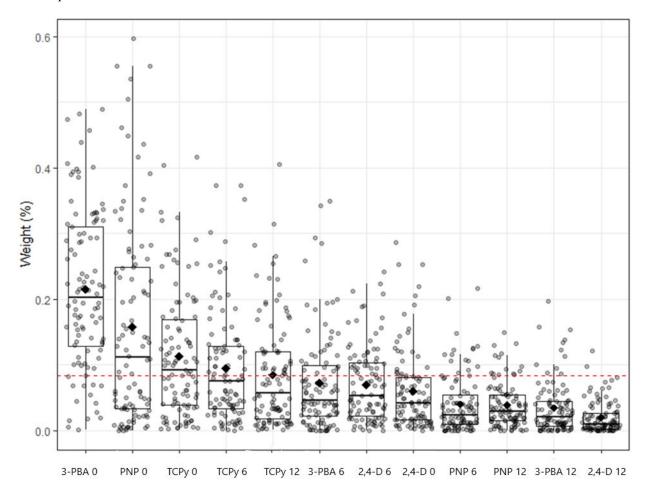
Supplementary Tables

S1. Median concentrations of pesticides biomarkers (µg/g creatinine) (N=449) in 7–12 year-old Green Housing Study children (N=162) compared to NHANES children 6-11 years

	Median (95% CI)									
	Boston (N=136)	Cincinnati (N=110)	New Orleans (N=203)	All sites (N=449)	NHANES 2013-2014					
TCPy*	1.24 (1.05-1.42)**	1.54 (1.27-1.80)	1.20 (0.99-1.41)**	1.28 (1.16-1.40)**	1.77 (1.49-1.95) ^a					
PNP*	0.97 (0.86-1.08)	0.82 (0.66-0.97)**	0.70 (0.63-0.77)**	0.82 (0.75-0.89)**	1.08 (.93-1.30)					
3-PBA*	0.37 (0.26-0.48)**	0.95 (0.71 -1.19)	0.65 (0.53-0.78)**	0.64 (0.55-0.73)**	0.97 (.73-1.27)					
2,4-D*	0.19 (0.14-0.25)**	0.21 (0.13-0.30)**	0.32 (0.29-0.36)**	0.28 (0.25-0.30)**	0.50 (0.42-0.66)					

* differences between sites significant (p<0.05 Kruskal Wallis Test) ** significantly different from NHANES concentration (p<0.05 Sign Test)

a. Data from NHANES 2009-2010


IMPY, trans-DCCA, and 4-F3PBA concentrations were below LOD for all sites and NHANES N= 386 for TCPy; N=411 for PNP; N=408 for 3-PBA ; N=421 for 2,4-D

S2. Bivariate associati	ons bet	ween co	ovariate	es and a	sthma out	tcomes						
	Asthma Attack (no.)					HCU	(Y v N))	FeNO (ln)			
	β 95% CI p		OR	95%	6 CI	p	β	95%	6 CI	р		
Sex				0.59				0.45				0.08
Male	-0.14	-0.64	0.36	0.59	0.7	0.27	1.78		0.18	-0.01	0.38	0.07
Female												
Race/Ethnicity				0.78				0.96				0.01
Black/AA	-0.09	-0.76	0.57		1.03	0.31	3.43		-0.33	-0.57	-0.10	
Other												
BMI				0.36				0.03				0.89
Underweight	1.33	0.70	1.96		0.35	0.04	2.88		-0.02	-0.33	0.27	
Healthy												
Overweight	-0.16	-0.49	0.17		0.3	0.06	1.38		-0.06	-0.34	0.21	
Obese	-0.03	-0.60	0.54		0.11	0.01	0.87		-0.10	-0.38	0.17	
Annual HH Income				0.23				-				0.06
<\$25,000	0.53	-0.01	1.06						-0.48	-0.93	-0.03	
≥\$25,000												
Caregiver Education				0.25				0.76				0.98
High School	-0.31	-0.96	0.33		0.84	0.26	2.73		-0.02	-0.26	0.21	
< High School	-0.49	-0.98	0.002		1.31	0.42	4.1		0.002	-0.26	0.27	
> High School												
Daily Medication Use				0.01*				<0.001				0.36
Yes	0.71	0.32	1.10		14.49	6.24	33.64	0	0.10	-0.12	0.34	
No												
Sensitization												
Dog	0.17	-0.43	0.76	0.61	1.46	0.54	3.94	0.48	0.28	0.06	0.51	0.01
Dust mite (Der f)	0.52	0.05	0.98	0.09	1.79	0.71	4.52	0.23	0.27	0.07	0.47	<0.01
Dust mite (Der p)	0.45	0.02	0.94	0.09	2.06	0.82	5.17	0.15	0.41	0.21	0.60	<.001
HDM	0.45	-0.01	0.90	0.11	1.94	0.76	4.96	0.18	0.36	0.16	0.55	<.001
Cockroach	0.48	-0.03	0.99	0.13	1.84	0.72	4.74	0.23	0.19	-0.01	0.40	0.06
Cat	0.4	-0.24	1.03	0.31	1.22	0.41	3.62	0.74	0.36	0.11	0.61	<.001
Mouse	-0.02	-0.49	0.46	0.94	2.43	0.82	7.15	0.21	0.26	-0.06	0.59	0.12
Site				0.69				0.28				<.0001
Cincinnati	-0.26	-0.76	0.25		1.74	0.57	5.37		-0.28	-0.57	0.01	
New Orleans	-0.16	-0.88	0.55		0.67	0.21	2.11		-0.66	-0.89	-0.43	
Boston												
Season				0.37				0.17				0.13
Spring		-0.58	0.71		0.28	0.1	0.82		0.01	-0.20	0.23	
Summer	0.34	-0.01	0.69		0.49	0.17	1.39		0.15	-0.06	0.38	
Fall		-0.63	0.54		0.59	0.23	1.51		0.20	-0.02	0.43	
Winter												
Age	-0.14	-0.26	-0.01	0.09	0.81	0.63	1.04	0.09	0.11	0.05	0.16	<.001

