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Abstract

Hazard mapping is an effective way to depict spatial variability in hazard intensity obtained 

with direct-reading instruments on a facility floor plan. However, the extent to which temporal 

variability affects map accuracy is unknown, and guidance on sampling strategies to minimize 

map bias is lacking. In this study, we evaluated the accuracy of hazard maps produced for 

simulated sources and sampling strategies in a hypothetical facility. Hazard maps were produced 

from sampled data at high, mid, and low spatial resolution and with and without replicates 

and compared to a reference time-weighted average hazard map using several map comparison 

metrics. In agreement with ‘real-world’ mapping datasets, the simulation showed that increasing 

the number of replicates improved the overall comparability of the hazard map produced from 

the sampled data with the time-weighted average hazard map more efficiently than increasing the 

sampling spatial resolution. However, if accurately capturing peak exposures near sources is of 

interest, increasing the spatial resolution of the measurements, particularly near sources, is needed. 

From these results, we formulated guidelines to use the preliminary assessment of the temporal 

variability of large and intermittent sources to inform the spatial resolution and need for replicate 

measures to minimize the bias in hazard maps.
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Introduction

Occupational hazard maps—depictions of hazard concentration or intensity (hereafter, 

‘intensity’) displayed on a two-dimensional floor plan of a facility—can inform decision 

making in the control of exposures to ultimately improve worker health (O’Brien, 2003). 

Often, the data used to produce these maps are obtained by measuring the intensity of the 

hazard over short durations (several minutes or less) with a direct-reading instrument (DRI) 

by an operator who follows a predetermined sampling path through the facility, referred to 

as ‘roving monitoring’ (Lake et al., 2015). To mitigate uncertainty introduced from temporal 

variability, an entire set of mapping measurements are typically completed within a short 

time period (e.g. 1–2 h) with a nominally 1-min sample obtained at each point and ~1 min to 

move to the next sampling location. Thus, ~60 points on the path can be measured in 2 h.

Originally developed to document the changes in mass concentration of oil mist over time 

in the automotive industry (O’Brien, 2003), mapping has emerged as a way to better 

understand hazards in a variety of industries, such as engine machining (Dasch et al., 
2005; Peters et al., 2006), foundries (Heitbrink et al., 2007), restaurants (Park et al., 2010), 

apparel manufacturing (Vosburgh et al., 2011), and plastics manufacturing (Lake et al., 
2015). Moreover, different types of DRIs can be used simultaneously to provide information 

on multiple hazards, such as the simultaneous mapping of ventilation parameters (carbon 

dioxide, carbon monoxide, and temperature) with dust concentrations (Peters et al., 2012).

Hazard maps are only as reliable as the data that are used to produce them. Koehler 

and Volckens (2011) used a small simulation study to show that exposures to workplace 

hazards can be mischaracterized due to temporal variability in hazard intensity. Lake et al. 
(2015) attempted to validate the results of Koehler and Volckens (2011) using noise data 

collected in two facilities. In each facility, they measured the spatiotemporal variability of 

noise intensity with 15 DRIs at fixed locations referred to as ‘static monitoring’, as well as 

roving monitoring by two operators. In agreement with simulations of Koehler and Volckens 

(2011), they found that noise intensity maps based on short-duration, roving measurements 

provided a poor estimate of time-weighted average (TWA) intensity at facilities with 

sources exhibiting high temporal variability. They also found that the temporal variability in 

hazard intensity could be mistakenly portrayed as spatial variability, particularly when few 

measurements were used for the generation of a map.

Specific guidelines for selecting a sampling strategy for conducting roving monitoring 

campaigns that reduce uncertainties in hazard maps are unavailable for the practicing 

industrial hygienist (IH). Specifically, guidelines are needed for the number of sampling 

locations within a facility and the number of repeated measurements that should be taken at 

each sampling location to result in the most representative hazard maps that are aligned with 

the goals of the monitoring. Such goals may be to ascertain TWA hazard intensity or peaks 

in intensity to target specific areas for the focus of control measures. Ideally, such guidelines 

would be tailored for a given workplace based on preliminary measurements of temporal 

variability in source intensity that the practicing IH can easily make. Without this type of 

guidance, the reliability and comparability of hazard maps is questionable.
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Thus, the objective of this work was to investigate the extent to which the temporal 

variability of sources affects the accuracy of hazard maps. We conclude with 

recommendations for sampling strategies to reduce the impact of temporal variability on 

maps to estimate the TWA intensity.

