pregnant women were 0.078 (0.069,
0.087) vs. 0.068 (0.066, 0.071) ug/g creatinine, 1.86 (1.37, 2.19J) vs. 1.23 (1.17, 1.29) ug/g
creatinine for barium, 0.183 (0.165, 0.203) vs. 0.181 (0.174, 0.189) ug/g creatinine for
cadmium, 4.84 (4.55, 5.14) vs. 4.20 (4.11, 4.30) pg/g creatinine for cesium and 0.627 (0.573,
0.685) vs. 0.447 (0.433, 0.461) pg/g creatinine for cobalt. The creatinine and covariate
adjusted least squares GMs for urine lead in pregnant women versus non-pregnant women
was 0.582 (0.519, 0.651) vs 0.397 (0.381, 0.413) pg/g creatinine, 49.0 (44.6, 53.9) vs. 39.5
(38.2, 40.8) ug/g creatinine for molybdenum, 0.171 (0.161, 0.1810) vs. 0.166 (0.162, 0.171)
ug/g creatinine for thallium, 0.085 (0.076, 0.096) vs 0.074 (0.070, 0.077) ug/g creatinine for
tungsten and 0.007 (0.006, 0.009) vs. 0.007 (0.006, 0.007) pg/g creatinine for uranium.

Detection rates for elemental species ranged widely. Urine speciated arsenic levels had a
broad range of detection rates in pregnant women, with arsenocholine at only 2.7% and
dimethylarsenic acid at 87%. The creatinine and covariate adjusted least squares GMs in
preghant women versus non-pregnant women were 1.94 vs. 2.06 ug/g creatinine for
arsenobetaine, 5.04 vs. 4.09 g/g creatinine for dimethylarsenic acid, and 10.3 vs. 9.11 ug/g
creatinine for total urine arsenic. Blood speciated mercury included in the NHANES
analysis also had variable detection rates with ethyl mercury at 1.0% and methyl mercury at
76%. The creatinine and covariate adjusted least squares GM in pregnant women versus
non-pregnant women for methyl mercury was 0.408 vs. 0.510 pg/L and 0.787 vs. 0.863 ug/L
for total mercury. Detection rates, 90th percentiles and both adjusted and unadjusted GMs
with confidence intervals for all analytes are reported in Table 3.
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Detection rates for blood metals ranged from 66 to 94% in pregnant women and 70-99% in
non-pregnant women (Table 3). The covariate-adjusted least square GM for blood cadmium
in pregnant women vs non-pregnant women was 0.332 vs. 0.335 pg/L and 0.717 vs. 0.797
pg/dL for blood lead (Table 3). The serum metals, derived from participant bloods
specimens included copper, selenium and zinc and were only measured in the 2011-2012,
2013-2014 and 2015-2016 cycles. Because there were only 3 cycles included in the
analysis, there were smaller sample sizes for pregnant women. Detection rates for all three
serum metals were 100%, with covariate-adjusted least squares GMs between pregnant and
non-pregnant women of 191 vs. 127 pg/dL for serum copper, 113 vs 123 pg/L for serum
selenium, and 70.2 vs. 76.6 pg/dL for serum zinc (Table 3).

To evaluate changes in exposures over time, we examined geometric means across
NHANES cycles for urine and blood metals among all women of childbearing age (defined
here as 15-14 years of age, regardless of pregnancy status). GMs and 95% confidence
intervals of select urine heavy metals across all NHANES cycles included in this analysis
are presented in Figs. 1 and 2. Urine cadmium, arsenic and antimony have decreased from
1999 to 2016 (Figs. 1 and 2). Cobalt concentrations have increased since 1999, with the
exception of the 2003-2004 NHANES cycle data, which is lower than all other cycles (Fig.
3). There is no apparent change in concentrations of other urine metals from 1999 to 2016.
GMs and 95% confidence intervals of blood cadmium, lead, and mercury across all
NHANES cycles included in this analysis are presented in Figs. 1 and 2. Blood lead,
cadmium and mercury have decreased from 1999 to 2016 (Figs. 1 and 2). We did not
analyze time trends for the serum micronutrients due to limited cycle availability.

