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Abstract

Background: Venous thromboembolism (VTE) is a preventable, common vascular disease that 

has been estimated to affect up to 900,000 people per year. It has been associated with risk factors 

such as recent surgery, cancer, and hospitalization. VTE surveillance for patient management 

and safety can be improved via natural language processing (NLP). NLP tools have the ability 

to access electronic medical records, identify patients that meet the VTE case definition, and 

subsequently enter the relevant information into a database for hospital review.

Objective: We aimed to evaluate the performance of a VTE identification model of IDEAL-X 

(Information and Data Extraction Using Adaptive Learning; Emory University)—an NLP tool—in 

automatically classifying cases of VTE by “reading” unstructured text from diagnostic imaging 

records collected from 2012 to 2014.

Methods: After accessing imaging records from pilot surveillance systems for VTE from Duke 

University and the University of Oklahoma Health Sciences Center (OUHSC), we used a VTE 

identification model of IDEAL-X to classify cases of VTE that had previously been manually 

classified. Experts reviewed the technicians’ comments in each record to determine if a VTE 

event occurred. The performance measures calculated (with 95% CIs) were accuracy, sensitivity, 

specificity, and positive and negative predictive values. Chi-square tests of homogeneity were 
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conducted to evaluate differences in performance measures by site, using a significance level of 

.05.

Results: The VTE model of IDEAL-X “read” 1591 records from Duke University and 1487 

records from the OUHSC, for a total of 3078 records. The combined performance measures 

were 93.7% accuracy (95% CI 93.7%−93.8%), 96.3% sensitivity (95% CI 96.2%−96.4%), 92% 

specificity (95% CI 91.9%−92%), an 89.1% positive predictive value (95% CI 89%−89.2%), and 

a 97.3% negative predictive value (95% CI 97.3%−97.4%). The sensitivity was higher at Duke 

University (97.9%, 95% CI 97.8%−98%) than at the OUHSC (93.3%, 95% CI 93.1%−93.4%; 

P<.001), but the specificity was higher at the OUHSC (95.9%, 95% CI 95.8%−96%) than at Duke 

University (86.5%, 95% CI 86.4%−86.7%; P<.001).

Conclusions: The VTE model of IDEAL-X accurately classified cases of VTE from the pilot 

surveillance systems of two separate health systems in Durham, North Carolina, and Oklahoma 

City, Oklahoma. NLP is a promising tool for the design and implementation of an automated, 

cost-effective national surveillance system for VTE. Conducting public health surveillance at a 

national scale is important for measuring disease burden and the impact of prevention measures. 

We recommend additional studies to identify how integrating IDEAL-X in a medical record 

system could further automate the surveillance process.
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Introduction

Venous thromboembolism (VTE), which includes both deep vein thrombosis (DVT) and 

pulmonary embolism, is a common yet preventable vascular disease. The disease burden of 

VTE could be decreased through a coordinated approach to risk assessment, prophylaxis, 

and treatment [1]. In the United States, 36% to >50% of VTEs are associated with recent 

hospitalization or surgery and are considered hospital-associated VTEs [2–5]; therefore, 

hospital systems have the potential to facilitate effective VTE surveillance.

Conducting traditional VTE surveillance by using either active or passive methods is 

challenging because International Classification of Diseases codes for identifying VTE have 

been shown to have moderate sensitivity and positive predictive value [6–8], the manual 

review of medical records is labor intensive, and data entry is subject to human error. In the 

United States, the majority of newly generated clinical data are stored and analyzed digitally, 

typically in the form of an electronic medical record (EMR). As of 2017, EMRs are being 

used by 96% of nonfederal acute care hospitals [9], and EMR use has more than doubled 

since 2008 [10].

Despite years of progress in developing new database and file formats for medical record 

keeping, the majority of medical data are stored as unstructured text [3]. Unstructured text is 

a rich source of data for clinical and translational research [4]. Natural language processing 

(NLP) tools can be used to overcome the challenges of traditional VTE surveillance, as they 

can access the critical unstructured text from diagnostic imaging reports (eg, ultrasound and 
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computed tomography [CT] angiography reports) [11], identify patients who meet the VTE 

case definition, and enter the relevant information into a surveillance database in an efficient 

amount of time [11–14].