Methods

Simulated hazard maps

Simulated hazard intensity in a facility and TWA hazard map generation—
Simulated hazard intensities were modeled for a theoretical facility following methods 

similar to those described in Koehler and Volckens (2011). The simulation consisted of three 

cases wherein one, three, or five sources were modeled in a facility—a square room (100 

× 100 arbitrary units that can be thought of as meters) with no interior structures. For each 

case, 500 iterations were run where each iteration represents intensities modeled over time 

and space for an 8-h period (i.e. one work day). For each of the 500 iterations, the source 

location(s) were positioned randomly (with one, three, or five sources modeled, depending 

on the case). The hazards emanating from these sources (and their relative magnitudes) 

were arbitrary, but can be thought of as noise here. The emission rates from each source 

were randomly determined, but included temporal correlation. The hazard intensity was 

randomly assigned an initial magnitude between 0 and 100 and modeled over time with an 

autoregressive AR(1) model (i.e. the intensity at one time step is equal to the intensity at 

the previous time step multiplied by a correlation coefficient plus a random fluctuation). 

Example hazard intensity time series for an iteration with one source (left panels) and five 

sources (right panels) are shown in the top panels of Fig. 1.

Hazard intensity was calculated at each non-source location in the facility (100 × 100 = 10 

000 gridded locations spread evenly throughout the facility) during a full workday (a single 

iteration encompasses 8 h at 10-s resolution yielding 2880 time steps). We assumed that the 

intensity of the hazard was inversely related to the square of distance, which would result in 

a drop of 6 intensity units (if the hazard is thought of as noise, dB) as the distance doubled. 

Intensities from different sources were combined using the following equation (Peterson, 

1980):

Total Intensity = 10 × log10 10∧ intensity1

10 + intensity2

10 + … (1)

where intensity 1,2, … are the location-specific intensities from source 1, 2, …, and Total 

Intensity is the resulting summed intensity. We also assumed that the intensity at any 

location was in instantaneous steady state with the emissions from the sources. This 

assumption is reasonable for noise and ionizing radiation, but less so for other agents 

(e.g. dust) that take time to transport or diffuse through the space and can be dramatically 

influenced by air currents. To further simplify the modeling effort, we assumed that the 

hazard propagated equally in all directions and neglected convection, reflection, or refraction 

of the hazard.
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The TWA hazard map was constructed by averaging hazard intensities over the 8-h time 

period at each of the 10 000 simulated locations in the facility (lower panels, Fig. 1). Since 

intensity was calculated at all locations, spatial interpolation was not needed to determine 

the TWA hazard map. The TWA hazard map served as the ‘truth’, and all estimated hazard 

maps generated using subsets of the intensities were compared against it for both overall 

comparability and peak exposures.

Modeling of roving monitoring and estimated hazard maps—The simulated 

intensity data were used to develop ‘sampled’ hazard maps assuming that operators followed 

different sampling strategies for roving monitoring. We implemented a regular grid of 

sampling locations as being easy to implement by a practicing IH. Sampling locations were 

selected to provide good coverage throughout the facility and were held constant for all 

iterations, without regard for the location of the sources.

For each iteration, roving monitoring of the hazard at predefined locations was simulated 

along a path followed by up to three operators, each with a DRI. The first operator began 

in one corner of the room (at a randomly selected time during the first 3 h of the day), and 

the 10-s intensity at the first location was sampled. For this analysis, it was assumed that all 

hazard intensities were measured without error. This assumption was relaxed for sensitivity 

studies described in the Supplementary Material, available at Annals of Work Exposures and 
Health online. Then, the operator moved to the next predetermined location, recording the 

hazard intensity at the next time step (10 s later), and so on. A second operator began in the 

opposite corner of the facility at a randomly selected time during the first 4.5 h of the day 

and a third operator began in the same corner as the first operator, but at a randomly selected 

time during the first 6.5 h of the day. The times during which each operator could begin 

sampling were selected arbitrarily to encourage data collection throughout the day, but more 

than one operator could be collecting data simultaneously. The operators sampled at high 

spatial resolution for these sampling campaigns (441 locations evenly spread throughout the 

facility), so each operator takes 73.8 min to complete the sampling of the entire facility.

