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Abstract

BACKGROUND: Low-cost sensor networks for monitoring air pollution are an effective tool

for expanding spatial resolution beyond the capabilities of existing state and federal reference
monitoring stations. However, low-cost sensor data commonly exhibit non-linear biases with
respect to environmental conditions that cannot be captured by linear models, therefore requiring
extensive lab calibration. Further, these calibration models traditionally produce point estimates or
uniform variance predictions which limits their downstream in exposure assessment.
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OBJECTIVE: Build direct field-calibration models using probabilistic gradient boosted decision
trees (GBDT) that eliminate the need for resource-intensive lab calibration and that can be used to
conduct probabilistic exposure assessments on the neighborhood level.

METHODS: Using data from Plantower A003 particulate matter (PM) sensors deployed in
Baltimore, MD from November 2018 through November 2019, a fully probabilistic NGBoost
GBDT was trained on raw data from sensors co-located with a federal reference monitoring
station and compared against linear regression trained on lab calibrated sensor data. The NGBoost
predictions were then used in a Monte Carlo interpolation process to generate high spatial
resolution probabilistic exposure gradients across Baltimore.

RESULTS: We demonstrate that direct field-calibration of the raw PM> 5 sensor data using a
probabilistic GBDT has improved point and distribution accuracies compared to the linear model,
particularly at reference measurements exceeding 25 pug/m3, and also on monitors not included in
the training set.

SIGNIFICANCE: We provide a framework for utilizing the GBDT to conduct probabilistic
spatial assessments of human exposure with inverse distance weighting that predicts the
probability of a given location exceeding an exposure threshold and provides percentiles of
exposure. These probabilistic spatial exposure assessments can be scaled by time and space with
minimal modifications. Here, we used the probabilistic exposure assessment methodology to
create high quality spatial-temporal PM5 5 maps on the neighborhood-scale in Baltimore, MD.

Keywords
Exposure modeling; Air pollution; Sensors; Geospatial analyses

INTRODUCTION

According to The World Health Organization (WHO), fine particulate matter (PM, ) is
responsible for approximately 7 million premature mortalities per year [1]. Within the
United States, 88,000 annual deaths are attributed to PM, 5 exposure [2]. Further, PM, ; is
considered a Group 1 carcinogen according to the International Agency for Research on
Cancer (IARC) [3]. Given that PM, ; is produced during combustion, concentrations are
often highest in densely-populated urban areas with higher levels of vehicle traffic and
fuel combustion at power plants or on more localized scales leading to the potential for
variability in PM, ; concentrations over small spatial scales [3].

Within the United States, PM, s concentrations are required to meet the primary

and secondary National Ambient Air Quality Standards (NAAQS) established by the
Environmental Protection Agency (EPA) via the Clean Air Act [4]. To ensure that the

air quality meets the NAAQS standards, the EPA requires that states operate monitoring
sites with high quality sampling equipment that meets a Federal Reference Method (FRM)
or Federal Equivalent Method (FEM) in major urban areas. However, there are only 935
PM, s monitors to cover the entirety of the United States, and of the 25 most populous
urbanized areas with a total population of 111 million people, there are only 282 PM, ;
monitors [5]. Therefore, the spatial resolution of high quality PM, ; data can be severely
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lacking for major urban areas. For example, within Baltimore City limits, there is only a
single FEM monitor administered by the Maryland Department of the Environment located
near the geographic center of Baltimore City during the period of this study [6]. This is
highly relevant as intra-city air pollution exposure ranges have been proposed to be as large
or larger than exposure ranges between cities and it has been found that there is substantial
spatial variation in PM, 5 concentrations within a city on a 1-4 km spatial scale [7, 8]. In
addition to spatial resolution concerns, gravimetric methods in use at certain FRM stations
require 24-hr sampling, sacrificing the ability to measure PM, 5 on shorter timescales [6].