Some of the key features involved with the use of NLP include preprocessing [7], 

syntactic processing, and concept and named entity recognition [6]. Preprocessing allows an 

algorithm to remove formatting (including carriage returns and other white-space characters) 

and then output a single “clean” string of text (free of markup or control characters 

pertaining to its original source) for later steps. Syntactic processing refers to understanding 

word order (eg, the subject-verb-object relationship) and references to vague nouns and 

pronouns, such as it. As a result, the algorithm is able to connect elements of complex or 

coordinated phrases. For example, in the sentence There is no evidence of a filling defect 
in the right pulmonary artery, the keywords that the algorithm needs to detect are no, filling 
defect, and pulmonary artery. Finally, concept and named entity recognition refer to the 

ability to identify variations in spelling or wording that relate to a single concept, such as the 

different ways clinicians may refer to, spell, or misspell venous thromboembolism. Linking 

different textual surface realizations (eg, thrombus, embolism, and pulmonary embolism) to 

a single conceptual entity (venous thromboembolism) facilitates classification and decreases 

the total number of parameters that need to be estimated in the model training stage.

Although the field of NLP is immense, with an ever-growing range of features and 

capabilities, the application of NLP in VTE surveillance is narrow. A specific software—

IDEAL-X (Information and Data Extraction using Adaptive Learning; Emory University)

—was used in a previous study to identify VTE by using the unstructured text from 

imaging records [14]. IDEAL-X leverages machine learning–based approaches to customize 

fine-tuned NLP models for various use cases. It analyzes domain-specific terminology 

and related linguistic features to determine a medical event. The IDEAL-X NLP tool 

has been applied to different use cases, and its applicability to VTE event identification 

has been proven by an Emory University pilot study [14]. When the IDEAL-X VTE 

identification model’s performance in the prefiltering of VTE records was tested in its native 

clinical setting, it demonstrated a sensitivity of ≥97.2% and a specificity of ≥99.3% [14]. 

However, since the NLP model was trained based on the records from an individual site, the 

prefiltering (eg, the identification of cases based on the type and severity of patients) and 

certain external factors (eg, speech patterns and word choices that are common to a certain 

clinic or geographic region) may have affected the performance of the NLP tool. Therefore, 

independent validation is required.

In order to evaluate the robustness and adaptability of our VTE identification model, which 

we developed based on the machine learning–based NLP tool IDEAL-X, and to determine 

how the differences among clinical settings can affect its performance (as a proof of concept 

for applying NLP to national VTE surveillance), we evaluated the accuracy of the VTE 

model in two independent health care settings—one in Durham, North Carolina, and another 

in Oklahoma City, Oklahoma.
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Methods

Study Design

Duke University and the University of Oklahoma Health Sciences Center (OUHSC) 

collaborated with the Centers for Disease Control and Prevention to establish pilot 

surveillance systems for VTE [15,16]. The surveillance period (ie, for data collection) for 

both systems ranged from April 1, 2012, to March 31, 2014 (24 months). We used data 

from both surveillance systems for this study and evaluation. Members of each surveillance 

team served as the gold standard, manually reviewing imaging records and classifying them 

according to case status. Two investigators from the Duke University study team (IS and 

TO) and three investigators from the OUHSC study team (AW, NF, and GR) reviewed each 

record and classified them as positive or negative imaging reports of a DVT or pulmonary 

embolism. Subsequently, these records were “read” by IDEAL-X, which independently 

classified them according to case status. We evaluated the performance of the VTE model by 

comparing the case status results to the gold standard (manual review) findings. Site-specific 

details are described in the Participants and Procedures section, and the data collection and 

case classification methods are summarized in Figure 1.

Ethical Considerations

This study was reviewed by the Duke University Institutional Review Board and the 

OUHSC Institutional Review Board. Both entities determined that this study did not include 

research on human subjects and was therefore exempt from institutional review board 

approval.

Participants and Procedures

Duke University—The investigators at Duke University used the data set generated from 

the VTE surveillance program at three hospitals in Durham County, North Carolina (Duke 

University Hospital, Duke Regional Hospital, and the Durham Veterans Affairs Medical 

Center). The data set included all 818 unique records that were independently positive 

for the diagnosis of acute DVT, pulmonary embolism, or both (meeting the surveillance 

system’s case definition). To identify a total of 773 unique negative imaging records, the 

investigators reviewed (1) the negative imaging records from the same cohort of patients 

who also had a positive imaging study (eg, a negative lower extremity ultrasound from a 

patient with a positive CT angiogram) and (2) the negative imaging records from patients 

who were identified through the VTE surveillance program but were determined via the 

manual evaluation of the records to not have DVT or pulmonary embolism. The Duke 

University team manually extracted the findings and conclusions or the Impression sections 

from each imaging report to Microsoft Excel, regardless of the terminology or the contextual 

information. The team excluded additional text that described patient-specific information, 

the indication for the imaging study, and the type of imaging study used, as well as signature 

lines.

