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Abstract

Hazard mapping is an effective way to depict spatial variability in hazard intensity obtained

with direct-reading instruments on a facility floor plan. However, the extent to which temporal
variability affects map accuracy is unknown, and guidance on sampling strategies to minimize
map bias is lacking. In this study, we evaluated the accuracy of hazard maps produced for
simulated sources and sampling strategies in a hypothetical facility. Hazard maps were produced
from sampled data at high, mid, and low spatial resolution and with and without replicates

and compared to a reference time-weighted average hazard map using several map comparison
metrics. In agreement with ‘real-world’ mapping datasets, the simulation showed that increasing
the number of replicates improved the overall comparability of the hazard map produced from
the sampled data with the time-weighted average hazard map more efficiently than increasing the
sampling spatial resolution. However, if accurately capturing peak exposures near sources is of
interest, increasing the spatial resolution of the measurements, particularly near sources, is needed.
From these results, we formulated guidelines to use the preliminary assessment of the temporal
variability of large and intermittent sources to inform the spatial resolution and need for replicate
measures to minimize the bias in hazard maps.
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Introduction

Occupational hazard maps—depictions of hazard concentration or intensity (hereafter,
‘intensity”) displayed on a two-dimensional floor plan of a facility—can inform decision
making in the control of exposures to ultimately improve worker health (O’Brien, 2003).
Often, the data used to produce these maps are obtained by measuring the intensity of the
hazard over short durations (several minutes or less) with a direct-reading instrument (DRI)
by an operator who follows a predetermined sampling path through the facility, referred to
as ‘roving monitoring’ (Lake et a/., 2015). To mitigate uncertainty introduced from temporal
variability, an entire set of mapping measurements are typically completed within a short
time period (e.g. 1-2 h) with a nominally 1-min sample obtained at each point and ~1 min to
move to the next sampling location. Thus, ~60 points on the path can be measured in 2 h.

Originally developed to document the changes in mass concentration of oil mist over time
in the automotive industry (O’Brien, 2003), mapping has emerged as a way to better
understand hazards in a variety of industries, such as engine machining (Dasch et al.,

2005; Peters et al., 2006), foundries (Heitbrink et al., 2007), restaurants (Park et a/., 2010),
apparel manufacturing (Mosburgh et al., 2011), and plastics manufacturing (Lake et al.,
2015). Moreover, different types of DRIs can be used simultaneously to provide information
on multiple hazards, such as the simultaneous mapping of ventilation parameters (carbon
dioxide, carbon monoxide, and temperature) with dust concentrations (Peters et al., 2012).

Hazard maps are only as reliable as the data that are used to produce them. Koehler

and Volckens (2011) used a small simulation study to show that exposures to workplace
hazards can be mischaracterized due to temporal variability in hazard intensity. Lake ef a/.
(2015) attempted to validate the results of Koehler and Volckens (2011) using noise data
collected in two facilities. In each facility, they measured the spatiotemporal variability of
noise intensity with 15 DRIs at fixed locations referred to as ‘static monitoring’, as well as
roving monitoring by two operators. In agreement with simulations of Koehler and Volckens
(2011), they found that noise intensity maps based on short-duration, roving measurements
provided a poor estimate of time-weighted average (TWA) intensity at facilities with
sources exhibiting high temporal variability. They also found that the temporal variability in
hazard intensity could be mistakenly portrayed as spatial variability, particularly when few
measurements were used for the generation of a map.

Specific guidelines for selecting a sampling strategy for conducting roving monitoring
campaigns that reduce uncertainties in hazard maps are unavailable for the practicing
industrial hygienist (IH). Specifically, guidelines are needed for the number of sampling
locations within a facility and the number of repeated measurements that should be taken at
each sampling location to result in the most representative hazard maps that are aligned with
the goals of the monitoring. Such goals may be to ascertain TWA hazard intensity or peaks
in intensity to target specific areas for the focus of control measures. Ideally, such guidelines
would be tailored for a given workplace based on preliminary measurements of temporal
variability in source intensity that the practicing IH can easily make. Without this type of
guidance, the reliability and comparability of hazard maps is questionable.
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Thus, the objective of this work was to investigate the extent to which the temporal
variability of sources affects the accuracy of hazard maps. We conclude with
recommendations for sampling strategies to reduce the impact of temporal variability on
maps to estimate the TWA intensity.