4. Discussion

Characterization of trace elements in urine, blood and serum in pregnant women living in the
U.S. (NHANES, 1999-2016) is presented here. Pregnant women and non-pregnant women
of childbearing age had 14 metals (antimony, barium, cadmium, cesium, cobalt,
dimethylarsinic acid, iodine, lead, inorganic mercury, molybdenum, thallium, arsenic,
tungsten and uranium) measured in urine with a detection rate greater than 75% in

NHANES 1999-2016. Meanwhile, six metals (copper, lead, mercury, methyl mercury,
selenium, zinc, and mercury) were measured in blood and/or serum with a detection rate of
greater than 75% in NHANES 2011-2016. Some metabolites of arsenic and mercury had
lower detection rates. Of the metals analyzed in this study, four are included on the ATSDR
priority list: arsenic, lead, mercury and cadmium. Both pregnant and non-pregnant women
of child bearing age had ~83-99% detection rates for these urine metals. It should be noted
that rates of detection are not a measure of risk, we report detection rates here to characterize
the prevalence of exposure in the study sample, noting that some analytes with high
detection rates are essential micronutrients. Also, while some urine measurements reflect
recent exposures, that is not the case for every analyte included here. In the case of
cadmium, the blood measurement can reflect both recent and cumulative exposures (Fourth
National Report on, 2009).

Trace metal concentrations were generally higher for pregnant versus non-pregnant women,
with some exceptions. Pregnant women had higher mean urine barium, cesium, lead, and
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tungsten. Lower mean urine cadmium concentrations, however, were observed in pregnant
women, as were blood lead, cadmium, and mercury. Concentrations of other analytes were
similar among pregnant and non-pregnant women; especially once creatinine adjustment
was taken into account. We expected to see higher blood lead levels in pregnant women, as
lead is known to mobilize out of the bones during pregnancy (Rabito et al., 2014), but that
was not the finding. Pregnant women had significantly lower blood lead than non-pregnant
women yet significantly higher urine lead. This finding could provide evidence for bone
resorption of lead during pregnancy (Wang et al., 2019). However, without information on
gestational age for study participants, we cannot analyze blood lead changes throughout the
course of pregnancy as others have done (Tellez-Rojo et al., 2004).

There was a decrease in urine and blood lead in all women of childbearing age from 1999 to
2016, which is expected due to the removal of lead from gasoline and other restrictions on
lead use (Muntner et al., 2005). Additionally, there was a decrease from 1999 to 2016 in
blood cadmium. Tellaz-Plaza et al. attribute a reduction in blood cadmium levels in the
general population to a reduction in smoking, resulting in less cadmium exposures in both
smokers and non-smokers (Tellez-Plaza et al., 2012). There was also a decrease in urine
antimony over the time of these NHANES cycles, which is not as well documented due to a
lack of research on antimony exposure. Decreases in urine antimony, as well as other
elements reported here, could be due to decreases in occupational exposures or
environmental regulations setting exposure limits similar to those placed on cadmium
(Agency for Toxic Substances and Disease Registry, 2015). The only metal we observed
increasing over time was cobalt (Fig. 3). Cobalt is a component of vitamin B12, which is
included in multivitamins and supplements but is primarily found in animal-based foods
(Simpson et al., 2010). This increase could be explained by increasing multivitamin
supplementation, or dietary changes, but there is no current trend data to support these
hypotheses (Simpson et al., 2010).

The elements categorized as micronutrients included in this analysis serve essential
functions in the body, especially during pregnancy. Deficiencies in copper, selenium, iodine
and zinc can lead to adverse birth outcomes (Bailey et al., 2015). Selenium has been shown
to mitigate cadmium accumulation and damage, and low selenium has been associated with
low birth weight, likely due to effects of increased cadmium (Shen et al., 2015). Published
reference ranges (lowest to highest across all three trimesters) for copper, selenium and zinc
are 112-240 pg/dL, 71-146 ug/L, and 51-88 pug/dL, respectively. GMs for these
micronutrients fit within these ranges, though it should be noted NHANES samples are
collected at a single time point and not across three trimesters for pregnant women (Abbassi-
Ghanavati et al., 2009). The findings of this study suggest that pregnant women in the U.S.
have adequate levels of copper, selenium, and zinc, essential micronutrients based on
published reference ranges, and there were no significant differences in GM between the two
groups in this analysis.

lodine is needed for thyroid function, and maternal iodine intake is the only source of iodine
to the developing fetus. Previous data suggests that only 6.9% of pregnant women have
adequate iodine (Simpson et al., 2011). However, WHO states that during pregnancy,
median urinary iodine concentrations in a range of 150-249 pg/L define a population which
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has no urinary iodine deficiency (World Health Organization, 2008). The GM for pregnant
women from this study (138 [119,160] pg/L) is below that range, as was previously
described, indicating that there is evidence of iodine deficiency in pregnant women in the
U.S. (Pan et al., 2013; Caldwell et al., 2013).

