SUPPLEMENTARY MATERIALS
METHODS
Executing the Huff model at the census tract level 
Census tracts are the smallest administrative unit in terms of area, so results were spatially precise. Census tracts could also be aggregated to corresponding counties. A spatial dataset of all (~74,000) census tracts within the United States was obtained from the United States Census Bureau (2016).

Airport locations and representation of attractiveness
We used outbound travel volume rather than inbound or total volume to represent airport attractiveness because this is the most direct measure of the tendency of an individual living at a particular geography to be attracted to an airport and use that airport to fly to a destination. This approach assumes that an individual will use the same airport they used to fly outbound to fly inbound when they return home. 

While IATA provides airport codes to uniquely identify each airport, they do not provide accurate geographic locations for all airports. A dataset from Geonames (2018) was used to associate each airport identified in the IATA dataset with more accurate latitude and longitude coordinates. 

Miami International Airport (MIA)
Miami International Airport (MIA) is located in Miami-Dade County, where 13% of the population of Florida resides. It is the main airport in South Florida for international flights and is one of the largest airline hubs in the United States. In 2016, 46% of passengers traveling internationally from Florida departed from MIA (IATA, 2019).

Executing the Huff model at ZIP code level for MDT test case
Five-digit ZIP code boundaries were obtained from the United States Census Bureau (2015). Although we retrieved boundaries for the year 2000 to be consistent with the comparison study, there appeared to be some inconsistencies between our dataset and that used by Fuellhart (2007). However, they were deemed similar enough to still provide a meaningful comparison. Total population by five-digit ZIP code was obtained through the 2000 census (United States Census Bureau, 2000), to be comparable with the MDT sample that was taken in 2001. 

Raw Huff model results would represent probability to use MDT by ZIP code area, but the sample provided by Fuellhart represented proportion of total MDT users by ZIP code area. The following equation was applied to raw Huff model results to calculate the estimated proportion of MDT users per ZIP code area: 


Where Kij is the proportion of airport j users located at i, Pij the probability of an individual located at ZIP code i choosing airport j, and Q is the total population of ZIP code i.


DISCUSSION
Expected differences between the MDT observed data and modelled results
Comparison with observational data on MDT travellers provided validation for our model. We expected differences between our modelled results and the observational data for two reasons. First, Fuellhart’s sample likely underestimated the proportion of airport users from ZIP code areas close to the airport. These users would have access to other means of transportation to the airport such as taxi or public transportation, and therefore would be less likely to park at the airport. Second, the Huff model assumes that the entire population has an equal opportunity to travel. This is not representative of the reality in which populations of high socio-economic status likely have more opportunity to travel, compared to those of lower socio-economic status. While not reflected in our model, this difference in opportunity to travel is likely reflected in the observational data. 

Primary Statistical Areas (PSAs) as a proxy for airport catchment areas
[bookmark: _GoBack]Wittman (2014) proposed using a simplistic method to define airport catchment areas – using Primary Statistical Areas (PSAs) from the United States Census Bureau as a proxy. He argues that defining catchment areas “requires some degree of local knowledge of the cultural and geographic boundaries of each metropolitan region”. Applying local knowledge within an entire region or country would not be feasible in most cases. Using PSAs to define catchment areas bypasses this intensive work, since the Census Bureau already divides the country into PSAs that are associated with a variety of census data tailored to each region (Wittman, 2014). Wittman indicated that using PSAs as a proxy for airport catchment areas has many advantages, including: 1) districts are defined consistently by a central authority, removing arbitrary judgement, 2) local knowledge is used to define districts, 3) PSAs can cross political boundaries, and 4) using a pre-defined land cover helps avoid the Modifiable Areal Unit Problem (MAUP) – a result of analytical bias when choosing an arbitrary geographic unit for analysis (Wittman, 2014). PSA boundaries are generic and were not created specifically to represent airport catchment areas. 
 Supplementary Figure 1: Huff model results for MDT with ‘Harrisburg-York-Lebanon’ PSA boundary overlaid. (A) Huff model results represent probability to use MDT by census tract. (B) Huff model results transformed to represent proportion of total MDT users by census tract.
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