From the data sampled by the three operators, we defined six sampling strategies using 

subsets of the sampled data: (i) high spatial resolution using data from all three operators 

resulting in three repeated measurements at each of 441 sampling locations; (ii) high spatial 

resolution with data from the first operator resulting in a single measurement at each of 

441 sampling locations; (iii) mid spatial resolution data from three operators resulting in 

three repeated measurements at each of 121 sampling locations; (iv) mid spatial resolution 

using data from the first operator resulting in a single measurement at each of 121 sampling 

locations; (v) low spatial resolution data from three operators resulting in three repeated 

measurements at each of 36 sampling locations; and (vi) low spatial resolution using data 

from the first operator resulting in a single measurement at each of 36 sampling locations. 

The 121 and 36 sampling locations were a subset of the 441 sampled locations evenly 

spaced throughout the facility. At the 121 and 36 sampling locations for the mid and low 

spatial resolution cases, measurements at those locations were collected at the same time 

steps as for the high spatial resolution case, and the temporal lag between locations is 

presumed to be the time it would take to move between locations. These strategies allowed 

us to evaluate the importance of sampling spatial resolution and replicate measurements 
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on sampled map accuracy. The importance of averaging over multiple measurements per 

location was evaluated by comparing estimated hazard map accuracy using data only from 

the first operator versus averaging over data collected by all three operators for each 

location. Sampling strategy pairs 2 and 3 and 4 and 5 result in approximately the same 

number of measurements used for mapping.

Estimated hazard maps were produced from the sampled intensities using ordinary kriging. 

Kriging is a geostatistical method for optimal interpolation and has been discussed for 

the purpose of hazard mapping previously (Koehler and Volckens, 2011; Koehler and 

Peters, 2013; Lake et al., 2015). Because it would be impractical to manually examine 

the variogram used for kriging at every iteration, we used 10 bins (as determined by 

evaluating a subset of maps) and an exponential variogram, as recommended by Koehler 

and Peters (2013). Additionally, the R2 value of the variogram model fit to the experimental 

variogram was monitored for each iteration and sampling strategy. If the R2 value was <0.3 

for Sampling Strategy 1 with 441 locations and 3 replicate measurements per location, then 

that iteration was discarded and the iteration was repeated. For each iteration, an estimated 

hazard map was generated using data from the six sampling strategies via kriging, and 

intensities were estimated at all 100 × 100 locations for comparison with the TWA hazard 

intensities.

Comparison of estimated hazard maps to the TWA hazard map—Differences 

between the estimated hazard maps (for each of the four sampling strategies) and the TWA 

hazard map were quantified using three metrics. First, a Pseudo − R2 was calculated as one 

minus the mean absolute difference in hazard intensity between the estimated hazard map 

and the TWA hazard map at all 100 × 100 locations divided by the mean absolute difference 

between the TWA hazard map values and the mean TWA intensity over all locations:

Pseudo − R2 = 1 −
∑i = 1

N ∣ Intensitykrige, i − IntensityTWA, i ∣
N

V TWA

(2)

where Intensity krige, i is the intensity estimated from the kriged map at location i, IntensityTWA, i

is the intensity from the TWA hazard map at location i, and N is the total number of 

locations. V TWA is a measure of the mean variation in the TWA hazard map:

V TWA = ∑i = 1
N IntensityTWA, i − Intensity

N (3)

where Intensity  is the mean intensity over all locations and other variables are as defined 

for equation (2). The pseudo − R2 is an estimator of overall difference between maps, and 

a larger value indicates a better agreement between the sampled and TWA hazard maps. 

The normalization by the mean absolute difference in the denominator allows comparison 

between cases with one, three, or five sources. Second, the error rate was calculated as the 

fraction of locations for which the values from the estimated hazard map differed from the 

TWA hazard map by more than a threshold percentage. In this simulation, we considered 5, 

10, 20, and 50% threshold values. The error rate is an indication of the proportion of the 
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facility for which the short-duration sampled data provided a poor estimate of the TWA. 

Third, the percent error between the estimated hazard map estimate of intensity and the 

TWA intensity at each source location was calculated. This metric provides an indicator 

of how well the estimated hazard map represents the peak TWA intensities near source 

locations.

We also wish to evaluate how map accuracy varies at facilities with different levels of 

temporal variability in hazard intensity. For each case (one, three, or five sources), the 

temporal variability was different for each source and each iteration. Following Lake et 
al. (2015), the temporal variability was characterized by the coefficient of variation of the 

intensity for the source with the highest temporal variability (hereafter, CVs). Although 

temporal variability can be expressed in a variety of ways, ultimately, we chose CVs 

because a practicing IH can potentially measure it directly to inform the sampling strategy 

prior to roving monitoring (see Discussion for more details). The CVs was calculated for 

each iteration (for cases with three or five sources, the maximum CVs value was used), 

and CVs values for each case and sampling strategy were sorted into seven bins with an 

approximately equal number of iterations per bin.

