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Abstract

BACKGROUND: Low-cost sensor networks for monitoring air pollution are an effective tool 

for expanding spatial resolution beyond the capabilities of existing state and federal reference 

monitoring stations. However, low-cost sensor data commonly exhibit non-linear biases with 

respect to environmental conditions that cannot be captured by linear models, therefore requiring 

extensive lab calibration. Further, these calibration models traditionally produce point estimates or 

uniform variance predictions which limits their downstream in exposure assessment.
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OBJECTIVE: Build direct field-calibration models using probabilistic gradient boosted decision 

trees (GBDT) that eliminate the need for resource-intensive lab calibration and that can be used to 

conduct probabilistic exposure assessments on the neighborhood level.

METHODS: Using data from Plantower A003 particulate matter (PM) sensors deployed in 

Baltimore, MD from November 2018 through November 2019, a fully probabilistic NGBoost 

GBDT was trained on raw data from sensors co-located with a federal reference monitoring 

station and compared against linear regression trained on lab calibrated sensor data. The NGBoost 

predictions were then used in a Monte Carlo interpolation process to generate high spatial 

resolution probabilistic exposure gradients across Baltimore.

RESULTS: We demonstrate that direct field-calibration of the raw PM2.5 sensor data using a 

probabilistic GBDT has improved point and distribution accuracies compared to the linear model, 

particularly at reference measurements exceeding 25 μg/m3, and also on monitors not included in 

the training set.

SIGNIFICANCE: We provide a framework for utilizing the GBDT to conduct probabilistic 

spatial assessments of human exposure with inverse distance weighting that predicts the 

probability of a given location exceeding an exposure threshold and provides percentiles of 

exposure. These probabilistic spatial exposure assessments can be scaled by time and space with 

minimal modifications. Here, we used the probabilistic exposure assessment methodology to 

create high quality spatial-temporal PM2.5 maps on the neighborhood-scale in Baltimore, MD.
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INTRODUCTION

According to The World Health Organization (WHO), fine particulate matter (PM2 . 5) is 

responsible for approximately 7 million premature mortalities per year [1]. Within the 

United States, 88,000 annual deaths are attributed to PM2 . 5 exposure [2]. Further, PM2 . 5 is 

considered a Group 1 carcinogen according to the International Agency for Research on 

Cancer (IARC) [3]. Given that PM2 . 5 is produced during combustion, concentrations are 

often highest in densely-populated urban areas with higher levels of vehicle traffic and 

fuel combustion at power plants or on more localized scales leading to the potential for 

variability in PM2 . 5 concentrations over small spatial scales [3].

Within the United States, PM2 . 5 concentrations are required to meet the primary 

and secondary National Ambient Air Quality Standards (NAAQS) established by the 

Environmental Protection Agency (EPA) via the Clean Air Act [4]. To ensure that the 

air quality meets the NAAQS standards, the EPA requires that states operate monitoring 

sites with high quality sampling equipment that meets a Federal Reference Method (FRM) 

or Federal Equivalent Method (FEM) in major urban areas. However, there are only 935 

PM2 . 5 monitors to cover the entirety of the United States, and of the 25 most populous 

urbanized areas with a total population of 111 million people, there are only 282 PM2 . 5

monitors [5]. Therefore, the spatial resolution of high quality PM2 . 5 data can be severely 
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lacking for major urban areas. For example, within Baltimore City limits, there is only a 

single FEM monitor administered by the Maryland Department of the Environment located 

near the geographic center of Baltimore City during the period of this study [6]. This is 

highly relevant as intra-city air pollution exposure ranges have been proposed to be as large 

or larger than exposure ranges between cities and it has been found that there is substantial 

spatial variation in PM2 . 5 concentrations within a city on a 1–4 km spatial scale [7, 8]. In 

addition to spatial resolution concerns, gravimetric methods in use at certain FRM stations 

require 24-hr sampling, sacrificing the ability to measure PM2 . 5 on shorter timescales [6].