The radiographic imaging records included in the Duke University data set consisted of (1) 

ultrasound images of upper extremities, (2) ultrasound images of lower extremities, (3) CT 

angiography scans of the chest, and (4) ventilation-perfusion scans.
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The OUHSC—The investigators at the OUHSC requested all of the imaging records from 

CT angiograms and compression ultrasounds, regardless of indication, from INTEGRIS 

Baptist Medical Center and INTEGRIS Southwest Medical Center. To our knowledge, 

the records were randomly selected and were representative of the patient population. 

This resulted in a data set with 1487 unique patients. The OUHSC team converted the 

PDF imaging records (ultrasound and CT records) to plain text format. We then used 

a search algorithm that was customized to the formatting conventions of the records to 

automatically locate and demarcate the Impressions and Findings sections. For each patient, 

these sections were extracted; cleaned of miscellaneous punctuation, white-space, and 

formatting characters; and converted into a text field for entry into the IDEAL-X package. 

Additional text processing was conducted to categorize records according to imaging type. 

All automated text processing at the OUHSC study site was performed by using Python 

v3.7.

The IDEAL-X Tool—The VTE identification model of IDEAL-X that we used in this 

analysis had been used in a previous study at Emory University [14]. In that study, IDEAL-

X was used to analyze the radiology reports from the Emory University Orthopedic and 

Spine Hospital, which were dated from February 1, 2009, to December 9, 2014. The 

imaging reports included interpretations from ultrasound images of the lower and upper 

extremities, CT scans of the chest with contrast, and magnetic resonance images of the chest 

[14]. We applied the VTE identification model developed by the Emory project to our data 

sets as part of this study, without the further calibration or retraining of the model.

Both study sites (Duke University and the OUHSC) converted their data into the format 

required by IDEAL-X, which consisted of a Microsoft Excel spreadsheet containing the 

following four columns for data entry: the ID, Text, Manual, and System columns. The 

ID column contained a deidentified record ID that was computed from the PDF image 

file name by using a cryptographically secure hash function. The Text column contained 

the unstructured text that was extracted from the imaging reports after preprocessing. 

The Manual column contained the gold standard diagnosis for comparison with IDEAL-

X results. The System column, per the IDEAL-X specification, was left blank and then 

populated with the automated classification after processing.

Additional aggregate outputs from IDEAL-X included the total number of records, the 

sensitivity, the specificity, the number of true and false positives, and the number of true 

and false negatives. Further, 95% CIs were calculated by using the Clopper-Pearson method 

for binomially distributed data [17]. Chi-square tests of homogeneity were conducted to 

evaluate differences in performance measures by site, using a significance level of .05. 

We conducted a post hoc analysis of the false-positive results, in which each coauthor 

reviewed the text of every false-positive and false-negative result and assigned it to one of 

the following categories: no evidence for thrombosis, superficial vein thrombosis, chronic or 

residual vein thrombosis, and indeterminate.
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Results

Duke University collected a total of 1591 imaging records (ultrasound images of upper 

extremities: n=223; ultrasound images of lower extremities: n=729; CT angiography scans 

of the chest: n=527; ventilation-perfusion scans: n=112). The OUHSC collected a total of 

1487 imaging records (compression ultrasound images: n=1333; CT angiography scans of 

the chest: n=149; ventilation-perfusion scans: n=5). This provided our team with a combined 

total of 3078 records to be evaluated by IDEAL-X. The number of imaging records that 

IDEAL-X included or excluded (per the case definition for VTE) and the number of 

records that were manually reviewed are presented in Table 1 (the combined numbers 

and the numbers stratified by sites are shown). When both sites were aggregated, there 

were 1204 true-positive cases, 147 false-positive records, 1681 true-negative records, and 

46 false-negative cases. The performance measures of the system are summarized in Table 

2. Overall, the VTE model of IDEAL-X achieved over 90% accuracy (93.7%), sensitivity 

(96.3%), and specificity (92%).