Comparison of accuracy in simulated maps to real-world maps—We compared 

the error rates from the simulations described above to those measured in two real-world 

facilities, an engine testing facility (ETF) and a plastics-manufacturing facility (PMF). As 

reported by Lake et al. (2015), each facility had one predominant noise source. Noise 

intensities were measured at high spatial (~0.1 measurements m−2 at the ETF and ~0.2 

measurements m−2 at the PMF) and temporal resolution (noise intensities averaged to 10-s 

intervals to match the simulation) in each facility by static and roving monitoring. The noise 

intensity data from the 18 static monitors were used to generate TWA hazard maps that 

we used as ‘truth’, although we acknowledge that the ‘true TWA’ cannot be known in any 

real-world setting due to limited resources. The CVs for the ETF and PMF were estimated 

as the largest CV value among the static monitors using the noise intensity data averaged to 

10-s resolution.

Hazard maps were estimated first using the full spatial resolution of the roving monitoring 

data (28 or 74 locations at the ETF; 388–394 locations at the PMF, depending on sampling 

day). To evaluate the influence of spatial sampling resolution on the error rate, subsets of 

the roving monitoring data from a single operator were randomly selected (varying from full 

resolution of 0.1 or 0.2 measurements m−2 at the ETF and PMF, respectively, down to 0.01 

measurements m−2; 5, 10, 20, 35, or 50 locations at the ETF on Day 1; 5, 10, or 20 locations 

at the ETF on Day 2; and 20, 50, 100, 200, or 300 locations at the PMF on Days 1–3). 

For each spatial resolution and at each facility, estimated hazard maps were produced from 

randomly selected subsets of data 100 times and the error rates between the sampled and 

TWA hazard maps were calculated. To evaluate the influence of replicate measurements per 

location, estimated hazard maps were generated using data from a single operator or using 

data from two or three replicate measurements per roving monitoring location, as available. 

The median error rate was reported among the 100 replicate error rates.

Koehler et al. Page 6

Ann Work Expo Health. Author manuscript; available in PMC 2023 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given the high spatial resolutions available from the PMF and ETF datasets, higher spatial 

resolution sampling strategies were also added to the previously described simulation. 

Hazard concentrations were generated as described above, but the sampling strategies were 

altered to produce 2601, 1301, 651, 434, 326, 121, 61, or 36 sampling locations in the 100 × 

100 facility. We only considered the case with one source and sampling conducted with one 

or three operators, as described for the simulation above and to match the conditions in the 

field sites. Because increased spatial resolution requires additional time to conduct simulated 

roving monitoring throughout the facility, the three passes through the facility were each 

started at a random time in the first 45 min of the day. At the highest spatial resolution, 

433.5 min were required to complete roving sampling and all reduced spatial resolutions are 

subsets of highest resolution case, as described above. To compare to the real-world data, 

we assumed that the square facility from the simulation was 100 × 100 m to determine the 

number of locations per square meter.

All simulations and calculations were completed in Matlab version R2013a (Mathworks, 

Natick, MA, USA). Code used to produce the simulation is included in the Supplementary 

Material, available at Annals of Work Exposures and Health online.

Results

Simulation

Map comparability metrics were compiled for the cases with one, three, and five sources and 

for the six sampling strategies in Table 1 (median and 25th to 75th percentile for all 500 

iterations, without regard for temporal variability, are shown). The differences in values of 

the map comparison metrics among the different iterations were substantial for all sampling 

strategies, map comparison metrics, and number of sources.

Map comparability was first evaluated using a pseudo − R2, which is analogous to the 

traditional R2. The pseudo − R2 can be 1 or smaller (including negative values) with values 

closer to 1 indicating good agreement between the estimated hazard map and the TWA 

hazard map and smaller values indicating poorer agreement. The pseudo − R2 did not change 

substantially as the number of sources increased (Table 1). There was little difference 

between high-, mid- and low-resolution sampling strategies, but the median pseudo − R2 was 

increased by approximately a factor of 3–4 when using data from three operators compared 

to just the data from the first operator. The interquartile range of pseudo − R2 was also 

larger when only data from a single operator was used for the mapping compared to three 

operators.