In order to fill the spatiotemporal data gaps in air pollution monitoring, low-cost sensor 

networks have been developed and deployed which consist of many types of sensors that, 

while less accurate than reference monitors, provide the ability to provide high resolution 

spatial and temporal measurements relevant at the urban level (e.g. PM2 . 5 concentrations 

typically below 100 μg/m3 with errors on the order of 5 μg/m3 as 24-hour averages) [9–

11]. One example of a low-cost sensor network is the Solutions for Energy, Air, Climate, 

and Health (SEARCH) Center’s investigation into neighborhood-level variations of air 

pollutant concentrations in Baltimore, MD [12, 13]. The SEARCH network encompasses 

low-cost monitors spread across the city measuring PM (mass and number concentrations), 

ozone, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide, methane, relative 

humidity, and temperature [12]. However, the reduction in precision compared with an FEM 

measurement adds complexity to the monitoring such that utilization of the raw sensor data 

is discouraged without accounting for environmental biases [12, 14]. Therefore, in order 

to gather sensor data that is both accurate and precise enough for exposure assessment, 

a combination of field and lab calibration is often recommended to ensure the sensor 

data is reliable [15, 16]. Lab calibration is both labor intensive and requires laboratory 

facilities, which is not an option for all low-cost sensor network administrators. However, 

the presence of an FEM monitor acts as a reference, and co-locating one or more network 

sensors with the FEM monitor in the field allows for the creation of models that can use 

raw sensor readings to accurately predict to the reference values. Regardless of a strictly 

laboratory calibration approach or a combined field and laboratory calibration approach, 

linear regression is most commonly used to create the calibration model despite known non-

linear relationships between PM2 . 5 and meteorological variables [13, 15]. While non-linear 

models have been developed for sensor calibration, these models still only produce point 

predictions without estimates of variance [17–20]. However, given that EPA and NIOSH 

both recommend probabilistic exposure and risk assessments, more accurate assessments 

are possible if point and/or uniform variance predictions are replaced with predictions from 

models that also describe variance, particularly on a per-prediction level [21–23].

Therefore, to address the difficulties of laboratory calibration, the lack of fully characterized 

uncertainty, and known non-linear relationships of predictors, we propose using probabilistic 

machine learning with gradient boosted decision trees (GBDT) in place of traditional 

linear approaches for calibration of low-cost PM2 . 5 sensors for sub-city level exposure 

assessment. While this approach has been conducted prior on indoor occupational exposure 

based low-cost sensor networks with known schedules and tasks [24], the SEARCH 

network is outdoors and fully unconstrained by the environmental conditions common in 
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an indoor facility. The GBDT will be trained using raw sensor data directly calibrated to 

the FEM reference, totally bypassing laboratory calibration, but assuming that the sensors 

are functional, a check that should be determined prior to deployment. This model will 

have its accuracy compared to existing linear models which requires laboratory calibrated 

data. Following model development, we will use the GBDT predictions in a Monte Carlo 

interpolation approach to create probabilistic PM2 . 5 spatial exposure assessments on the 

neighborhood scale that can provide health relevant characterization of possible exposures as 

opposed to a simple deterministic option.

METHODS

Reference data

There is one FEM monitoring site located in Oldtown in central Baltimore and another in 

Essex on the eastern border of the city. Oldtown lies within the city limits of Baltimore in 

an area with high traffic density, whereas Essex is outside of the city limits (approximately 

15 miles from Oldtown) and is within Baltimore County, the county surrounding Baltimore 

city. The Oldtown site measures PM2 . 5 on an hourly basis using a Beta Attenuation Mass 

Monitor, and Essex measures daily average PM2 . 5 once every six days using a gravimetric 

FRM monitor [6]. Both sites are operated by the Maryland Department of the Environment 

(MDE) [6].

SEARCH data

The SEARCH data in this study consists of hourly PM2 . 5 measurements from November 

2018 through November 2019 taken by 34 separate monitors. Each of the 34 monitors 

deployed in the network contains a Plantower A003 optical PM2 . 5 sensor as well as a 

variety of other sensors for gaseous pollutants [25]. Additionally, each monitor has a built-in 

temperature and relative humidity sensor. Each monitor contains both internal memory 

storage and a wireless cellular connection via a SIM card that uploads data to a remote 

server every ten seconds. The locations of the deployed monitors were chosen based on 

spatial and environmental factors as well as willingness of a property owner to host the 

monitor. The network has been online since October 2018. The locations of the SEARCH 

network monitors, Oldtown FEM Monitor (centrally located), and Essex FRM Monitor 

(eastern coast) are presented in Fig. 1.

There are two SEARCH monitors (B25 and B33) that were co-located with the Oldtown 

monitor and three monitors (B62, B21, and B8) that were co-located with the Essex 

monitor (monitor identification numbers are not indicative of the total number of monitors). 