Simulated hazard maps

Simulated hazard intensity in a facility and TWA hazard map generation—
Simulated hazard intensities were modeled for a theoretical facility following methods
similar to those described in Koehler and Volckens (2011). The simulation consisted of three
cases wherein one, three, or five sources were modeled in a facility—a square room (100
x 100 arbitrary units that can be thought of as meters) with no interior structures. For each
case, 500 iterations were run where each iteration represents intensities modeled over time
and space for an 8-h period (i.e. one work day). For each of the 500 iterations, the source
location(s) were positioned randomly (with one, three, or five sources modeled, depending
on the case). The hazards emanating from these sources (and their relative magnitudes)
were arbitrary, but can be thought of as noise here. The emission rates from each source
were randomly determined, but included temporal correlation. The hazard intensity was
randomly assigned an initial magnitude between 0 and 100 and modeled over time with an
autoregressive AR(1) model (i.e. the intensity at one time step is equal to the intensity at
the previous time step multiplied by a correlation coefficient plus a random fluctuation).
Example hazard intensity time series for an iteration with one source (left panels) and five
sources (right panels) are shown in the top panels of Fig. 1.

Hazard intensity was calculated at each non-source location in the facility (100 x 100 = 10
000 gridded locations spread evenly throughout the facility) during a full workday (a single
iteration encompasses 8 h at 10-s resolution yielding 2880 time steps). We assumed that the
intensity of the hazard was inversely related to the square of distance, which would result in
a drop of 6 intensity units (if the hazard is thought of as noise, dB) as the distance doubled.
Intensities from different sources were combined using the following equation (Peterson,
1980):

@

intensit intensit
Total Intensity = 10 X logm[IOA(m nory,  IemT, )]

10 10

where intensity ,,, ... are the location-specific intensities from source 1, 2, ..., and Total
Intensity is the resulting summed intensity. We also assumed that the intensity at any
location was in instantaneous steady state with the emissions from the sources. This
assumption is reasonable for noise and ionizing radiation, but less so for other agents

(e.g. dust) that take time to transport or diffuse through the space and can be dramatically
influenced by air currents. To further simplify the modeling effort, we assumed that the
hazard propagated equally in all directions and neglected convection, reflection, or refraction
of the hazard.
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The TWA hazard map was constructed by averaging hazard intensities over the 8-h time
period at each of the 10 000 simulated locations in the facility (lower panels, Fig. 1). Since
intensity was calculated at all locations, spatial interpolation was not needed to determine
the TWA hazard map. The TWA hazard map served as the “truth’, and all estimated hazard
maps generated using subsets of the intensities were compared against it for both overall
comparability and peak exposures.

Modeling of roving monitoring and estimated hazard maps—The simulated
intensity data were used to develop ‘sampled’ hazard maps assuming that operators followed
different sampling strategies for roving monitoring. We implemented a regular grid of
sampling locations as being easy to implement by a practicing IH. Sampling locations were
selected to provide good coverage throughout the facility and were held constant for all
iterations, without regard for the location of the sources.

For each iteration, roving monitoring of the hazard at predefined locations was simulated
along a path followed by up to three operators, each with a DRI. The first operator began

in one corner of the room (at a randomly selected time during the first 3 h of the day), and
the 10-s intensity at the first location was sampled. For this analysis, it was assumed that all
hazard intensities were measured without error. This assumption was relaxed for sensitivity
studies described in the Supplementary Material, available at Annals of Work Exposures and
Health online. Then, the operator moved to the next predetermined location, recording the
hazard intensity at the next time step (10 s later), and so on. A second operator began in the
opposite corner of the facility at a randomly selected time during the first 4.5 h of the day
and a third operator began in the same corner as the first operator, but at a randomly selected
time during the first 6.5 h of the day. The times during which each operator could begin
sampling were selected arbitrarily to encourage data collection throughout the day, but more
than one operator could be collecting data simultaneously. The operators sampled at high
spatial resolution for these sampling campaigns (441 locations evenly spread throughout the
facility), so each operator takes 73.8 min to complete the sampling of the entire facility.