In order to fill the spatiotemporal data gaps in air pollution monitoring, low-cost sensor
networks have been developed and deployed which consist of many types of sensors that,
while less accurate than reference monitors, provide the ability to provide high resolution
spatial and temporal measurements relevant at the urban level (e.g. PM, s concentrations
typically below 100 pg/m?3 with errors on the order of 5 pg/m?3 as 24-hour averages) [9-
11]. One example of a low-cost sensor network is the Solutions for Energy, Air, Climate,
and Health (SEARCH) Center’s investigation into neighborhood-level variations of air
pollutant concentrations in Baltimore, MD [12, 13]. The SEARCH network encompasses
low-cost monitors spread across the city measuring PM (mass and number concentrations),
ozone, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide, methane, relative
humidity, and temperature [12]. However, the reduction in precision compared with an FEM
measurement adds complexity to the monitoring such that utilization of the raw sensor data
is discouraged without accounting for environmental biases [12, 14]. Therefore, in order

to gather sensor data that is both accurate and precise enough for exposure assessment,

a combination of field and lab calibration is often recommended to ensure the sensor

data is reliable [15, 16]. Lab calibration is both labor intensive and requires laboratory
facilities, which is not an option for all low-cost sensor network administrators. However,
the presence of an FEM monitor acts as a reference, and co-locating one or more network
sensors with the FEM monitor in the field allows for the creation of models that can use
raw sensor readings to accurately predict to the reference values. Regardless of a strictly
laboratory calibration approach or a combined field and laboratory calibration approach,
linear regression is most commonly used to create the calibration model despite known non-
linear relationships between PM, ; and meteorological variables [13, 15]. While non-linear
models have been developed for sensor calibration, these models still only produce point
predictions without estimates of variance [17-20]. However, given that EPA and NIOSH
both recommend probabilistic exposure and risk assessments, more accurate assessments
are possible if point and/or uniform variance predictions are replaced with predictions from
models that also describe variance, particularly on a per-prediction level [21-23].

Therefore, to address the difficulties of laboratory calibration, the lack of fully characterized
uncertainty, and known non-linear relationships of predictors, we propose using probabilistic
machine learning with gradient boosted decision trees (GBDT) in place of traditional

linear approaches for calibration of low-cost PM, s sensors for sub-city level exposure
assessment. While this approach has been conducted prior on indoor occupational exposure
based low-cost sensor networks with known schedules and tasks [24], the SEARCH

network is outdoors and fully unconstrained by the environmental conditions common in
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an indoor facility. The GBDT will be trained using raw sensor data directly calibrated to

the FEM reference, totally bypassing laboratory calibration, but assuming that the sensors
are functional, a check that should be determined prior to deployment. This model will

have its accuracy compared to existing linear models which requires laboratory calibrated
data. Following model development, we will use the GBDT predictions in a Monte Carlo
interpolation approach to create probabilistic PM, ; spatial exposure assessments on the
neighborhood scale that can provide health relevant characterization of possible exposures as
opposed to a simple deterministic option.

METHODS

Reference data

There is one FEM monitoring site located in Oldtown in central Baltimore and another in
Essex on the eastern border of the city. Oldtown lies within the city limits of Baltimore in
an area with high traffic density, whereas Essex is outside of the city limits (approximately
15 miles from Oldtown) and is within Baltimore County, the county surrounding Baltimore
city. The Oldtown site measures PM, s on an hourly basis using a Beta Attenuation Mass
Monitor, and Essex measures daily average PM, s once every six days using a gravimetric
FRM monitor [6]. Both sites are operated by the Maryland Department of the Environment
(MDE) [6].

SEARCH data

The SEARCH data in this study consists of hourly PM, ; measurements from November
2018 through November 2019 taken by 34 separate monitors. Each of the 34 monitors
deployed in the network contains a Plantower A003 optical PM, s sensor as well as a
variety of other sensors for gaseous pollutants [25]. Additionally, each monitor has a built-in
temperature and relative humidity sensor. Each monitor contains both internal memory
storage and a wireless cellular connection via a SIM card that uploads data to a remote
server every ten seconds. The locations of the deployed monitors were chosen based on
spatial and environmental factors as well as willingness of a property owner to host the
monitor. The network has been online since October 2018. The locations of the SEARCH
network monitors, Oldtown FEM Monitor (centrally located), and Essex FRM Monitor
(eastern coast) are presented in Fig. 1.