Similar to the pseudo − R2, the 20% error rates (i.e. the fraction of locations where the 

intensity predicted with the estimated hazard map was at least 20% different than the 

TWA hazard map; smaller values indicate better agreement between the sampled and TWA 

hazard maps) were similar for high and low spatial resolution sampling strategies, but the 

use of data from three operators, as opposed to a single operator, substantially reduced 

the error rate. When using data from three operators, the median 20% error rate was <2 

for high, mid, and low sampling spatial resolutions. Additionally, the interquartile ranges 
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were higher when only data from a single operator was used compared to using data from 

three operators. However, in contrast to pseudo − R2, the error rates were generally highest 

for the case with only one source in the facility and the interquartile ranges were larger, 

compared to the case with five sources when sampling with one operator at high or low 

spatial resolution. This finding suggests that for a facility with more sources, although the 

overall map accuracy throughout the facility is similar, fewer locations have errors exceeding 

the 20% threshold.

Lastly, we assessed map similarity by calculating the underestimation of the peak as 

the percentage error of the intensity at each source location from the estimated hazard 

map and the TWA hazard map. It was more likely that hazard intensities at the source 

locations were underestimated and percent underestimations are shown in Table 1. To reduce 

underestimation of source (i.e. peak) intensity, higher sampling spatial resolution was more 

important than using data from three operators. This was likely because using a higher 

sampling spatial resolution meant that a sample was more likely to be taken close to the 

source location. The underestimation was approximately a factor of 3 worse when low 

spatial resolution sampling strategies were used compared to the high spatial resolution 

sampling strategies. Underestimation was also larger for cases with one source compared to 

three or five sources. Minimal differences in peak intensity were observed when using data 

from one or three operators.

We also found that the map accuracy was strongly impacted by the temporal variability 

within the facility. Temporal variability will depend on the processes at a facility, and likely 

by hazard type. The pseudo R2, as a function of the CVs, for four of the sampling strategies 

(high and low spatial resolution) are shown in Fig. 2. When viewed in this way, it is 

clear that generating estimated hazard maps using the data from three operators compared 

to a single operator was far more effective at increasing the pseudo − R2 than increasing 

the sampling spatial resolution. In fact it is hard to distinguish the difference in median 

pseudo − R2, as a function of CVs, between the low and high spatial resolution cases (dashed 

and solid lines fall nearly on top of one another, especially at higher CVs values). The 

influence of the temporal variability in the facility resulted in decreasing pseudo − R2 with 

increasing CVs. The variability in pseudo − R2 among different iterations generally increased 

as CVs increased, was larger when only data from a single operator was used for mapping 

(gray lines), and was higher with a smaller number of sources in the facility. Interestingly, 

with more sources, the impact of the CVs is smaller than for only a single source in the 

facility. The reduced impact of CVs on the pseudo − R2 may result from smoother map 

surfaces when more sources are present. For each of the 500 iterations within the cases 

with one or five sources, we calculated a normalized TWA concentration values in which 

the TWA value at each location was divided by the mean TWA concentration over the 

entire map (i.e. a normalized TWA concentration value of 1 indicates that the concentration 

was equal to the map mean value; values that diverge from 1 indicate that higher map 

variability). Compiled normalized TWA concentrations over all 10 000 locations for 500 

iterations resulted in a broader distribution of values for the case with one source than the 

case with five sources. This suggests that smoother maps result in improved map accuracy.
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Sampling strategy pairs 2 and 3 and 4 and 5 result in approximately the same number of 

measurements used for mapping and allow a more direct comparison of whether resources 

are better utilized when sampling a single time at more locations or three times at fewer 

locations. The pseudo − R2, as a function of CVs, is shown for Sampling Strategies 4 and 

5 in Fig. 3. At facilities with low temporal variability, the difference between the two 

sampling strategies is minimal; however, as the temporal variability increased, the quality 

of the maps based on data collected at the mid spatial resolution with only a single 

measurement per location deteriorated more quickly than maps made with data collected 

at low spatial resolution with three replicate measurements per location. Additionally, the 

variability among the iterations was higher for the mid spatial resolution sampling strategy 

with only one measurement than the low spatial resolution sampling strategy with three 

replicate measurements per location.

Results for the 20% error rate are qualitatively similar as for the pseudo − R2; lower spatial 

resolution with replicate measures was a better use of resources than increased spatial 

resolution without replicate measures. Intensity underestimation at source locations was only 

a weak function of CVs, but the variability in the underestimation of the peak tended to 

increase with temporal variability and was stronger for the case with one source. Details 

on the 20% error rate and peak underestimation as a function of CVs can be found in the 

Supplementary Material, available at Annals of Work Exposures and Health online.