However, only two of the Essex monitors were ever active at one time. B25 and B33 were 

deployed from December 2018 through October 2019, and B61, B21, and B8 from February 

2019 to August 2019. These monitors will serve as basis for the analysis for the remainder 

of the calibration analysis.
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Modeling

Two separate models were used to model sensor data to reference data. The first was the 

baseline linear calibration model developed by Datta et al. [13]. This model requires the 

lab-corrected data to first adjust for non-linear trends, and is shown in Eq. 1.

Equation 1: Linear Regression for PM2 . 5 Calibration to Reference Monitors

PM2 . 5Reference = β0 + β1 * RH + β2 * T + β3 * daytime + β4 * weekend
+ β5 * RH * PM2 . 5Sensorr + β6 * T * PM2 . 5Sensor
+ β7 * daytime * PM2 . 5Sensor + β8 * weekend * PM2 . 5Sensor

(1)

The covariates of this model are the lab-corrected low-cost sensor measurement 

(PM2 . 5Sensor), relative humidity (RH), temperature (T ), a binary flag for hours between 

7 am and 5 pm (daytime), and a binary flag for weekend (weekend). PM2 . 5Reference
refers to the PM2 . 5 as measured by a reference monitor. The model was trained on data 

where PM2 . 5Reference was the measurements from the Oldtown MDE reference monitor, 

and PM2 . 5Sensor was lab-corrected measurements from either monitors B25 or B33. The 

standard homoscedastic linear regression model is considered which produces constant 

prediction variances for all predictions. The second model is a gradient boosted decision tree 

(GBDT) specifically implemented with NGBoost, an open-source probabilistic framework 

written in python developed by the Stanford Machine Learning Group [26]. Unlike many 

machine learning methods which are designed for point-prediction of the mean, NGBoost 

is probabilistic, modeling a distribution for each prediction leading to unique mean and 

variance. The distribution is specified in the shape of N(x, σ). Further specifics on GBDT in 

general and NGBoost specifically are provided in the Supplement.

Model features.—In order to ensure a valid comparison between the two models and 

demonstrate the efficacy of NGBoost with a small feature space, only five baseline features 

will be used in each model, four of which (RH, T , daytime, weekend) are identical to those 

from Eq. 1. The only difference between the features of the models is that linear regression 

uses the lab-corrected PM2 . 5Sensor and various interaction terms whereas NGBoost uses the 

raw, uncorrected PM2 . 5Raw sensor data as its fifth feature and does not contain interaction 

terms. Interaction terms are not specified in the NGBoost model because the structures of 

decision trees used include them implicitly.

Training and testing datasets

In order to compare and contrast results from the linear models using lab calibrated sensor 

data presented by Datta et al. [13] with NGBoost using raw sensor data, the time intervals 

for training and testing from the study will be duplicated with an additional ‘monthly’ 

interval added as well. The seven defined training and testing sets are shown in Table 

1. While the full, prospective, and three seasonal splits are intended to compare directly 

to Datta et al. [13] and cover accuracy by season, the Essex split is intended to test the 

validity of the approach on fully out of sample data and monitors (i.e. not used in the 

training dataset). However, given that the Essex monitor produces 24-hr average PM2 . 5
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concentrations, hourly predictions were made and then averaged up into a 24-hr prediction 

to allow for comparison against the reference data. This averaging process will compress 

the values and, as such, the model evaluation metrics for the Essex split should not be 

directly compared to other train/test splits. The Monthly split is intended to test the model 

performance on small training set size as well as being to capture some component of sensor 

drift. Additional specifics on the model training process are available in the Supplement.

Model evaluation

The primary method of evaluation for point (i.e., mean) predictions from the PM2 . 5 models 

is root mean squared error (RMSE) on the test set. Lower values of RMSE indicate more 

accurate predictions, and the values have the same units as the predictions and target. 

The second method of evaluation is the continuous ranked probability score (CRPS) and 

evaluates the probabilistic results of NGBoost and the confidence intervals of the linear 

regression. Probabilistic predictions provide more than just a point estimate, and therefore 

require evaluation of the spread around the point prediction as well as the point prediction 

itself. For linear regression, each prediction has an identical standard deviation around the 

mean, whereas NGBoost produces a unique standard deviation for each prediction based 

on the learned training data. Similar to RMSE, CRPS is in the same units as the predicted 

variable, with smaller values indicating higher accuracy and takes into account the spread 

and mean of each prediction distribution [27]. In addition to general evaluation across all 

predictions, evaluation via RMSE will be performed on bins of reference measurements of 

15–20 μg/m3, 20–25 μg/m3, 25–30 μg/m3, and greater than 30 μg/m3 to evaluate model 

performance at PM2 . 5 values that are of acute public health concern and often underestimated 

with linear approaches [13, 28].