There are two SEARCH monitors (B25 and B33) that were co-located with the Oldtown
monitor and three monitors (B62, B21, and B8) that were co-located with the Essex

monitor (monitor identification numbers are not indicative of the total number of monitors).
However, only two of the Essex monitors were ever active at one time. B25 and B33 were
deployed from December 2018 through October 2019, and B61, B21, and B8 from February
2019 to August 2019. These monitors will serve as basis for the analysis for the remainder
of the calibration analysis.
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Two separate models were used to model sensor data to reference data. The first was the
baseline linear calibration model developed by Datta et al. [13]. This model requires the
lab-corrected data to first adjust for non-linear trends, and is shown in Eq. 1.

Equation 1: Linear Regression for PM, s Calibration to Reference Monitors

PM, ;Re ference = f,+ p,* RH + p,*T + p,* daytime + f,* weekend
+ f;* RH * PM, ;Sensorr + f,*T * PM, sSensor )
+ p, *daytime * PM, sSensor + p, * weekend * PM, sSensor

The covariates of this model are the lab-corrected low-cost sensor measurement

(PM, sSensor), relative humidity (RH), temperature (T), a binary flag for hours between

7 am and 5 pm (daytime), and a binary flag for weekend (weekend). PM, ;Re ference

refers to the PM, ; as measured by a reference monitor. The model was trained on data
where PM, sRe ference Was the measurements from the Oldtown MDE reference monitor,
and PM, sSensor Was lab-corrected measurements from either monitors B25 or B33. The
standard homoscedastic linear regression model is considered which produces constant
prediction variances for all predictions. The second model is a gradient boosted decision tree
(GBDT) specifically implemented with NGBoost, an open-source probabilistic framework
written in python developed by the Stanford Machine Learning Group [26]. Unlike many
machine learning methods which are designed for point-prediction of the mean, NGBoost
is probabilistic, modeling a distribution for each prediction leading to unique mean and
variance. The distribution is specified in the shape of N(x, #). Further specifics on GBDT in
general and NGBoost specifically are provided in the Supplement.

Model features.—In order to ensure a valid comparison between the two models and
demonstrate the efficacy of NGBoost with a small feature space, only five baseline features
will be used in each model, four of which (RH, T, daytime, weekend) are identical to those
from Eq. 1. The only difference between the features of the models is that linear regression
uses the lab-corrected PM, sSensor and various interaction terms whereas NGBoost uses the
raw, uncorrected PM, ;Raw sensor data as its fifth feature and does not contain interaction
terms. Interaction terms are not specified in the NGBoost model because the structures of
decision trees used include them implicitly.

Training and testing datasets

In order to compare and contrast results from the linear models using lab calibrated sensor
data presented by Datta et al. [13] with NGBoost using raw sensor data, the time intervals
for training and testing from the study will be duplicated with an additional ‘monthly’
interval added as well. The seven defined training and testing sets are shown in Table

1. While the full, prospective, and three seasonal splits are intended to compare directly

to Datta et al. [13] and cover accuracy by season, the Essex split is intended to test the
validity of the approach on fully out of sample data and monitors (i.e. not used in the
training dataset). However, given that the Essex monitor produces 24-hr average PM,
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concentrations, hourly predictions were made and then averaged up into a 24-hr prediction
to allow for comparison against the reference data. This averaging process will compress

the values and, as such, the model evaluation metrics for the Essex split should not be
directly compared to other train/test splits. The Monthly split is intended to test the model
performance on small training set size as well as being to capture some component of sensor
drift. Additional specifics on the model training process are available in the Supplement.

Model evaluation

The primary method of evaluation for point (i.e., mean) predictions from the PM, ; models
is root mean squared error (RMSE) on the test set. Lower values of RMSE indicate more
accurate predictions, and the values have the same units as the predictions and target.

The second method of evaluation is the continuous ranked probability score (CRPS) and
evaluates the probabilistic results of NGBoost and the confidence intervals of the linear
regression. Probabilistic predictions provide more than just a point estimate, and therefore
require evaluation of the spread around the point prediction as well as the point prediction
itself. For linear regression, each prediction has an identical standard deviation around the
mean, whereas NGBoost produces a unique standard deviation for each prediction based
on the learned training data. Similar to RMSE, CRPS is in the same units as the predicted
variable, with smaller values indicating higher accuracy and takes into account the spread
and mean of each prediction distribution [27]. In addition to general evaluation across all
predictions, evaluation via RMSE will be performed on bins of reference measurements of
15-20 pg/m3, 20-25 pg/m3, 25-30 pg/m3, and greater than 30 pg/m3 to evaluate model
performance at PM, ; values that are of acute public health concern and often underestimated
with linear approaches [13, 28].

