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Abstract

Suboptimal ambient temperature exposure significantly affects public health. Previous studies 

have primarily focused on risk assessment, with few examining the health outcomes from an 

economic perspective. To inform environmental health policies, we estimated the economic costs 

of health outcomes associated with suboptimal temperature in the Minneapolis/St. Paul Twin 

Cities Metropolitan Area.

We used a distributed lag nonlinear model to estimate attributable fractions/cases for mortality, 

emergency department visits, and emergency hospitalizations at various suboptimal temperature 

levels. The analyses were stratified by age group (i.e., youth (0–19 years), adult (20–64 years), 

and senior (65+ years)). We considered both direct medical costs and loss of productivity during 

economic cost assessment.

Results show that youth have a large number of temperature-related emergency department visits, 

while seniors have large numbers of temperature-related mortality and emergency hospitalizations. 

Exposures to extremely low and high temperatures lead to $2.70 billion [95% empirical 

confidence interval (eCI): $1.91 billion, $3.48 billion] (costs are all based on 2016 USD value) 

economic costs annually. Moderately and extremely low and high temperature leads to $9.40 

billion [eCI: $6.05 billion, $12.57 billion] economic costs. The majority of the economic costs are 
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consistently attributed to cold (>75%), rather than heat exposures and to mortality (>95%), rather 

than morbidity. Our findings support prioritizing temperature-related health interventions designed 

to minimize the economic costs by targeting seniors and to reduce attributable cases by targeting 

youth.
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1. Introduction

Ambient temperature exposures are associated with substantial adverse health impacts 

involving a wide range of health conditions (Analitis et al., 2008; Basu, 2009; Chen et 

al., 2016; Ye et al., 2011). As temperature is predicted to be more variable and extreme in 

the future (U.S. Environmental Protection Agency, 2016), such health risks are particularly 

concerning (Crimmins et al., 2016). Estimates from 2006 to 2010 show that 1300 and 

670 premature deaths are related to extreme cold and heat exposure, respectively, in the 

United States each year (Berko et al., 2014). However, these estimates are based only on 

clinical diagnoses of temperature-related illnesses such as hypothermia and hyperthermia 

and known to underestimate the true burden by omitting cases where ambient temperature 

was a contributing exposure (Crimmins et al., 2016). Decision makers tasked with protecting 

communities from environmental hazards like extreme temperatures not only need better 

assessments of the number of individuals impacted but the associated economic burden 

as well. The latter is critical as decision makers attempt to allocate resources and justify 

budgets for environmental health planning across a range of environmental hazards (e.g., air 

pollution) that impact communities besides extreme temperature (Hutton and Menne, 2014).
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Although the relationship between ambient temperature and population health is well 

studied, few investigators have linked health risks to economic costs. Knowlton et al. (2011), 

Lin et al. (2012), and Schmeltz et al. (2016) are among the few that have provided such 

economic estimates. However, the information provided in these studies is limited, as they 

consider only a few health outcomes for limited periods in the year. For instance, Knowlton 

et al. (2011) analyzed a specific two-week long heat wave in California during summer 

2006, despite evidence that temperature-related adverse health impacts occur year-round and 

with considerable seasonal variability (Gasparrini et al., 2015, 2016). Lin et al. (2012) and 

Schmeltz et al. (2016) only considered hospitalizations, despite evidence that temperature 

impacts a wider range of health outcomes (e.g., mortality (Gasparrini et al., 2015) and 

emergency department visits (Saha et al., 2015; Zhang et al., 2014)). Failing to account 

for multiple outcomes leads to an underestimation of the corresponding economic burdens. 

These studies also provide insufficient information on how the health and economic burden 

change over a larger range of temperature, limiting the integration of temperature and health 

response functions into health intervention planning.

Targeting these research gaps, we introduce a comprehensive approach to assess the health 

economic burden associated with exposure to a range of cold and hot temperatures in 

the Minneapolis-St. Paul Twin Cities Metropolitan Area (TCMA). We include mortality, 

emergency department visits, and emergency hospitalizations in this analysis. The economic 

costs estimated account for direct medical costs and productivity loss.