From the data sampled by the three operators, we defined six sampling strategies using
subsets of the sampled data: (i) high spatial resolution using data from all three operators
resulting in three repeated measurements at each of 441 sampling locations; (ii) high spatial
resolution with data from the first operator resulting in a single measurement at each of
441 sampling locations; (iii) mid spatial resolution data from three operators resulting in
three repeated measurements at each of 121 sampling locations; (iv) mid spatial resolution
using data from the first operator resulting in a single measurement at each of 121 sampling
locations; (v) low spatial resolution data from three operators resulting in three repeated
measurements at each of 36 sampling locations; and (vi) low spatial resolution using data
from the first operator resulting in a single measurement at each of 36 sampling locations.
The 121 and 36 sampling locations were a subset of the 441 sampled locations evenly
spaced throughout the facility. At the 121 and 36 sampling locations for the mid and low
spatial resolution cases, measurements at those locations were collected at the same time
steps as for the high spatial resolution case, and the temporal lag between locations is
presumed to be the time it would take to move between locations. These strategies allowed
us to evaluate the importance of sampling spatial resolution and replicate measurements
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on sampled map accuracy. The importance of averaging over multiple measurements per
location was evaluated by comparing estimated hazard map accuracy using data only from
the first operator versus averaging over data collected by all three operators for each
location. Sampling strategy pairs 2 and 3 and 4 and 5 result in approximately the same
number of measurements used for mapping.

Estimated hazard maps were produced from the sampled intensities using ordinary kriging.
Kriging is a geostatistical method for optimal interpolation and has been discussed for

the purpose of hazard mapping previously (Koehler and Volckens, 2011; Koehler and
Peters, 2013; Lake et al., 2015). Because it would be impractical to manually examine

the variogram used for kriging at every iteration, we used 10 bins (as determined by
evaluating a subset of maps) and an exponential variogram, as recommended by Koehler

and Peters (2013). Additionally, the R value of the variogram model fit to the experimental

variogram was monitored for each iteration and sampling strategy. If the R value was <0.3
for Sampling Strategy 1 with 441 locations and 3 replicate measurements per location, then
that iteration was discarded and the iteration was repeated. For each iteration, an estimated
hazard map was generated using data from the six sampling strategies via kriging, and
intensities were estimated at all 100 x 100 locations for comparison with the TWA hazard
intensities.

Comparison of estimated hazard maps to the TWA hazard map—Differences
between the estimated hazard maps (for each of the four sampling strategies) and the TWA
hazard map were quantified using three metrics. First, a Pseudo — R> was calculated as one
minus the mean absolute difference in hazard intensity between the estimated hazard map
and the TWA hazard map at all 200 x 100 locations divided by the mean absolute difference
between the TWA hazard map values and the mean TWA intensity over all locations:

Z,N: \ | Intensityyyige, ; — Intensityrwa ; |
N 2
VTWA

Pseudo — R> =1 —

where Intensity .. ; IS the intensity estimated from the kriged map at location i, Intensityrwa ;
is the intensity from the TWA hazard map at location i, and N is the total number of
locations. Vo w, is @ measure of the mean variation in the TWA hazard map:

Y. |Intensityxy, , — Intensity |
N

©)

Viwa =

where Intensity is the mean intensity over all locations and other variables are as defined

for equation (2). The pseudo — R? iis an estimator of overall difference between maps, and

a larger value indicates a better agreement between the sampled and TWA hazard maps.
The normalization by the mean absolute difference in the denominator allows comparison
between cases with one, three, or five sources. Second, the error rate was calculated as the
fraction of locations for which the values from the estimated hazard map differed from the
TWA hazard map by more than a threshold percentage. In this simulation, we considered 5,
10, 20, and 50% threshold values. The error rate is an indication of the proportion of the
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facility for which the short-duration sampled data provided a poor estimate of the TWA.
Third, the percent error between the estimated hazard map estimate of intensity and the
TWA intensity at each source location was calculated. This metric provides an indicator
of how well the estimated hazard map represents the peak TWA intensities near source
locations.