Spatial interpolation

In order to use the results of the model to conduct exposure assessments, the calibrated

data needs to be spatially interpolated across Baltimore. However, NGBoost’s predictions
are not simply hourly point predictions at each SEARCH monitor, but a mean and standard
deviation of a normal distribution defined as N ysz...(x, ). Therefore, a resampling process
using the distributions as part of the interpolation process was conducted using inverse
distance weighting (IDW). IDW operates under the assumption that locations in close
proximity are more likely to have similar measurements than those further away, and that the
weight of each known measurement in predicting at a location is inversely related to how far
away the two are. The general formula for IDW is shown in Eq. 2 with d as distance between
the interpolation location and the measured value, i is an unsampled location, z the value at
the unsampled location i, and » is the total number of points used in the averaging.

Equation 2: Inverse Distance Weighting (IDW)

1
i 1d—fo

@
1
Z?: 1 d_lp

Zexrimated -
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The power parameter, p, is used to control the strength of the inverse distance relationship.
For larger values of p, more distant measurements are devalued, whereas p = 0 corresponds
to a straight average across all monitors. While the default selection for p is often 2.0,
leave one out cross validation (LOOCV) on the SEARCH monitor mean predictions was
conducted to ensure that the power parameter was selected properly and to ensure that
interpolation error is propagated through the exposure assessment; additional details are
available in the Supplement.

IDW Monte Carlo. Following identification of the optimal power parameter, the next step
was to conduct a Monte Carlo simulation using the IDW with the predicted distribution
values from the NGBoost model. The Monte Carlo was chosen to run 250 simulations for
each hour to balance runtime with accuracy. The steps were as follows:

Step 1: Select a single one-hour portion of the data

Step 2: Select a single draw (i.e., a single value is taken from a distribution) among the 250
draws from each SEARCH monitor’s N yes...(x, o) prediction from the hour selected

Step 3: Using those single draws, conduct an IDW on a square 256 x 256 grid (selected for
optimal balance of computational speed and resolution) encapsulating Baltimore city limits

Step 4: Following the Monte Carlo, combine all 250 predictions per grid point to obtain the
estimated concentration distributions

Following the Monte Carlo simulation, each grid cell’s 250 interpolated values were
parameterized to a normal distribution following confirmation of normality via a Shapiro-
Wilk normality test. Therefore, for each grid location, results were recorded as N(x, 6),py

based on the mean and standard deviation of the interpolated PM, ; values.

Exposure assessment

In order to aggregate an exposure assessment to administrative boundaries, the average

of each N(x, o),,, Within the borders of the administrative geometry was defined as the
exposure for that zip code, Census Tract, neighborhood, etc. This exposure assessment can
also be aggregated temporally, going from single hour bins to days, weeks, or months by
averaging the N(x, 6),,, for each hour bin up into the time units desired prior to spatial
aggregation.

In order to demonstrate the probabilistic framework, three exposure metrics will be used in
an example exposure assessment. The mean and 95th percentile prediction will be provided
as more conventional metrics. The third is a threshold-based metric, which represents the
probability of exceeding a threshold for a given administrative region and time window.

While there are monitors in many of the administrative regions that could theoretically
provide single exposure values, the combination of multiple monitors will allow for a
complete gradient across the area of interest that can be fit to any scale exposure assessment.
Additionally, using multiple monitors in an estimation increases the robustness of the
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estimate and includes information that takes into account bordering regions. For PM, s, the
example threshold was the primary EPA annual standard of 12 pg/m3 [4]. It is important

to note that all three values are produced directly from the probabilistic IDW results of

one model. The exposure assessments were conducted on the Community Statistical Area
(CSA) level, clusters of similar and known neighborhoods determined by the Baltimore City
Planning Department [29].

All modeling was conducted in Python 3.7.7 with spatial analysis and data visualization
conducted in R 4.0.2 ‘Taking Off Again’ [30]. The full list of modeling packages, libraries,
and their version numbers is provided in Appendix A.