Comparison of accuracy in simulated maps to real-world maps

Next, we compared the simulation results to map accuracy from two real-world hazard 

mapping data sets (Lake et al., 2015). From the simulation, the median 10% error rate (i.e. 

the percentage of locations with predicted values from the estimated hazard map that were 

>10% different than the TWA hazard map) at seven levels of spatial resolution and as a 

function of CVs was plotted as contours in Fig. 4, with darker colors indicating higher error 

rates. Using data from a single operator resulted in error rates plotted in Fig. 4a and using 

data from three operators resulted in error rates plotted in Fig. 4b. The stronger influence of 

CVs compared to sampling resolution on the error rate is apparent in both Fig. 4a and Fig. 

4b. Furthermore, the values in Fig. 4a are larger than in Fig. 4b, showing the reduction in 

error rate when replicate measurements are used to create the hazard map.

Overlain on Fig. 4 are points corresponding to the error rates at the two facilities described 

by Lake et al. (2015). The color of the circle represents the 10% error rate on the same 

scale as used for the contours of the error rates from the simulation. Error rates from the 

ETF are shown in circles, and error rates calculated using data from the PMF are shown in 

squares. Only one measurement per location was used in Fig. 4a. To compare the importance 

of sampling spatial resolution, subsets of the roving monitoring data were used (in each case, 

the CVs remains the same, resulting in vertically aligned points on the plot). Averaging over 

two to three replicate measurements per location (as available) was compared to simulations 

in Fig. 4b, and the influence of sampling resolution was estimated again by using subsets 

of the roving monitoring data. Although the absolute values between the 10% error rates 

estimated from the real-world data sets and the simulated data are not the same, generally 

the trends are similar. As CVs increases, the error rate generally increases. As the spatial 
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resolution is reduced, the error rate increases somewhat. Replicate measurements were also 

found to generally reduce the 10% error rate when hazard maps were produced from both 

real data and simulated data.

Discussion

A priori we expected that the sampling strategy with high spatial resolution and that 

used data from three operators would provide the best estimate of the TWA hazard 

map. Conversely, we expected the sampling strategy using low spatial resolution and 

that used data from a single operator would give the worse comparison with the TWA 

hazard map. The simulation study generally confirmed these results, yet showed that for 

overall map accuracy (as represented by the pseudo − R2 or the error rate), the influence of 

replicate measurements were more important than an increase in sampling spatial resolution. 

Sampling strategies 1 and 2 are at very high spatial resolution requiring substantial resources 

and may represent a number of measurements not feasible in some environments.

Although overall map accuracy should be a goal, it may also be important to practicing IH 

staff to know whether the hazard maps accurately represented ‘hot spots’, locations where 

exposures may be highest. Underestimating peak TWA exposures may lead to a failure to 

act on high exposures. On the other hand, overestimating peak TWA exposures can lead 

to implementation of control strategies that do not result in desired reductions in personal 

exposures. If sampling locations were not near the source location, interpolation methods 

are generally unable to estimate peaks higher than measured intensities. Thus, to accurately 

capture the peak hazard intensities, measurements must be taken in close proximity to 

sources.

Temporal variability, represented in this study by CVs, was a strong determinant of overall 

map accuracy. Estimates of temporal variability, sampling spatial resolutions, and number 

of replicates used for hazard mapping data collection at different facilities were compiled 

from the available literature in Table 2. Temporal CVs values ranged from 0.02 to 0.96 

when static monitoring was conducted (which was rare), indicating that high levels of 

temporal variability impacting the representativeness of hazard maps are likely encountered 

in occupational environments. Sampling spatial resolutions used in previous studies tended 

to be in the range considered in the simulation study (0.004–0.04 sampling locations per 

square meter, assuming a 100 × 100 m facility). One notable exception was Lake et al. 
(2015), where higher spatial resolutions were used for roving monitoring. An important 

limitation of many existing studies is the lack of replicate measurements. Four of the nine 

studies only collected measurements once per location per day.