We also wish to evaluate how map accuracy varies at facilities with different levels of
temporal variability in hazard intensity. For each case (one, three, or five sources), the
temporal variability was different for each source and each iteration. Following Lake ef
al. (2015), the temporal variability was characterized by the coefficient of variation of the
intensity for the source with the highest temporal variability (hereafter, CV,). Although
temporal variability can be expressed in a variety of ways, ultimately, we chose CV4
because a practicing IH can potentially measure it directly to inform the sampling strategy
prior to roving monitoring (see Discussion for more details). The CVg was calculated for
each iteration (for cases with three or five sources, the maximum CV value was used),
and CV; values for each case and sampling strategy were sorted into seven bins with an
approximately equal number of iterations per bin.

Comparison of accuracy in simulated maps to real-world maps—We compared
the error rates from the simulations described above to those measured in two real-world
facilities, an engine testing facility (ETF) and a plastics-manufacturing facility (PMF). As
reported by Lake et al. (2015), each facility had one predominant noise source. Noise
intensities were measured at high spatial (~0.1 measurements m~2 at the ETF and ~0.2
measurements m~2 at the PMF) and temporal resolution (noise intensities averaged to 10-s
intervals to match the simulation) in each facility by static and roving monitoring. The noise
intensity data from the 18 static monitors were used to generate TWA hazard maps that

we used as ‘truth’, although we acknowledge that the “true TWA’ cannot be known in any
real-world setting due to limited resources. The CV; for the ETF and PMF were estimated
as the largest CV value among the static monitors using the noise intensity data averaged to
10-s resolution.

Hazard maps were estimated first using the full spatial resolution of the roving monitoring
data (28 or 74 locations at the ETF; 388-394 locations at the PMF, depending on sampling
day). To evaluate the influence of spatial sampling resolution on the error rate, subsets of
the roving monitoring data from a single operator were randomly selected (varying from full
resolution of 0.1 or 0.2 measurements m~2 at the ETF and PMF, respectively, down to 0.01
measurements m~2; 5, 10, 20, 35, or 50 locations at the ETF on Day 1; 5, 10, or 20 locations
at the ETF on Day 2; and 20, 50, 100, 200, or 300 locations at the PMF on Days 1-3).

For each spatial resolution and at each facility, estimated hazard maps were produced from
randomly selected subsets of data 100 times and the error rates between the sampled and
TWA hazard maps were calculated. To evaluate the influence of replicate measurements per
location, estimated hazard maps were generated using data from a single operator or using
data from two or three replicate measurements per roving monitoring location, as available.
The median error rate was reported among the 100 replicate error rates.
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Given the high spatial resolutions available from the PMF and ETF datasets, higher spatial
resolution sampling strategies were also added to the previously described simulation.
Hazard concentrations were generated as described above, but the sampling strategies were
altered to produce 2601, 1301, 651, 434, 326, 121, 61, or 36 sampling locations in the 100 x
100 facility. We only considered the case with one source and sampling conducted with one
or three operators, as described for the simulation above and to match the conditions in the
field sites. Because increased spatial resolution requires additional time to conduct simulated
roving monitoring throughout the facility, the three passes through the facility were each
started at a random time in the first 45 min of the day. At the highest spatial resolution,
433.5 min were required to complete roving sampling and all reduced spatial resolutions are
subsets of highest resolution case, as described above. To compare to the real-world data,
we assumed that the square facility from the simulation was 100 x 100 m to determine the
number of locations per square meter.

All simulations and calculations were completed in Matlab version R2013a (Mathworks,
Natick, MA, USA). Code used to produce the simulation is included in the Supplementary
Material, available at Annals of Work Exposures and Health online.

Map comparability metrics were compiled for the cases with one, three, and five sources and
for the six sampling strategies in Table 1 (median and 25th to 75th percentile for all 500
iterations, without regard for temporal variability, are shown). The differences in values of
the map comparison metrics among the different iterations were substantial for all sampling
strategies, map comparison metrics, and number of sources.

Map comparability was first evaluated using a pseudo — R, which is analogous to the
traditional R%. The pseudo — R* can be 1 or smaller (including negative values) with values
closer to 1 indicating good agreement between the estimated hazard map and the TWA
hazard map and smaller values indicating poorer agreement. The pseudo — R? did not change
substantially as the number of sources increased (Table 1). There was little difference
between high-, mid- and low-resolution sampling strategies, but the median pseudo — R> was
increased by approximately a factor of 3-4 when using data from three operators compared
to just the data from the first operator. The interquartile range of pseudo — R* was also

larger when only data from a single operator was used for the mapping compared to three
operators.