Sensor modeling evaluation

NGBoost outperformed linear regression across all evaluations (Table 2) with an average
RMSE of 2.7 ug/m3 and 3.1 pg/m?3 for NGBoost and linear regression, respectively.
NGBoost dramatically outperformed the linear regression in the winter split, with an RMSE
of 2.9 pg/m3 compared to 3.8 ug/m3, a 30% increase in accuracy in that season. In terms

of the probabilistic predictions, NGBoost also had at least a 30% decrease in average CRPS
compared to the linear regressions (1.5 pg/m3 vs. 2.2 pg/m3), which takes into account both
the spread and the mean of the prediction distribution. Therefore, the distribution spread

for NGBoost was approximately one third more accurate than the spread for the linear
regression model on a per-prediction basis. Crucially, these accuracy improvements were
observed even with the fact that the NGBoost was using raw, uncalibrated sensor data as
opposed to the lab-corrected data used by the linear regression. Additionally, due to the 24-
hr averaging period, the Essex evaluation results had RMSEs that are lower than those of the
other evaluation splits. However, the 10% improvement in accuracy of NGBoost compared
with linear regression on the fully cross-site out of sample Essex data, demonstrates the
transportability of the calibration approach to other monitors.

The predictions from the NGBoost model and linear regression model for the week of
February 1, 2019 through February 7, 2019 were compared to the linear regression results
and the corresponding MDE reference data in Fig. 2 to provide a visual representation

of the efficacy of the non-linear modeling approach. This week in February 2019 was an
abnormally poor period for air quality and contained the highest reference measurements

in the entire dataset. For comparison, the mean MDE PM, ; during February 2019 was

8.6 pg/m3, while the daily averages of the first five days of February exceeded 20 pg/m3
NGBoost generally was able to pick up on the peaks and valleys more accurately than linear
regression, which is crucially important for health relevant peak exposure events, though the
approach still unable to accurately represent all peaks.

Accuracy of peak concentrations.—One of the primary positives of the non-linear
models is the ability to more accurately represent peak concentrations. In particular with
PM, s, hours or days with high measurements are likely to be associated with significant
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negative public health impacts. NGBoost demonstrated significantly reduced error during
high exposure hours compared to linear regression (based on full model training/test split).
The RMSE for four categories of reference exposure are shown in Table 3 along with the
corresponding improvement of NGBoost compared to the traditional linear approach based
on the predictions of the fitted model across the entire dataset. Furthermore, the average
residual for linear regression at reference concentrations greater than 15 pg/m3 was —4.33
Hg/m3 whereas for NGBoost it was —2.12 pg/m?3, demonstrating an approximately 50%
reduction in the negative bias at high reference concentrations.

Exposure assessment

IDW predictions were created for every hour from February 2019 through November 2019
using the identified optimal power parameter of p = 2.0. An example of a single day
exposure assessment on the CSA level within Baltimore city limits was conducted on June
5, 2019 to highlight the spatial variability observed using the network. June 5, 2019 was
selected as it had the largest difference in single-day mean CSA predictions (approximately
10.3 pg/m3) between any two monitors, considering days with more than 20 monitors in
operation. This gradient between monitors is not captured with a single reference instrument
like the Oldtown FEM monitor. Mean and 95th percentile PM, ; values are shown for June 5,
2019 in Fig. 3a. For comparison, August 1, 2019 (Fig. 3b) had a maximum CSA predicted
difference of 3.5 pg/m3. In both cases, although more pronounced in on June 5, there is a
region of high concentrations in the center of the city, with additional high concentration
areas in the northeast and northwest areas, likely corresponding to commuting traffic on
major interstates 1-83, which runs north-south through the center of the city and 1-695
beltway that surrounds the city slightly outside the city limits (not shown).

Therefore, the probabilistic nature of the NGBoost outputs, predicting the mean and
standard deviation for each prediction enables a mapped representation of the probability

of any location exceeding a specified threshold (e.g. 12 pg/m3). An example of such a

map for the probability that any location exceeds 12 pg/m? for the 24-hr period on June

5, 2019 as shown in Fig. 4. This is a powerful approach to assess spatially-resolved risk

for exceeding threshold values in a complex urban landscape using low-cost distributed
measurement networks. Of the 278 CSAs in Baltimore on June 5, 2019, 158 had a greater
than 50% chance of exceeding 12 pg/m3 and 28 had a greater than 90% chance of exceeding
12 pg/m3. The CSAs with the highest exceedance probabilities are the center city areas near
major commuting intersections (76.6 °W, 39.3 °N), and the northern areas that are adjacent
to major interstate traffic (north and northwest borders), however this is only one possible
explanation for June 5th exposures, as traffic is not the only source or causative factor for
PM, ; exceedances. Additionally, the flexibility of the approach can be seen in Fig. 5 which
has been aggregated over 316 days, uses Census Tracts as the geographic aggregation unit,
and a concentration of interest of 10 pg/m3.