PM _{2.5}	-2x10 ⁻³	-0.01	0.002	0.32		1.00	0.99	1.01	0.93	0.0003	-0.002	0.003	0.83
Cotinine	-2x10 ⁻³	-0.01	0.002	0.26		1.00	0.99	1.01	0.33	0.001	-0.001	0.02	0.41
* Daily medication use was not included in final models of asthma attacks due to being associated with HDM Der f = <i>Dermatophagoides farinae</i> , Der p = <i>Dermatophagoides pteronyssinus</i> HDM : either house dust mite AA=African American													

Supplementary figures

Figure S1. Adjusted weights of each metabolite at each time point for asthma attacks of 100 repeated hold out samples

TCPy: 3,5,6-trichloro-2-pyridinol (TCPy)

2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPY)

para-nitrophenol (PNP)

3-phenoxybenzoic acid (3-PBA)

4-fluoro-3-phenoxybenzoic acid (4F-3PBA)

trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic (trans-DCCA)

2,4-dichlorophenoxyacetic acid (2,4-D)

0: Month 0 (baseline) 6: Month 6 12: Month 12

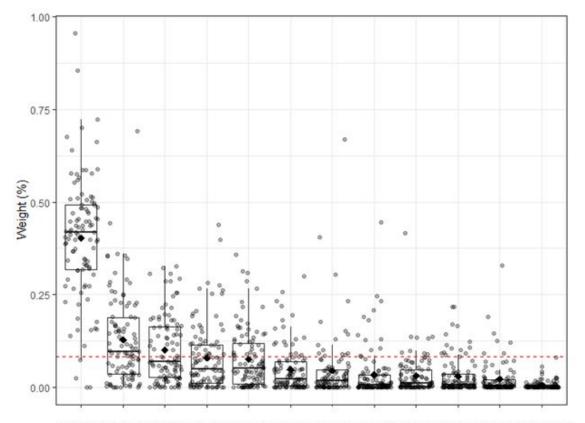


Figure S2. Adjusted weights of each metabolite at each time point for Health Care Utilization of 100 repeated hold out samples

3-PBA 0 2,4-D 6 PNP 0 2,4-D 12 2,4-D 0 TCPy 12 3-PBA 12 PNP 6 TCPy 6 TCPy 0 PNP 12 3-PBA 6

TCPy: 3,5,6-trichloro-2-pyridinol (TCPy)
2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPY) *para*-nitrophenol (PNP)
3-phenoxybenzoic acid (3-PBA)
4-fluoro-3-phenoxybenzoic acid (4F-3PBA) *trans*-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic (*trans*-DCCA)
2,4-dichlorophenoxyacetic acid (2,4-D)

0: Month 0 (baseline) 6: Month 6 12: Month 12

SPRINGER NATURE

Corresponding Author name: _____

Manuscript Number: _____

Reporting Checklist

This checklist is used to ensure the quality, transparency, and reproducibility of published results. We require authors attest that these components have been considered and addressed.

Exposure Assessment Guiding Principle	Yes/No/Not Applicable
Has the method to estimate exposure been described clearly?	
Has the exposure assessment method been validated/evaluated as a proxy for exposure and is its validity or agreement with other methods described?	
Is the time period over which the exposure assessment method is considered to be a proxy for exposure appropriate for the research question?	
If exposure is modeled or measured, were all critical potential routes and sources of exposure considered?	
If exposure is modeled, how does it vary over space and time and are necessary historical data incorporated?	
If biomarkers are used as indicators of exposure, could the biomarker measurement have been affected by the outcome (i.e., reverse causality)?	
Are the strengths and weaknesses of the exposure approach detailed and discussed?	