Similar to the pseudo — R, the 20% error rates (i.e. the fraction of locations where the
intensity predicted with the estimated hazard map was at least 20% different than the

TWA hazard map; smaller values indicate better agreement between the sampled and TWA
hazard maps) were similar for high and low spatial resolution sampling strategies, but the
use of data from three operators, as opposed to a single operator, substantially reduced

the error rate. When using data from three operators, the median 20% error rate was <2

for high, mid, and low sampling spatial resolutions. Additionally, the interquartile ranges
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were higher when only data from a single operator was used compared to using data from
three operators. However, in contrast to pseudo — R2, the error rates were generally highest
for the case with only one source in the facility and the interquartile ranges were larger,
compared to the case with five sources when sampling with one operator at high or low
spatial resolution. This finding suggests that for a facility with more sources, although the
overall map accuracy throughout the facility is similar, fewer locations have errors exceeding
the 20% threshold.

Lastly, we assessed map similarity by calculating the underestimation of the peak as

the percentage error of the intensity at each source location from the estimated hazard

map and the TWA hazard map. It was more likely that hazard intensities at the source
locations were underestimated and percent underestimations are shown in Table 1. To reduce
underestimation of source (i.e. peak) intensity, higher sampling spatial resolution was more
important than using data from three operators. This was likely because using a higher
sampling spatial resolution meant that a sample was more likely to be taken close to the
source location. The underestimation was approximately a factor of 3 worse when low
spatial resolution sampling strategies were used compared to the high spatial resolution
sampling strategies. Underestimation was also larger for cases with one source compared to
three or five sources. Minimal differences in peak intensity were observed when using data
from one or three operators.

We also found that the map accuracy was strongly impacted by the temporal variability
within the facility. Temporal variability will depend on the processes at a facility, and likely
by hazard type. The pseudo R?, as a function of the CV, for four of the sampling strategies
(high and low spatial resolution) are shown in Fig. 2. When viewed in this way, it is

clear that generating estimated hazard maps using the data from three operators compared
to a single operator was far more effective at increasing the pseudo — R? than increasing

the sampling spatial resolution. In fact it is hard to distinguish the difference in median
pseudo — R?, as a function of CVg, between the low and high spatial resolution cases (dashed
and solid lines fall nearly on top of one another, especially at higher CV¢ values). The
influence of the temporal variability in the facility resulted in decreasing pseudo — R with

increasing CVs. The variability in pseudo — R> among different iterations generally increased
as CVg increased, was larger when only data from a single operator was used for mapping
(gray lines), and was higher with a smaller number of sources in the facility. Interestingly,
with more sources, the impact of the CVg is smaller than for only a single source in the
facility. The reduced impact of CV on the pseudo — R> may result from smoother map
surfaces when more sources are present. For each of the 500 iterations within the cases
with one or five sources, we calculated a normalized TWA concentration values in which
the TWA value at each location was divided by the mean TWA concentration over the
entire map (i.e. a normalized TWA concentration value of 1 indicates that the concentration
was equal to the map mean value; values that diverge from 1 indicate that higher map
variability). Compiled normalized TWA concentrations over all 10 000 locations for 500
iterations resulted in a broader distribution of values for the case with one source than the
case with five sources. This suggests that smoother maps result in improved map accuracy.
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Sampling strategy pairs 2 and 3 and 4 and 5 result in approximately the same number of
measurements used for mapping and allow a more direct comparison of whether resources
are better utilized when sampling a single time at more locations or three times at fewer
locations. The pseudo — R?, as a function of CVg, is shown for Sampling Strategies 4 and

5 in Fig. 3. At facilities with low temporal variability, the difference between the two
sampling strategies is minimal; however, as the temporal variability increased, the quality
of the maps based on data collected at the mid spatial resolution with only a single
measurement per location deteriorated more quickly than maps made with data collected
at low spatial resolution with three replicate measurements per location. Additionally, the
variability among the iterations was higher for the mid spatial resolution sampling strategy
with only one measurement than the low spatial resolution sampling strategy with three
replicate measurements per location.

Results for the 20% error rate are qualitatively similar as for the pseudo — R%; lower spatial
resolution with replicate measures was a better use of resources than increased spatial
resolution without replicate measures. Intensity underestimation at source locations was only
a weak function of CVg, but the variability in the underestimation of the peak tended to
increase with temporal variability and was stronger for the case with one source. Details

on the 20% error rate and peak underestimation as a function of CV can be found in the
Supplementary Material, available at Annals of Work Exposures and Health online.