In comparison to Fig. 4, there are differing patters on spatial variability in exposure in Fig.
5, highlighting the point that the small-scale variation in the daily or sub-daily scale maps
are not simply just duplicates of the annual or long-term exposure pattern. Of note, in both
Fig. 4 and Fig. 5, large city parks in the northwest (76.7 W, 39.3 N) and center east (76.6 W,
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39.3 N) of the city show up as low exposure zones compared to their surrounding developed
areas.

DISCUSSION

The use of machine learning for predictive purposes in air pollution sensor data has

seen substantial growth in the last several years. Large-scale approaches often utilize
satellite data, country scale sensor networks, land use data, topography, etc. and have been
built using random forests, GBDTs, and neural nets [31-34]. On a smaller scale more
analogous to SEARCH, personal monitoring device networks, mobile sampling networks,
and cityscale sensor networks have also demonstrated the utility of machine learning
regression techniques to optimize predictions and take into account environmental factors
[17-20]. However, while prediction of PM, ; using sensor measurements and additional data
has been conducted by numerous studies, this study fills a unique position by providing

a methodology for both increasing the utility of low-cost sensor networks by creating a
probabilistic output useful for exposure assessments, a state-of-the-art model that improves
on existing approaches, and also removes the need for lab-calibrated data, a time intensive
process for mitigating environmental biases for PM, ; data.

The Plantower PMS A003 sensors used in this work produce PM, ; readings by scattering
laser light on drawn in air which is used to count particle sizes which are then converted into
concentrations. This raw sensor can be lab-calibrated (accounting for known environmental
biases), a time and resource intensive process, in order to ensure accuracy and precision [15,
16]. The SEARCH network is also deployed in the region of a Maryland Department of the
Environment PM, ; monitoring station which measures PM, s using a reference Federally
Equivalent Method (FEM) PM, ; measurement [5, 6]. In previous studies, co-located
SEARCH sensor monitors with the FEM monitor were used to develop a linear regression
model that used lab-calibrated sensor data, temperature, relative humidity, weekend (binary),
and daytime (binary) to model gold standard PM, s [13] Although temperature and relative
humidity are known parameters of concern when measuring PM, s, they have established
non-linear relationships with the ultimate PM, ; measurement as well as each other, and
these non-linear relationships and large sensor to sensor variability are the reasons why

lab calibration is often necessary [13, 15]. Alternately, in order to capture the non-linear
relationships without lab calibration, gradient boosted decision trees (GBDT), a popular tool
for non-linear regression were used and showed that they were more accurate than linear
regression without the calibration step. In addition, the NGBoost specific GBDT utilized

in this study was probabilistic, producing unique means and standard deviations for each
prediction output, in contrast to the linear regression which provided uniform standard
deviations for calibration uncertainties across all predictions. The unique means and
standard deviations from NGBoost resulted in a nearly 30% decrease in CRPS compared

to a uniform variance uncertainty from linear regression.

While creating models that produce accurate probabilistic predictions is interesting
from an academic perspective, it is the application of the models that can result
in actionable data products, as seen in Fig. 4, that presents exceedance probabilities
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for relevant regulatory/health protective standards and facilitates comparisons between
neighborhoods for environmental justice applications. The flexibility of the approach is also
crucially important for exposure assessments, as the data can be aggregated to whichever
administrative boundary the researcher prefers for their problem, as well as whatever
timescale is required. Exposures can also be left as a continuous gradient and used for
nearest point analysis for studies requiring fine scale exposures linked to residences, places
of work, etc. Leveraging the probabilistic prediction optimized NGBoost allows for the use
of the distribution for further analysis such as probabilistic risk assessments, more accurate
best and worst case scenarios, and any other situation where a parameterized distribution
would be more useful than a point prediction, particularly since Patton et al. [24] showed
that the use of probabilistic exposure estimates more accurately estimate upper bound
exposures from low-cost sensor networks than the use of a point estimate. Approximations
such as using the 95th percentile prediction from NGBoost would approach a worst-case
scenario, but one that is modeled with a unique mean and standard deviation based on the
input data. This is in contrast to a linear regression where a 95th percentile is based on a
uniform standard deviation across all data points. Therefore, our approach allows for low
probability occurrences such as the 95th percentile outcome to be modeled with precision.