Spatial interpolation

In order to use the results of the model to conduct exposure assessments, the calibrated 

data needs to be spatially interpolated across Baltimore. However, NGBoost’s predictions 

are not simply hourly point predictions at each SEARCH monitor, but a mean and standard 

deviation of a normal distribution defined as NNGBoost(x, σ). Therefore, a resampling process 

using the distributions as part of the interpolation process was conducted using inverse 

distance weighting (IDW). IDW operates under the assumption that locations in close 

proximity are more likely to have similar measurements than those further away, and that the 

weight of each known measurement in predicting at a location is inversely related to how far 

away the two are. The general formula for IDW is shown in Eq. 2 with d as distance between 

the interpolation location and the measured value, i is an unsampled location, z the value at 

the unsampled location i, and n is the total number of points used in the averaging.

Equation 2: Inverse Distance Weighting (IDW)

Zestimated =
∑i = 1

n 1
di

p Zi

∑i = 1
n 1

di
p

(2)
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The power parameter, p, is used to control the strength of the inverse distance relationship. 

For larger values of p, more distant measurements are devalued, whereas p = 0 corresponds 

to a straight average across all monitors. While the default selection for p is often 2.0, 

leave one out cross validation (LOOCV) on the SEARCH monitor mean predictions was 

conducted to ensure that the power parameter was selected properly and to ensure that 

interpolation error is propagated through the exposure assessment; additional details are 

available in the Supplement.

IDW Monte Carlo. Following identification of the optimal power parameter, the next step 

was to conduct a Monte Carlo simulation using the IDW with the predicted distribution 

values from the NGBoost model. The Monte Carlo was chosen to run 250 simulations for 

each hour to balance runtime with accuracy. The steps were as follows:

Step 1: Select a single one-hour portion of the data

Step 2: Select a single draw (i.e., a single value is taken from a distribution) among the 250 

draws from each SEARCH monitor’s NNGBoost(x, σ) prediction from the hour selected

Step 3: Using those single draws, conduct an IDW on a square 256 × 256 grid (selected for 

optimal balance of computational speed and resolution) encapsulating Baltimore city limits

Step 4: Following the Monte Carlo, combine all 250 predictions per grid point to obtain the 

estimated concentration distributions

Following the Monte Carlo simulation, each grid cell’s 250 interpolated values were 

parameterized to a normal distribution following confirmation of normality via a Shapiro-

Wilk normality test. Therefore, for each grid location, results were recorded as N(x, σ)IDW

based on the mean and standard deviation of the interpolated PM2 . 5 values.

Exposure assessment

In order to aggregate an exposure assessment to administrative boundaries, the average 

of each N(x, σ)IDW  within the borders of the administrative geometry was defined as the 

exposure for that zip code, Census Tract, neighborhood, etc. This exposure assessment can 

also be aggregated temporally, going from single hour bins to days, weeks, or months by 

averaging the N(x, σ)IDW  for each hour bin up into the time units desired prior to spatial 

aggregation.

In order to demonstrate the probabilistic framework, three exposure metrics will be used in 

an example exposure assessment. The mean and 95th percentile prediction will be provided 

as more conventional metrics. The third is a threshold-based metric, which represents the 

probability of exceeding a threshold for a given administrative region and time window.

While there are monitors in many of the administrative regions that could theoretically 

provide single exposure values, the combination of multiple monitors will allow for a 

complete gradient across the area of interest that can be fit to any scale exposure assessment. 

Additionally, using multiple monitors in an estimation increases the robustness of the 
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estimate and includes information that takes into account bordering regions. For PM2 . 5, the 

example threshold was the primary EPA annual standard of 12 μg/m3 [4]. It is important 

to note that all three values are produced directly from the probabilistic IDW results of 

one model. The exposure assessments were conducted on the Community Statistical Area 

(CSA) level, clusters of similar and known neighborhoods determined by the Baltimore City 

Planning Department [29].

Software

All modeling was conducted in Python 3.7.7 with spatial analysis and data visualization 

conducted in R 4.0.2 ‘Taking Off Again’ [30]. The full list of modeling packages, libraries, 

and their version numbers is provided in Appendix A.