Recommendations for IHs

The results from this simulation provide important insight that can guide IHs on how to 

design a sampling strategy to improve hazard mapping (Fig. 5). First, we recommend that 

the CVs be determined for the facility. An IH can use a DRI for the hazard of interest 

and leave it for at least 2 h, but preferably for a full work shift, near sources likely to 

have variable emissions. It may be necessary to evaluate the temporal variability in hazard 

intensity near several sources to get a good estimate of the CVs. For CVs > 0.5 (e.g. 
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evaluated in the case with five sources), hazard mapping may not be a good strategy to 

evaluate TWA exposures and personal monitoring should be considered more appropriate 

for exposure assessment. Our simulation suggests that for facilities with temporal variability 

CVs > 0.5, 20% or larger biases in the TWA estimates may be observed throughout the 

facility (Supplementary Fig. S1, available at Annals of Work Exposures and Health online) 

and that pseudo − R2 values tend to be negative, regardless of the number of sources or 

sampling strategy (Fig. 2).

If the CVs is <0.5, hazard mapping using short-duration measurements is a reasonable 

approach and an IH should consider the resources available. Important questions to consider 

are as follows: how many DRIs are available; how many people can contribute to roving 

monitoring data collection; how much time is available; and how large is the facility? 

At facilities with low temporal variability (CVs < 0.1), we observed that differences in 

sampling strategies had little impact on pseudo − R2 or the error rate. However, care should 

be taken to provide adequate spatial resolution around known sources to accurately capture 

the peak intensities. Since sound intensity, like many contaminants, decays following an 

inverse-square law, measures can be substantially underestimated as distance from the 

source increases. If the CVs is >0.1, but <0.5, IHs should ensure that more replicate 

measurements can be collected to counteract increased uncertainty from the high temporal 

variability of sources. Our simulation suggests that for facilities with 0.1 < CVs < 0.5, error 

rates increase sharply and pseudo − R2 values begin to drop, particularly in more complex 

facilities with more than one source and for sampling strategies that only use a single 

measurement per location. Thus, priority should be placed on replicate measurements over 

increased spatial resolution of measurements. To ensure that hazard intensity near sources 

are also representative, we recommend irregular sampling strategies that are less resolved 

away from known sources and more highly resolved near sources. Such strategies are likely 

to maximize resources, ensuring overall map accuracy, as well as information on peak 

intensities, provided that there are resources available to obtain repeated measures at each 

sampling location.

Limitations and future work

By not including internal structures or reflection off surfaces, the spatial dependence in 

these simulations was likely higher than in real facilities and may amplify the conclusion 

that relatively few measurements are required in space. The requirement that the variogram 

model fit to the experimental variogram had an R2 value > 0.3 for Sampling Strategy 1 may 

also have led to simulations with stronger spatial correlation than may be encountered in real 

facilities. Complex facilities with many sources and/or internal structures may require more 

spatial resolution to adequately represent the spatial correlation in the data. We summed 

intensities from different sources according to equation (1), which is appropriate for noise, 

but not applicable for other hazards. Furthermore, we assumed that the intensity at any 

location was in instantaneous steady state with the emissions from the sources, which may 

be poor for agents that are affected by ventilation, such as gases or particles. In the absence 

of ventilation, however, gases and fine-mode particles (with negligible settling and Brownian 

diffusion), like sound intensity, should follow an inverse-square law.
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Our ‘real-world’ data are insufficient to validate simulations for facilities with high temporal 

variability (CVs > 0.5). It is also not clear whether the agreement between the simulation 

and ‘real-world’ data may depend on the hazard type. Additionally, we did not investigate 

how different operator motions might impact our results. The prescribed motion of the 

operators in the simulation may help explain some of the observed differences between the 

real-world and simulated hazard map accuracies. The simulation also did not account for 

ventilation rates in buildings, which can lead to localized hazard intensity gradients away 

from known sources. Future work should address these limitations.

Finally, future work should consider how such simulations or real-world hazard mapping 

data could be used to determine efficient site placement for longer duration sampling 

strategies using static monitors. With the decreasing cost of sensors for various hazards 

available on the market (Koehler and Peters, 2015), long-term monitoring of hazards with 

semi-permanent static monitors will allow for comprehensive exposure assessment. Such 

a comprehensive assessment would account for the spatial and temporal variability in 

exposures over long periods of time, minimizing or eliminating the need for time-intensive 

roving monitoring strategies.

Conclusions

A simulation study was conducted to evaluate the most efficient sampling methodologies 

when using short-duration measurements to produce estimated hazard maps that will 

best represent the TWA hazard map. In general, an increase in the number of replicates 

is preferable to an increase in sampling spatial resolution to improve overall accuracy. 