Comparison of accuracy in simulated maps to real-world maps

Next, we compared the simulation results to map accuracy from two real-world hazard
mapping data sets (Lake ef a/., 2015). From the simulation, the median 10% error rate (i.e.
the percentage of locations with predicted values from the estimated hazard map that were
>10% different than the TWA hazard map) at seven levels of spatial resolution and as a
function of CV was plotted as contours in Fig. 4, with darker colors indicating higher error
rates. Using data from a single operator resulted in error rates plotted in Fig. 4a and using
data from three operators resulted in error rates plotted in Fig. 4b. The stronger influence of
CV, compared to sampling resolution on the error rate is apparent in both Fig. 4a and Fig.
4b. Furthermore, the values in Fig. 4a are larger than in Fig. 4b, showing the reduction in
error rate when replicate measurements are used to create the hazard map.

Overlain on Fig. 4 are points corresponding to the error rates at the two facilities described
by Lake et al. (2015). The color of the circle represents the 10% error rate on the same

scale as used for the contours of the error rates from the simulation. Error rates from the
ETF are shown in circles, and error rates calculated using data from the PMF are shown in
squares. Only one measurement per location was used in Fig. 4a. To compare the importance
of sampling spatial resolution, subsets of the roving monitoring data were used (in each case,
the CV, remains the same, resulting in vertically aligned points on the plot). Averaging over
two to three replicate measurements per location (as available) was compared to simulations
in Fig. 4b, and the influence of sampling resolution was estimated again by using subsets

of the roving monitoring data. Although the absolute values between the 10% error rates
estimated from the real-world data sets and the simulated data are not the same, generally
the trends are similar. As CVg increases, the error rate generally increases. As the spatial
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resolution is reduced, the error rate increases somewhat. Replicate measurements were also
found to generally reduce the 10% error rate when hazard maps were produced from both
real data and simulated data.

Discussion

A prioriwe expected that the sampling strategy with high spatial resolution and that

used data from three operators would provide the best estimate of the TWA hazard

map. Conversely, we expected the sampling strategy using low spatial resolution and

that used data from a single operator would give the worse comparison with the TWA
hazard map. The simulation study generally confirmed these results, yet showed that for
overall map accuracy (as represented by the pseudo — R? or the error rate), the influence of
replicate measurements were more important than an increase in sampling spatial resolution.
Sampling strategies 1 and 2 are at very high spatial resolution requiring substantial resources
and may represent a number of measurements not feasible in some environments.

Although overall map accuracy should be a goal, it may also be important to practicing IH
staff to know whether the hazard maps accurately represented ‘hot spots’, locations where
exposures may be highest. Underestimating peak TWA exposures may lead to a failure to
act on high exposures. On the other hand, overestimating peak TWA exposures can lead

to implementation of control strategies that do not result in desired reductions in personal
exposures. If sampling locations were not near the source location, interpolation methods
are generally unable to estimate peaks higher than measured intensities. Thus, to accurately
capture the peak hazard intensities, measurements must be taken in close proximity to
sources.

Temporal variability, represented in this study by CVg, was a strong determinant of overall
map accuracy. Estimates of temporal variability, sampling spatial resolutions, and number
of replicates used for hazard mapping data collection at different facilities were compiled
from the available literature in Table 2. Temporal CV4 values ranged from 0.02 to 0.96
when static monitoring was conducted (which was rare), indicating that high levels of
temporal variability impacting the representativeness of hazard maps are likely encountered
in occupational environments. Sampling spatial resolutions used in previous studies tended
to be in the range considered in the simulation study (0.004-0.04 sampling locations per
square meter, assuming a 100 x 100 m facility). One notable exception was Lake ef al.
(2015), where higher spatial resolutions were used for roving monitoring. An important
limitation of many existing studies is the lack of replicate measurements. Four of the nine
studies only collected measurements once per location per day.