RESULTS

Sensor modeling evaluation

NGBoost outperformed linear regression across all evaluations (Table 2) with an average 

RMSE of 2.7 μg/m3 and 3.1 μg/m3 for NGBoost and linear regression, respectively. 

NGBoost dramatically outperformed the linear regression in the winter split, with an RMSE 

of 2.9 μg/m3 compared to 3.8 μg/m3, a 30% increase in accuracy in that season. In terms 

of the probabilistic predictions, NGBoost also had at least a 30% decrease in average CRPS 

compared to the linear regressions (1.5 μg/m3 vs. 2.2 μg/m3), which takes into account both 

the spread and the mean of the prediction distribution. Therefore, the distribution spread 

for NGBoost was approximately one third more accurate than the spread for the linear 

regression model on a per-prediction basis. Crucially, these accuracy improvements were 

observed even with the fact that the NGBoost was using raw, uncalibrated sensor data as 

opposed to the lab-corrected data used by the linear regression. Additionally, due to the 24-

hr averaging period, the Essex evaluation results had RMSEs that are lower than those of the 

other evaluation splits. However, the 10% improvement in accuracy of NGBoost compared 

with linear regression on the fully cross-site out of sample Essex data, demonstrates the 

transportability of the calibration approach to other monitors.

The predictions from the NGBoost model and linear regression model for the week of 

February 1, 2019 through February 7, 2019 were compared to the linear regression results 

and the corresponding MDE reference data in Fig. 2 to provide a visual representation 

of the efficacy of the non-linear modeling approach. This week in February 2019 was an 

abnormally poor period for air quality and contained the highest reference measurements 

in the entire dataset. For comparison, the mean MDE PM2 . 5 during February 2019 was 

8.6 μg/m3, while the daily averages of the first five days of February exceeded 20 μg/m3
. 

NGBoost generally was able to pick up on the peaks and valleys more accurately than linear 

regression, which is crucially important for health relevant peak exposure events, though the 

approach still unable to accurately represent all peaks.

Accuracy of peak concentrations.—One of the primary positives of the non-linear 

models is the ability to more accurately represent peak concentrations. In particular with 

PM2 . 5, hours or days with high measurements are likely to be associated with significant 
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negative public health impacts. NGBoost demonstrated significantly reduced error during 

high exposure hours compared to linear regression (based on full model training/test split). 

The RMSE for four categories of reference exposure are shown in Table 3 along with the 

corresponding improvement of NGBoost compared to the traditional linear approach based 

on the predictions of the fitted model across the entire dataset. Furthermore, the average 

residual for linear regression at reference concentrations greater than 15 μg/m3 was −4.33 

μg/m3 whereas for NGBoost it was −2.12 μg/m3, demonstrating an approximately 50% 

reduction in the negative bias at high reference concentrations.

Exposure assessment

IDW predictions were created for every hour from February 2019 through November 2019 

using the identified optimal power parameter of p = 2 . 0. An example of a single day 

exposure assessment on the CSA level within Baltimore city limits was conducted on June 

5, 2019 to highlight the spatial variability observed using the network. June 5, 2019 was 

selected as it had the largest difference in single-day mean CSA predictions (approximately 

10.3 μg/m3) between any two monitors, considering days with more than 20 monitors in 

operation. This gradient between monitors is not captured with a single reference instrument 

like the Oldtown FEM monitor. Mean and 95th percentile PM2 . 5 values are shown for June 5, 

2019 in Fig. 3a. For comparison, August 1, 2019 (Fig. 3b) had a maximum CSA predicted 

difference of 3.5 μg/m3. In both cases, although more pronounced in on June 5, there is a 

region of high concentrations in the center of the city, with additional high concentration 

areas in the northeast and northwest areas, likely corresponding to commuting traffic on 

major interstates I-83, which runs north-south through the center of the city and I-695 

beltway that surrounds the city slightly outside the city limits (not shown).