However, to accurately capture peak exposures, higher spatial resolution near sources 

was needed. We recommend that IHs conduct a preliminary assessment of the temporal 

variability in their workplace and identify variable sources of the hazard and design a 

sampling strategy that offers enough spatial resolution and replicate measures to minimize 

bias between short-duration measurements and the TWA. An irregular grid may provide the 

best solution, giving resolution near sources, and allowing for replicate measurements to be 

completed in a relatively short period of time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example simulated hazard intensities at a theoretical facility with one source (left panels) 

or five sources (right panels). Top panels show the time series of hazard intensities for one 

or five sources over an 8-h work shift. Bottom panels show the TWA hazard maps for the 

facility.
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Figure 2. 

The median pseudo − R2 for the estimated hazard map compared to the TWA hazard map for 

four different sampling strategies: high or low spatial resolution with one or three replicate 

measurements per location, as labeled. The left panel shows all iterations for the case with 

one source, as a function of CVs. The middle panel for the case with three sources, and the 

right panel for the case with five sources. Error bars represent the 25th and 75th percentile of 

pseudo-R2 values and are slightly jittered for clarity.
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Figure 3. 

The median pseudo − R2 for the estimated hazard map and the TWA hazard map for two 

sampling strategies with approximately the same number of measurements, as labeled. The 

left panel shows all iterations for the case with one source, as a function of CVs. The middle 

panel for the case with three sources, and the right panel for the case with five sources. Error 

bars represent the 25th and 75th percentile of pseudo-R2 values and are slightly jittered for 

clarity.
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Figure 4. 
Contour plot of the simulated median 10% error rate using data from a single operator (a) 

or using the data from three operators (b). Overlain are 10% error rates from ETF (circles) 

and PMF (squares) using one measurement per location (a) or two to three measurements 

per location (b).
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Figure 5. 
Flow diagram for conducting hazard mapping.
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Table 1.

Map comparison metrics [median (25th, 75th) quantiles] by sampling strategy averaged over all CVs values 

for the three cases with one, three, or five sources (500 iterations per case).

Number of 
sources

Sampling strategy

1 2 3 4 5 6

High 
resolutiona, 3 
operators (n = 

1323)

High 
resolutiona, 1 
operator {n = 

441)

Mid resolutionb, 
3 operator (n = 

363)

Mid resolutionb,1 
operator (n = 121)

Low resolutionc 
operators (n = 

108)

Low resolutionc 
operator (n = 36)

Pseudo-R2

1 source 0.43 (−0.12,0.81) 0.12 (−0.75,0.68) 0.42 (−0.14, 0.79) 0.13 (−0.79, 0.67) 0.31 (−0.15,0.70) 0.02 (−0.79,0.58)

3 sources 0.52 (−0.01,0.83) 0.13 (−0.70,0.71) 0.53 (0.00,0.81) 0.16 (−0.73, 0.70) 0.36 (−0.10,0.73) 0.00 (−0.66,0.56)

5 sources 0.53 (0.01,0.81) 0.14 (−0.86,0.70) 0.53 (−0.01,0.80) 0.15 (−0.87, 0.69) 0.31 (−0.14,0.71)
−0.04 

(−0.83,0.59)

Error rate (percentage of locations with error > 20%)

1 source 0 (0, 72) 30 (0, 88) 0 (0, 73) 30 (0, 87) 2 (0, 74) 30 (0, 88)

3 sources 0 (0, 3) 1 (0, 47) 0 (0,3) 0 (0,48) 0 (0,12) 4 (0, 50)

5 sources 0 (0, 0) 0 (0,15) 0 (0,0) 0 (0,16) 0 (0,1) 0 (0,18)

Underestimation of peak intensity at source locations (percent)

1 source 8 (3,14) 8 (1,16) 16 (11,26) 17 (10,28) 27 (20, 43) 30 (20, 45)

3 sources 5 (1,11) 5 (0,13) 10 (6,18) 11 (5,21) 19 (12, 28) 19 (11, 32)

5 sources 4 (0, 8) 4 (0,11) 7 (3,12) 8 (3,15) 13 (7, 20) 14 (7, 23)

The total number of measurements included in the sampling strategy is included in each column heading.

a
441 sampled locations in the facility; 0.04 points m−2 assuming the facility is 100 × 100 m.

b
121 sampled locations in the facility; 0.01 points m−2 assuming the facility is 100 × 100 m.

c
36 sampled locations in the facility; 0.004 points m−2 assuming the facility is 100 × 100 m.
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