Recommendations for IHs

The results from this simulation provide important insight that can guide IHs on how to
design a sampling strategy to improve hazard mapping (Fig. 5). First, we recommend that
the CV, be determined for the facility. An IH can use a DRI for the hazard of interest

and leave it for at least 2 h, but preferably for a full work shift, near sources likely to

have variable emissions. It may be necessary to evaluate the temporal variability in hazard
intensity near several sources to get a good estimate of the CVg. For CVg > 0.5 (e.g.
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evaluated in the case with five sources), hazard mapping may not be a good strategy to
evaluate TWA exposures and personal monitoring should be considered more appropriate
for exposure assessment. Our simulation suggests that for facilities with temporal variability
CV, > 0.5, 20% or larger biases in the TWA estimates may be observed throughout the
facility (Supplementary Fig. S1, available at Annals of Work Exposures and Health online)
and that pseudo — R? values tend to be negative, regardless of the number of sources or
sampling strategy (Fig. 2).

If the CV is <0.5, hazard mapping using short-duration measurements is a reasonable
approach and an IH should consider the resources available. Important questions to consider
are as follows: how many DRIs are available; how many people can contribute to roving
monitoring data collection; how much time is available; and how large is the facility?

At facilities with low temporal variability (CVg < 0.1), we observed that differences in
sampling strategies had little impact on pseudo — R” or the error rate. However, care should
be taken to provide adequate spatial resolution around known sources to accurately capture
the peak intensities. Since sound intensity, like many contaminants, decays following an
inverse-square law, measures can be substantially underestimated as distance from the
source increases. If the CVg is >0.1, but <0.5, IHs should ensure that more replicate
measurements can be collected to counteract increased uncertainty from the high temporal
variability of sources. Our simulation suggests that for facilities with 0.1 < CV4 < 0.5, error
rates increase sharply and pseudo — R? values begin to drop, particularly in more complex
facilities with more than one source and for sampling strategies that only use a single
measurement per location. Thus, priority should be placed on replicate measurements over
increased spatial resolution of measurements. To ensure that hazard intensity near sources
are also representative, we recommend irregular sampling strategies that are less resolved
away from known sources and more highly resolved near sources. Such strategies are likely
to maximize resources, ensuring overall map accuracy, as well as information on peak
intensities, provided that there are resources available to obtain repeated measures at each
sampling location.

Limitations and future work

By not including internal structures or reflection off surfaces, the spatial dependence in
these simulations was likely higher than in real facilities and may amplify the conclusion
that relatively few measurements are required in space. The requirement that the variogram
model fit to the experimental variogram had an R” value > 0.3 for Sampling Strategy 1 may
also have led to simulations with stronger spatial correlation than may be encountered in real
facilities. Complex facilities with many sources and/or internal structures may require more
spatial resolution to adequately represent the spatial correlation in the data. We summed
intensities from different sources according to equation (1), which is appropriate for noise,
but not applicable for other hazards. Furthermore, we assumed that the intensity at any
location was in instantaneous steady state with the emissions from the sources, which may
be poor for agents that are affected by ventilation, such as gases or particles. In the absence
of ventilation, however, gases and fine-mode particles (with negligible settling and Brownian
diffusion), like sound intensity, should follow an inverse-square law.
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Our ‘real-world’ data are insufficient to validate simulations for facilities with high temporal
variability (CVs > 0.5). It is also not clear whether the agreement between the simulation
and ‘real-world’ data may depend on the hazard type. Additionally, we did not investigate
how different operator motions might impact our results. The prescribed motion of the
operators in the simulation may help explain some of the observed differences between the
real-world and simulated hazard map accuracies. The simulation also did not account for
ventilation rates in buildings, which can lead to localized hazard intensity gradients away
from known sources. Future work should address these limitations.

Finally, future work should consider how such simulations or real-world hazard mapping
data could be used to determine efficient site placement for longer duration sampling
strategies using static monitors. With the decreasing cost of sensors for various hazards
available on the market (Koehler and Peters, 2015), long-term monitoring of hazards with
semi-permanent static monitors will allow for comprehensive exposure assessment. Such
a comprehensive assessment would account for the spatial and temporal variability in
exposures over long periods of time, minimizing or eliminating the need for time-intensive
roving monitoring strategies.