2. Data & methods

2.1. Public health data

The Twin Cities Metropolitan Area includes seven counties (Anoka, Carver, Dakota, 

Hennepin, Ramsey, Scott, and Washington) and has total residents of over 3 million 

(Minnesota Department of Health, 2015). We obtained all-cause mortality (MORT) data 

(1998–2014) for these seven counties from the Office of Vital Records, Minnesota 

Department of Health. All-cause morbidity data (2005–2014) were collected from all 

emergency departments within the Minnesota Hospital Association (MHA) network, 

available from the Minnesota Hospital Discharge Dataset (MNHDD). The MNHDD 

contains patient claims data voluntarily submitted by members of the MHA, a trade 

association representing Minnesota Hospitals. The Minnesota Department of Health (MDH) 

purchases these data from MHA under a Memorandum of Understanding between MHA and 

MDH. The morbidity dataset further breaks down to emergency department visits followed 

by discharge (EDV) and emergency department visits followed by hospitalization (EDHSP). 

For this analysis, we assume that patients do not stay for treatment in an emergency 

department for longer than three days without being hospitalized, as emergency departments 

normally cannot accommodate extended stays. Consequently, we removed 11,138 EDV 

records (approximately 0.2% of total morbidity records) with emergency department stays 

longer than three days. We stratified the data further by age: youth (0–19 years), adult 

(20–64 years), and senior (65+ years).
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2.2. Environmental data

We extracted historical hourly meteorological data for the TCMA for seven National 

Weather Service weather stations within the TCMA on both raw data (i.e. air temperature) 

and compound temperature indicators (i.e. heat index, wind chill index, and wet bulb global 

temperature). We use daily maximum heat index (HImax) as the ambient temperature metric, 

which is calculated using air temperature (°F) and relative humidity (%) according to 

the method of Rothfusz (1990) for consistency with National Weather Service standards. 

This choice is based on composition, current policy in place, time-at-exposure (e.g. few 

individuals are exposed when minimum temperature is observed), and extensive model 

comparison (using different temperature variables mentioned above and different statistics 

including daily minimum, mean, and maximum). Outside of summer months, the values of 

HImax are comparable to daily maximum air temperature in the TCMA. We assumed that 

all individuals within the TCMA had the same exposure level at any given time during the 

study.

Although not selected for the final model, we considered air pollutants during the model 

development phase. We obtained data on ozone (O3) and particulates with diameters equal to 

or smaller than 2.5 μm (PM2.5) from the Minnesota Pollution Control Agency for the years 

2000 to 2010. More details on the exploratory analysis using air pollution as a potential 

confounder are in Supplemental Information Section 1.

2.3. Estimating the exposure-response functions

We used a DLNM to characterize the exposure-response function between temperature and 

population health (Gasparrinia et al., 2010). This method is appropriate because there are 

distinct temporal delays (lag l) between the exposures and responses considered in this study 

(Anderson and Bell, 2009). Furthermore, this study used a quasi-Poisson generalized linear 

model:

ln E Y t = β0 + cb + ns(Date, df) + β1 ⋅ dow + β2 ⋅ ℎolidays
Morbidity Models Only

(1)

where Yt is the daily counts of public health outcomes; cb is a cross-basis function that 

captures both the exposure-response relationship (i.e., how different exposure levels affect 

human health at a given time) and the lag-response relationship (i.e., how a given exposure 

level affects human health at different time lags). We further adjusted for day of week (dow), 

a long-term trend (date), holiday effects (holidays, only for morbidity model based on the 

results of likelihood ratio tests). More specifically, this model assumes that the exposure 

response relationship is a natural cubic spline with three internal knots at 10th, 75th, 

90th percentiles of the HImax distribution. The lag-response relationship is also assumed 

to be a natural cubic spline function. Three internal knots are equally spaced through the 

logarithmic lag range. The maximum lag considered is 28 days in order to capture the 

delayed effects of cold exposure (Anderson and Bell, 2009). The long-term trend is assumed 

to be a natural cubic spline function with 8 and 7 degrees of freedom given to each year 

for the mortality and morbidity models, respectively. Holiday effect is only significant for 

morbidity outcomes and is adjusted for by including a binary variable that equals 1 on 
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federal holidays and 3 following days and 0 on other days. These model specifications 

are based on extensive mode comparisons using quasi-Akaike Information Criterion and 

Mean Absolute Errors. More details on model selection can be found in the Supplemental 

Information Section 2.