When stratified by site, we found statistically significant differences in the performance 

measures between Duke University and the OUHSC. The sensitivity was significantly higher 

at Duke University (P<.001), while specificity was significantly higher at the OUHSC 

(P<.001). To further investigate differences in specificity, we identified the total number 

of false-positive results (147/1351, 10.9%). The reasons for the false-positive results are 

summarized in Table 3. The distribution varied between the two sites, and the categorical 

reason for false-positive results at Duke University was related to text indicating “there was 

no evidence for thrombosis” (104/104, 100%). Further, 38 of the 104 (36.5%) false-positive 

results at Duke University were from reports on ventilation-perfusion scans—an imaging 

modality that had not been included in the machine learning phase of the VTE identification 

model of IDEAL-X. The remaining errors occurred with the diagnostic imaging modalities 

that were previously used with the model (compression ultrasound and CT angiography), 

and many of the errors in the corresponding imaging reports were due to incorrect line 

breaks in the original text, which caused the algorithm to interpret the text incorrectly. 

In contrast, at the OUHSC, the most common reason for a false-positive result was text 

stating “a blood clot in a superficial vein” (25/43, 58.1%). The 38 false-positive results 

at Duke University from ventilation-perfusion scans represented 79.2% (38/48) of all 

ventilation-perfusion scans that were manually interpreted as negative at Duke University. 

In contrast, 20 of the 104 (19.2%) false-positive results at Duke University were from 

CT angiograms, but these represented only 8.1% (20/248) of all CT angiograms that were 

manually interpreted as negative at Duke University.

We also reviewed the false-negative results and summarized the findings in Table 3. Some 

of the potential reasons why IDEAL-X misclassified records could have been that (1) our 

manual reviewers had a lower threshold for investigating possible cases, such as classifying 

imaging records indicative of chronic VTE, a partially occluded blood vessel, or a diagnosis 

of thrombophlebitis as preliminary cases of VTE that would be further investigated and 

potentially ruled out upon further examination; (2) if the text indicated both evidence for 

a thrombus in one section and no evidence in another section, IDEAL-X deferred to the 

section indicating no evidence; and (3) IDEAL-X did not recognize certain misspellings or 
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symbols. However, for 18 of the 46 (39.1%) false-negative cases, it is unclear why IDEAL-X 

misclassified the records. Of the 6 misclassified results at Duke University, 2 (33%) were 

from ventilation-perfusion scans.

Discussion

Principal Findings

This study suggests that IDEAL-X is an accurate NLP tool that can be used to identify 

cases of VTE. This system will likely improve the efficiency of VTE surveillance by 

automating the identification of VTE cases via accessing information from imaging records

—the most reliable data source for VTE diagnosis. Our study results contribute to those 

published by Dantes et al [14] by broadening the scope of use from a specialty orthopedic 

hospital and demonstrating IDEAL-X’s utility and accuracy in general hospital settings 

within two different states with radiologists who used somewhat different language, word, 

and phrase patterns when interpreting imaging studies. In order to examine the robustness of 

the IDEAL-X VTE model, no additional training was applied subsequent to its configuration 

by researchers at Emory University [14]. Therefore, this study more fully explores the effect 

of how differences in hospital systems impact the VTE model’s performance.

The performance of such an NLP model was impacted by the imaging modality used. The 

specificity and positive predictive value for ventilation-perfusion scans, of which 95.7% 

(112/117) were collected from the Duke University system, were low. The specificity and 

negative predictive value of chest CT angiograms from the OUHSC were low. These values 

were likely impacted because we did not receive the requested sample (as demonstrated 

by only having 10 records from noncases). This resulted in a case prevalence of 93.2% 

(139/149), which is not representative of the prevalence of pulmonary embolism in the 

participating health system.

A particular advantage of using NLP to classify cases is the time required for IDEAL-X 

to classify the records according to case status. The preprocessing time for the OUHSC 

records (N=1487) was approximately 5 minutes, and the postprocessing time was <1 minute. 

In contrast, it takes approximately 1 minute per imaging study for a surveillance officer 

to read the text and classify it according to case status, which translates into potentially 

52.5 person-hours for classifying the records used in this study. The time savings become 

increasingly meaningful when considering implementing surveillance across many facilities 

for a continuous time frame.

Comparison With Prior Work

IDEAL-X is relatively simple compared to other common NLP tools, including cTAKES 

(Clinical Text Analysis Knowledge Extraction System), MetaMap, MedLEE (Medical 

Language Extraction and Encoding System), GATE (General Architecture for Text 

Engineering), NLTK (Natural Language Toolkit), and OpenNLP. Given that surveillance 

systems for VTE that use NLP are in a nascent stage of design and implementation, we have 

not yet included advanced features, such as coreference resolution, relation extraction, and 

semantic processing. However, these features may be warranted if additional detail is needed 
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to identify physicians’ affiliations and organizations’ locations or to understand text that is 

as long as a paragraph (as opposed to 1–2 sentences).