Conclusions

A simulation study was conducted to evaluate the most efficient sampling methodologies
when using short-duration measurements to produce estimated hazard maps that will

best represent the TWA hazard map. In general, an increase in the number of replicates

is preferable to an increase in sampling spatial resolution to improve overall accuracy.
However, to accurately capture peak exposures, higher spatial resolution near sources

was needed. We recommend that IHs conduct a preliminary assessment of the temporal
variability in their workplace and identify variable sources of the hazard and design a
sampling strategy that offers enough spatial resolution and replicate measures to minimize
bias between short-duration measurements and the TWA. An irregular grid may provide the
best solution, giving resolution near sources, and allowing for replicate measurements to be
completed in a relatively short period of time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Example simulated hazard intensities at a theoretical facility with one source (left panels)
or five sources (right panels). Top panels show the time series of hazard intensities for one
or five sources over an 8-h work shift. Bottom panels show the TWA hazard maps for the

facility.
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Figure 2.

The median pseudo — R? for the estimated hazard map compared to the TWA hazard map for
four different sampling strategies: high or low spatial resolution with one or three replicate
measurements per location, as labeled. The left panel shows all iterations for the case with
one source, as a function of CVs. The middle panel for the case with three sources, and the
right panel for the case with five sources. Error bars represent the 25th and 75th percentile of
pseudo- A2 values and are slightly jittered for clarity.
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Figure 3.

The median pseudo — R? for the estimated hazard map and the TWA hazard map for two
sampling strategies with approximately the same number of measurements, as labeled. The
left panel shows all iterations for the case with one source, as a function of CVg. The middle
panel for the case with three sources, and the right panel for the case with five sources. Error
bars represent the 25th and 75th percentile of pseudo- /2 values and are slightly jittered for

clarity.
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Contour plot of the simulated median 10% error rate using data from a single operator (a)
or using the data from three operators (b). Overlain are 10% error rates from ETF (circles)
and PMF (squares) using one measurement per location (a) or two to three measurements

per location (b).
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Flow diagram for conducting hazard mapping.
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Map comparison metrics [median (25th, 75th) quantiles] by sampling strategy averaged over all CV values
for the three cases with one, three, or five sources (500 iterations per case).

Sampling strategy

1

2

3

4

High
resolution?, 3

High
resolution?, 1

Mid resolutionb,
3 operator (n =

Mid resolutionb,l

Low resolution®
operators (n =

Low resolution®

Number of operators (n = operator {n = 363) operator (n =121) 108) operator (n = 36)
sources 1323) 441)
Pseudo- R?
1 source 0.43(-0.12,0.81) 0.12(-0.75,0.68) 0.42(-0.14,0.79)  0.13(-0.79,0.67)  0.31(-0.15,0.70)  0.02 (-0.79,0.58)
3 sources 0.52 (-0.01,0.83)  0.13(-0.70,0.71)  0.53(0.00,0.81) 0.16 (-0.73,0.70)  0.36 (-0.10,0.73)  0.00 (-0.66,0.56)
-0.04
5 sources 0.53(0.01,0.81) 0.14 (-0.86,0.70)  0.53 (-0.01,0.80)  0.15(-0.87,0.69)  0.31(-0.14,0.71) (-0.83,0.59)
Error rate (percentage of locations with error > 20%)
1 source 0(0,72) 30 (0, 88) 0(0, 73) 30 (0, 87) 2(0,74) 30 (0, 88)
3 sources 0(0,3) 1(0, 47) 0(0,3) 0(0,48) 0(0,12) 4 (0, 50)
5 sources 0(0, 0) 0(0,15) 0(0,0) 0(0,16) 0(0,1) 0(0,18)
Underestimation of peak intensity at source locations (percent)
1 source 8(3,14) 8(1,16) 16 (11,26) 17 (10,28) 27 (20, 43) 30 (20, 45)
3 sources 5(1,11) 5(0,13) 10 (6,18) 11 (5,21) 19 (12, 28) 19 (11, 32)
5 sources 4(0,8) 4(0,11) 7(3,12) 8(3,15) 13 (7, 20) 14 (7, 23)

The total number of measurements included in the sampling strategy is included in each column heading.

5441 sampled locations in the facility; 0.04 points m~2 assuming the facility is 100 x 100 m.

b121 sampled locations in the facility; 0.01 points m~2 assuming the facility is 100 x 100 m.

036 sampled locations in the facility; 0.004 points m=2 assuming the facility is 100 x 100 m.
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