Therefore, the probabilistic nature of the NGBoost outputs, predicting the mean and 

standard deviation for each prediction enables a mapped representation of the probability 

of any location exceeding a specified threshold (e.g. 12 μg/m3). An example of such a 

map for the probability that any location exceeds 12 μg/m3 for the 24-hr period on June 

5, 2019 as shown in Fig. 4. This is a powerful approach to assess spatially-resolved risk 

for exceeding threshold values in a complex urban landscape using low-cost distributed 

measurement networks. Of the 278 CSAs in Baltimore on June 5, 2019, 158 had a greater 

than 50% chance of exceeding 12 μg/m3 and 28 had a greater than 90% chance of exceeding 

12 μg/m3. The CSAs with the highest exceedance probabilities are the center city areas near 

major commuting intersections (76.6 °W, 39.3 °N), and the northern areas that are adjacent 

to major interstate traffic (north and northwest borders), however this is only one possible 

explanation for June 5th exposures, as traffic is not the only source or causative factor for 

PM2 . 5 exceedances. Additionally, the flexibility of the approach can be seen in Fig. 5 which 

has been aggregated over 316 days, uses Census Tracts as the geographic aggregation unit, 

and a concentration of interest of 10 μg/m3.

In comparison to Fig. 4, there are differing patters on spatial variability in exposure in Fig. 

5, highlighting the point that the small-scale variation in the daily or sub-daily scale maps 

are not simply just duplicates of the annual or long-term exposure pattern. Of note, in both 

Fig. 4 and Fig. 5, large city parks in the northwest (76.7 W, 39.3 N) and center east (76.6 W, 
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39.3 N) of the city show up as low exposure zones compared to their surrounding developed 

areas.

DISCUSSION

The use of machine learning for predictive purposes in air pollution sensor data has 

seen substantial growth in the last several years. Large-scale approaches often utilize 

satellite data, country scale sensor networks, land use data, topography, etc. and have been 

built using random forests, GBDTs, and neural nets [31–34]. On a smaller scale more 

analogous to SEARCH, personal monitoring device networks, mobile sampling networks, 

and cityscale sensor networks have also demonstrated the utility of machine learning 

regression techniques to optimize predictions and take into account environmental factors 

[17–20]. However, while prediction of PM2 . 5 using sensor measurements and additional data 

has been conducted by numerous studies, this study fills a unique position by providing 

a methodology for both increasing the utility of low-cost sensor networks by creating a 

probabilistic output useful for exposure assessments, a state-of-the-art model that improves 

on existing approaches, and also removes the need for lab-calibrated data, a time intensive 

process for mitigating environmental biases for PM2 . 5 data.

The Plantower PMS A003 sensors used in this work produce PM2 . 5 readings by scattering 

laser light on drawn in air which is used to count particle sizes which are then converted into 

concentrations. This raw sensor can be lab-calibrated (accounting for known environmental 

biases), a time and resource intensive process, in order to ensure accuracy and precision [15, 

16]. The SEARCH network is also deployed in the region of a Maryland Department of the 

Environment PM2 . 5 monitoring station which measures PM2 . 5 using a reference Federally 

Equivalent Method (FEM) PM2 . 5 measurement [5, 6]. In previous studies, co-located 

SEARCH sensor monitors with the FEM monitor were used to develop a linear regression 

model that used lab-calibrated sensor data, temperature, relative humidity, weekend (binary), 

and daytime (binary) to model gold standard PM2 . 5 [13]. Although temperature and relative 

humidity are known parameters of concern when measuring PM2 . 5, they have established 

non-linear relationships with the ultimate PM2 . 5 measurement as well as each other, and 

these non-linear relationships and large sensor to sensor variability are the reasons why 

lab calibration is often necessary [13, 15]. Alternately, in order to capture the non-linear 

relationships without lab calibration, gradient boosted decision trees (GBDT), a popular tool 

for non-linear regression were used and showed that they were more accurate than linear 

regression without the calibration step. In addition, the NGBoost specific GBDT utilized 

in this study was probabilistic, producing unique means and standard deviations for each 

prediction output, in contrast to the linear regression which provided uniform standard 

deviations for calibration uncertainties across all predictions. The unique means and 

standard deviations from NGBoost resulted in a nearly 30% decrease in CRPS compared 

to a uniform variance uncertainty from linear regression.