We calculate all risk estimates relative to reference baselines that correspond to minimum 

relative risk (RR) (Tobías et al., 2017). This baseline is referred to as the minimum effect 

temperature (MET) in this study for both mortality and morbidity outcomes. For RR 

estimates, statistical significance is defined as the probability of type I error is smaller than 

0.05.

2.4. Attributable fraction and attributable cases

We calculate attributable fractions (AF) and attributable cases (AC) to show the percentage 

and number of cases of the health outcomes associated with hazardous ambient temperature 

exposures. To calculate AFs and ACs, we used a method in Gasparrini and Leone (2014). 

The underlying assumption is a backward perspective – the health response at a given time 

t is a result of many exposure events that led up to it. More specifically, AF and AC are 

defined as:

AFx, t = 1 − exp −∑l = 0

L βxt − 1, l (2)

ACx, t = AFx, t ⋅ Y t (3)

where x is the ambient temperature exposure level at time t; βxt-l,l is the natural logarithm 

of RR given exposure at time t-l (i.e., xt-l) after l days have elapsed; Nt is daily counts of 

population health outcomes at time t. In this study, we examined attributable risks for two 

temperature ranges: moderate to extreme exposures, defined by the bottom and top 30% 

of the historical temperature record (40 and 76 °F, respectively); and extreme exposures, 

defined by the bottom and top 5% of the historical temperature records (18 and 89 °F, 

respectively). Exposure ranges are defined by percentiles as opposed to absolute temperature 

values to ensure our results are comparable in different urban climate settings. The over-

arching goal is to compare the health outcomes and relevant economic burdens attributable 

to different levels of cold and heat exposures. We examined both AF and AC to identify the 

most vulnerable and the most affected age groups.

When it comes to uncertainty assessment for AF and AC, it is challenging to obtain an 

analytical solution using the approach in Gasparrini and Leone (2014) (Graubard and Fears, 

2005). Therefore, Monte Carlo simulations (n = 5000) were used to express uncertainty as 

95% empirical confidence intervals (eCI).

2.5. Year-to-year variations for cost estimation

Various parameters for estimating costs, such as Cost-to-Charge Ratios (CCR), differ 

drastically from year to year. Consequently, there is a need to explore the year-to-year 

variability in terms of AC. This study proposes an incremental approach:
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AC(y)p =
∑i = 1

my ACx, ti, y = 1

∑
i = 1

my

ACx, ti − ∑
i = 1

my − 1

ACx, ti, y > 1
(4)

where AC(y)p denotes the point estimation of AC during year y; my is the number of 

observations in the first y years of the time series. The uncertainty around AC(y)p is assumed 

to depend on that of AC(y)p.tot In other words, for each simulation result of total attributable 

cases (ACtot.sim) there is an annual attributable cases (ACsim) defined as:

AC(y)sim = AC(y)p

ACtot, p
ACtot . sim (5)

The results of this intermediate step are shown in Supplemental Information Section 3.

2.6. Cost estimation

We use the Value of a Statistical Life (VSL) to estimate the total health-related costs of 

mortality. VSL is the “societal willingness to pay for mortality risk reductions” (Kenkel, 

2003) and is independent of any health, demographic, or socioeconomic characteristics. The 

economic loss due to mortality is the product of total lives lost and VSL. We convert the 

mean VSL estimate of $4.8 million (1990 USD) (U.S. EPA, 1997), which is based on a 1997 

meta-analysis, to 2016 USD value (details in Supplemental Information Sections 4.1.1–

4.1.3). We also considered several updated VSL estimates (Thomson and Monje, 2015), 

ranging from $5.56 to $13.90 million (2016 USD, details in Supplemental Information 

Section 4.1.4). All cost parameters and estimates in this study are converted to 2016 USD 

value unless otherwise specified.

Medical costs of temperature-related morbidity depend on the number of EDVs and 

EDHSPs that are associated with temperature exposure and the loss in productivity for 

extended stays at the healthcare facility. To estimate the population level medical cost, we 

used three factors: total billed charges reflected on individual emergency department records 

or discharge forms, cost-to-charge ratio (CCR), and the professional fee ratio (PFR). CCR 

converts the total amount billed to an amount that approximates what the medical facility 

receives (Levit et al., 2013). In this study, total billed charges and CCR were calculated 

from emergency department records in the TCMA and differs from year to year. PFR 

accounts for costs that are not facility-based, such as salaries for physicians and other 

healthcare professionals. This study used the PFR value for EDV among commercially 

insured individuals, 1.286, estimated by Peterson et al. (2015). Notably, PFR estimates for 

EDHSP or for Medicaid visits do not vary substantially for other insurance types, based on 

the same study.