In addition to being used in VTE case identification, IDEAL-X has also been used 

to extract treatment and prognosis information for patients with non–small cell cancer 

who are undergoing radiotherapy [18]; cardiac catheterization procedure reports; coronary 

angiography reports; and reports that contain unstructured text from medical histories, 

physicals, and hospital discharge summaries [19]. These studies report promising 

preliminary findings, showing precision values, sensitivity values, and F scores of 83% 

or greater.

Other NLP algorithms have been developed and used to identify cases of VTE. Hinz et al 

[20] developed an algorithm that reported a positive predictive value of 84.7%, a sensitivity 

of 95.3%, and an F score of 0.897. Gálvez et al [21] developed an NLP tool—Reveal 

NLP—that identified VTE cases in a pediatric population. The reported sensitivity was 

97.2%, and the specificity was 92.5%. Although these previous studies used tools that they 

had developed, our study implemented IDEAL-X in institutions with no connection to the 

software’s development, providing additional insight into the usefulness and accuracy of the 

NLP tool.

Limitations

A primary limitation of IDEAL-X is the lack of integration into an EMR system; IDEAL-

X requires personnel to manually pull imaging records—a rate-limiting step. Another 

limitation is the forced binary options of case and not a case, such that indeterminate was 

not an option. The observed different distributions of categories of false-positive results 

by site were attributed to differences in the way records were requested or pulled at each 

site. Imaging studies from patients with superficial vein thrombosis and chronic or residual 

DVT were not included in the data set at Duke University. Enabling fast and convenient 

customization to support various event determination criteria would be a prerequisite for 

the NLP tool if nationwide deployment is required. In addition, further training is needed, 

so that IDEAL-X accurately classifies records in a manner that accounts for the patterns 

detected in false-positive and false-negative records. On the other hand, for surveillance 

purposes, the VTE case identification criteria also need to be standardized to ensure the 

consistency of case reporting among different facilities.

Future efforts will be directed at fully automating VTE surveillance. One example of how 

to better integrate an NLP program, such as IDEAL-X, is to include it in a facility’s 

clinical data process, so that after an imaging report is finalized and sent for billing, it 

is also run through IDEAL-X (and the associated preprocessing routines). In addition to 

classifying VTE cases in real time, the next step toward fully automating the process 

entails collecting demographic, clinical, and risk factor data to facilitate the interpretation 

of data regarding disease incidence. Other future efforts include implementing machine 

learning to fine-tune the IDEAL-X algorithm, so that it can “learn” how to more accurately 

differentiate between cases and noncases. Example text from records that generate false-

positive results can be added to further train IDEAL-X and improve its accuracy. Despite 

the anticipated benefits of using these information extraction software tools, there are certain 
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barriers to implementation. These barriers include the costs of customized deployment and 

localization and the proprietary nature of the software, as well as having personnel who are 

responsible for operating and maintaining the system, ensuring health care administrators 

buy into the benefits, and maintaining compliance with the Health Insurance Portability and 

Accountability Act and other regulations.

Conclusions and Public Health Impact

The use of machine learning and NLP in disease surveillance is improving the ability 

to access and analyze unstructured text from EMRs. Their further and extensive use 

are expected to reduce resource requirements (ie, time and money), while increasing the 

ability to standardize data collection across sites. By conducting surveillance for VTE, 

we would have better data for knowing if changes in clinical practice (eg, an increase 

in the use of direct oral anticoagulants) are reducing the burden of VTE. Enhanced VTE 

surveillance can improve patient management, care, and safety. Similarly, with the advent 

of the COVID-19 pandemic, a robust national surveillance system would be instrumental 

in quickly understanding the association between COVID-19 and VTE [22]. The lessons 

learned from using NLP in VTE disease surveillance can be extended to improve the 

surveillance of other hospital-related conditions for which unstructured text from medical 

records plays a key role in detection and classification.
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Figure 1. 
Flowchart of information collection and analysis at Duke University and the University of 

Oklahoma Health Sciences Center. CTA: computed tomography angiography; DVT: deep 

vein thrombosis; IDEAL-X: Information and Data Extraction Using Adaptive Learning; MS: 

Microsoft; PE: pulmonary embolism; PHI: personal health information; US: ultrasound; 

V/Q: ventilation/perfusion.
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