Finding comparative studies with pregnant women that utilized the same urine and blood
metals panels was challenging; however, there were some comparable cross-sectional studies
in the literature, but these studies do not report multiple values over time. GMs for antimony,
cadmium, cesium and total arsenic were comparable to those published in a French study
(Dereumeaux et al., 2016). However, the GM for cobalt was twice as high in France and
three times as high in Australia (Callan et al., 2013). Additionally, Australia reported much
higher GM total arsenic (38.3 pg/L). A study published in Myanmar reported much higher
cadmium and lead (Wai et al., 2017). For blood metals, there was greater availability for
comparable studies. Values reported here were very similar to those reported in Canada
(Thomas et al., 2015); however, Saudi Arabia, Korea and China reported much higher blood
lead, cadmium and mercury (Al-Saleh et al., 2014; Jin et al., 2014; Jeong et al., 2017).

The current study is not without limitations. Due to changes between NHANES cycles,
some metals, such as urine tin, manganese, and strontium as well as blood manganese and
selenium were excluded from the analysis as they were only recently added to NHANES
analytical panels. Manganese is required for essential functions, including amino acid and
protein metabolism and normal immune function, and should be included in future studies
when more data is available (Tsai et al., 2015). Other metals like copper, selenium and zinc
are also relatively new additions, so sample sizes of pregnant women were very small
compared to other analytes. NHANES pregnancy data is only released for a certain age
range, which makes comparing to other studies challenging as they likely have a wider age
range for pregnant women. While we did correct for urine dilution using the creatinine
measurement, we did not consider the increased blood volume of pregnant women. Pregnant
woman have an increased blood volume, which could dilute exposures, resulting in lower
blood metals values (Woodruff et al., 2011). Metals in cord blood were not measured, as
other studies have, which limits the ability to comment on fetal exposures.

Differences between pregnant and non-pregnant women could be attributed to pregnant
women altering health behaviors due to pregnancy. Fewer women smoke during pregnancy,
as our own data indicates, and smoking is a source of exposure to metals (Lange, n.d.). This
could be a cause for lower GM of metals such as cadmium. In the U.S., women are advised
to avoid high mercury fish during pregnancy (Oken et al., 2003), which could lower
methylmercury levels in this population. Results were not compared to self-reported health
behaviors, which could further account for exposure differences between pregnant and non-
pregnant women. Covariates such as supplement use, geography and occupational exposures
were either not available across all NHANES cycles or are not publicly available and were
therefore excluded from this analysis. Dietary intake is also an important covariate but was
not included in this analysis.

The findings of this study indicate that pregnant women in the U.S. are exposed to several
trace elements simultaneously. These results are intended to provide background levels of
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metals in pregnant women and women of childbearing age in the U.S. This study does not
make any direct comparisons to adverse birth outcomes or attempt to identify sources of
exposure. NHANES is intended to be representative of the general U.S. population, and
special subpopulations in the U.S. likely have higher or lower exposures, depending on the
element. The estimates presented here can be used as a reference for future epidemiological
studies focused on special populations of pregnant women.
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Fig. 1.

GMs (95% Cls) for blood mercury, urine mercury, urine antimony, urine total arsenic by
NHANES cycle (1999-2016), among women aged 15-44, regardless of pregnancy status.
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Fig. 2.

GMs (95% Cls) for blood lead, urine lead, blood cadmium and urine cadmium by NHANES
cycle (1999-2016), among women aged 15-44, regardless of pregnancy status.
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Fig. 3.
GMs (95% CIs) for urinary cobalt by NHANES cycle (1999-2016), among women aged

15-44, regardless of pregnancy status.
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