While creating models that produce accurate probabilistic predictions is interesting 

from an academic perspective, it is the application of the models that can result 

in actionable data products, as seen in Fig. 4, that presents exceedance probabilities 
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for relevant regulatory/health protective standards and facilitates comparisons between 

neighborhoods for environmental justice applications. The flexibility of the approach is also 

crucially important for exposure assessments, as the data can be aggregated to whichever 

administrative boundary the researcher prefers for their problem, as well as whatever 

timescale is required. Exposures can also be left as a continuous gradient and used for 

nearest point analysis for studies requiring fine scale exposures linked to residences, places 

of work, etc. Leveraging the probabilistic prediction optimized NGBoost allows for the use 

of the distribution for further analysis such as probabilistic risk assessments, more accurate 

best and worst case scenarios, and any other situation where a parameterized distribution 

would be more useful than a point prediction, particularly since Patton et al. [24] showed 

that the use of probabilistic exposure estimates more accurately estimate upper bound 

exposures from low-cost sensor networks than the use of a point estimate. Approximations 

such as using the 95th percentile prediction from NGBoost would approach a worst-case 

scenario, but one that is modeled with a unique mean and standard deviation based on the 

input data. This is in contrast to a linear regression where a 95th percentile is based on a 

uniform standard deviation across all data points. Therefore, our approach allows for low 

probability occurrences such as the 95th percentile outcome to be modeled with precision.

In terms of limitations, the specific tuned and fitted models covered in this paper are not 

universally applicable. The intent was to provide a framework for other investigators to use 

this approach on their own sensor networks and pollutants. Unique models should be tuned 

and fitted for every application, which is both a potential limitation but also lends itself to 

highly customizable solutions. Furthermore, the features for NGBoost in this setting were 

not engineering or optimized but were simply the same as what was identified to be optimal 

for the linear regression by Datta et al. [13] to facilitate comparability. Therefore, it is likely 

that specific feature engineering would yield increased model accuracy. Finally, we have a 

small validation set comprised only of the state’s compliance monitoring to evaluate our 

results, with no validation at other locations.

Further research into these methods should consider the addition of more reference-sensor 

pairs that would allow for features that more completely characterize the local environment 

of each pair. For example, adding land use, topographic, or traffic features would easily 

be possible with our approach. While adding regulatory monitoring sites is not feasible, 

a short-term high cost/accuracy instrument could be co-located with several monitors to 

provide reference data across the entire network. In addition to the potential for an expanded 

feature space, one of the primary adjustments to make is to determine the amount of training 

data needed. While this will vary by pollutant, features, model choice, and prediction quality 

desired, capturing climate variation across several months would be recommended. Further, 

it is possible that an ensemble of high bias low variance linear models (not likely to overfit, 

but likely overly generalized) and low bias high variance GBDT (possibility of overfit, but 

not overly generalized) would be useful in a setting where a limited amount of training data 

was available with no option to acquire more. Lastly, it is possible that a temporal weighting 

feature that weights newer data more heavily would additionally yield increased accuracy 

as a means to combat sensor drift—methods such as error optimized exponential weighting 

would be an option [15].
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The framework for converting uncalibrated PM2 . 5 sensor data into a probabilistic exposure 

assessment using probabilistic gradient boosted decision trees captures the non-linearity of 

the relationship between PM2 . 5, relative humidity, and temperature, while providing more 

accurate and more useful probabilistic and deterministic output. The exposure assessments 

derived from the probabilistic modeling allows for small scale understanding of PM2 . 5

exposure and variability that can be of use in acute and subchronic epidemiological studies.
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Refer to Web version on PubMed Central for supplementary material.
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IMPACT STATEMENT

• We demonstrate how the use of open-source probabilistic machine learning 

models for in-place sensor calibration outperforms traditional linear models 

and does not require an initial laboratory calibration step. Further, these 

probabilistic models can create uniquely probabilistic spatial exposure 

assessments following a Monte Carlo interpolation process.
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Fig. 1. 
Map of SEARCH Network Monitors and FEM Monitoring Sites.

Patton et al. Page 16

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Time Series for the first week of February, 2019 (highest reference concentration week 

on record) comparing linear regression (red) and NGBoost (blue) predictions to the 

MDE reference measurements (gray) where the NGBoost tracks peaks and valleys more 

effectively than the linear model.
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Fig. 3. 
Mean (left) and 95th Percentile (right) PM2.5 exposures by Community Statistical 

Association (CSA) for June 5, 2019 (a) and August 1, 2019 (b) with major roads and 

highways denoted.
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Fig. 4. 
Probability of daily mean PM2 . 5 exceeding 12 mg/m3 by CSA on June 5, 2019 with major 

highways and roads.
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Fig. 5. 
Proportion of days with a predicted daily mean PM2 . 5 exceeding 10 mg/m3 by Census Tract 

from January 2019 – November 2019 with major highways and roads.
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