In terms of limitations, the specific tuned and fitted models covered in this paper are not
universally applicable. The intent was to provide a framework for other investigators to use
this approach on their own sensor networks and pollutants. Unique models should be tuned
and fitted for every application, which is both a potential limitation but also lends itself to
highly customizable solutions. Furthermore, the features for NGBoost in this setting were
not engineering or optimized but were simply the same as what was identified to be optimal
for the linear regression by Datta et al. [13] to facilitate comparability. Therefore, it is likely
that specific feature engineering would yield increased model accuracy. Finally, we have a
small validation set comprised only of the state’s compliance monitoring to evaluate our
results, with no validation at other locations.

Further research into these methods should consider the addition of more reference-sensor
pairs that would allow for features that more completely characterize the local environment
of each pair. For example, adding land use, topographic, or traffic features would easily

be possible with our approach. While adding regulatory monitoring sites is not feasible,

a short-term high cost/accuracy instrument could be co-located with several monitors to
provide reference data across the entire network. In addition to the potential for an expanded
feature space, one of the primary adjustments to make is to determine the amount of training
data needed. While this will vary by pollutant, features, model choice, and prediction quality
desired, capturing climate variation across several months would be recommended. Further,
it is possible that an ensemble of high bias low variance linear models (not likely to overfit,
but likely overly generalized) and low bias high variance GBDT (possibility of overfit, but
not overly generalized) would be useful in a setting where a limited amount of training data
was available with no option to acquire more. Lastly, it is possible that a temporal weighting
feature that weights newer data more heavily would additionally yield increased accuracy
as a means to combat sensor drift—methods such as error optimized exponential weighting
would be an option [15].
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The framework for converting uncalibrated PM, ; sensor data into a probabilistic exposure
assessment using probabilistic gradient boosted decision trees captures the non-linearity of
the relationship between PM, , relative humidity, and temperature, while providing more
accurate and more useful probabilistic and deterministic output. The exposure assessments
derived from the probabilistic modeling allows for small scale understanding of PM, ;
exposure and variability that can be of use in acute and subchronic epidemiological studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IMPACT STATEMENT

. We demonstrate how the use of open-source probabilistic machine learning
models for in-place sensor calibration outperforms traditional linear models
and does not require an initial laboratory calibration step. Further, these
probabilistic models can create uniquely probabilistic spatial exposure
assessments following a Monte Carlo interpolation process.
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SEARCH Multipollutant Monitor Locations
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Fig. 1.

Map of SEARCH Network Monitors and FEM Monitoring Sites.
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PM, 5 Prediction and Actual Time Series (2/1/19-2/7/19)

® Linear Regression ™ NGBoost Reference (MDE)
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Date

Fig. 2.
Time Series for the first week of February, 2019 (highest reference concentration week

on record) comparing linear regression (red) and NGBoost (blue) predictions to the
MDE reference measurements (gray) where the NGBoost tracks peaks and valleys more
effectively than the linear model.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 June 26.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Patton et al. Page 18

CSA Mean and 95th Percentile - 6/5/2019
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Fig. 3.
Mean (left) and 95th Percentile (right) PM> 5 exposures by Community Statistical

Association (CSA) for June 5, 2019 (a) and August 1, 2019 (b) with major roads and
highways denoted.
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Probability of PM, 5 Daily Mean > 12 pg/m” (6/5/2019)
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Fig. 4.
Probability of daily mean PM, ; exceeding 12 mg/m3 by CSA on June 5, 2019 with major

highways and roads.
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Proportion of Days With Pred. Daily Mean PM, 5 > 10 ug/m3
Jan. 2019 - Nov. 2019 (n = 316)
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Fig. 5.
Proportion of days with a predicted daily mean PM, 5 exceeding 10 mg/m3 by Census Tract

from January 2019 — November 2019 with major highways and roads.
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