We used the Daily Production Value (DPV) to calculate the productivity loss for the days 

when individuals were at the healthcare facility as a result of EDV or EDHSP. Grosse et al. 

(2009) provided the DPV estimates for 5-year age groups starting from 15 to 19 years using 

a combination of factors such as average daily working hours, usual hourly compensation, 
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daily market compensation and more. The implication for this study is that the youth (0–19 

years) and senior (65+ years) age groups generally do not work >14 h/week on average 

for formal market compensation. The adult (20–64 years) age group tends to work 21–35 

h/week. Consequently, the average DPV, weighted by age distribution, in Minneapolis (2010 

U.S. Census) is $8.74/day for the youth, $175.78/day for the adult, and $57.12/day for the 

senior populations. These values, originally estimated for 2007, are converted to 2016 for 

consistency, based on methods described in the Supplemental Information Section 4.2.

Thus, the total costs of temperature-related morbidity can be expressed at the following:

Morbidity Cost = Medical Cost + Productivity Loss
= Attributable EDV or EDHSP × (Total Billed Charges × CCR × PFR + Length of Stay × DPV

Research involving the collection or study of existing data and if the information is recorded 

by the investigator in such a manner that subjects cannot be identified, directly or through 

identifiers link to the subjects, is exempt from the International Review Board approval at 

the Minnesota Department of Health.

3. Results

Descriptive statistics of the study population are in Table 1. Between 1998 and 2014, there 

were 301,198 deaths in the TCMA, with a majority being seniors (65+ years). The morbidity 

dataset contains 8,117,358 records with a majority being adults (20–64 years). Among them, 

17.9% (1,447,793) were EDHSPs with an average hospital stay of 4.42 days.

In Fig. 1, we show the exposure-response functions for total and age group-specific daily 

mortality and morbidity. These functions characterize the relative risk associated with 

each temperature exposure level compared to the reference level (i.e., MET). In the total 

population (Fig. 1(a)), MET is 84 °F for mortality and 71 °F for EDV and EDHSP. (MET 

estimates in Fig. 1(b–d) are shown in Supplemental Information Section 5). As expected, 

the U- or J- shapes of the exposure-response functions show low health risk at moderate 

exposure levels. High temperatures are associated with increased risk for mortality and 

EDV but not for EDHSP. Low temperatures are associated with increased risk across 

all population health outcomes. Age-specific analyses reveal three additional pieces of 

information that are important for understanding the relationship between temperature and 

population health. First, ambient temperature exposure is associated with mortality in the 

oldest age group (65+ years) only. Based on our results, ambient temperature exposure 

is not associated with mortality in the two younger age groups. Thus, we do not provide 

the relevant mortality burdens for them. Second, based on measures of morbidity, extreme 

heat exposures only affect youth (Fig. 1(b–d)). Third, moderate and extreme cold affects 

morbidity in all age groups. Uncertainty around RR estimated here are further captured by 

ACs, discussed below and in Supplemental Information Section 6, through the Monte Carlo 

simulation process mentioned above (Gasparrini and Leone, 2014).

Figs. 2 and 3 show AFs and ACs across exposure types (cold and heat) and magnitudes 

(moderate to extreme exposures and extreme exposures only) by age group. Mortality 

results, marked in red, are only shown for seniors (65+ years). From 1998 to 2014, inclusive, 
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13,991 (6.2%) deaths among seniors are attributed to moderate to extreme cold exposures 

and 3444 (1.5%) to extreme cold exposures. During the same period and in the same age 

group, 2016 (0.9%) deaths are attributed to moderate to extreme heat exposures and 1144 

(0.5%) to extreme heat exposures.

We analyzed EDV and EDHSP results in the same way. Youth (0–19 years) is the only age 

group with a substantial health burden associated with heat exposures. There are 23,478 

[95% eCI: 8751, 37,860] (1.2% [95% eCI: 0.4%, 1.9%]) cases of EDVs and 1089 [95% 

eCI: 194, 1929] (0.78% [95% eCI: 0.1%, 1.4%]) EDHSPs associated with moderate to 

extreme heat exposures. Among them, 12,079 [95% eCI: 7512, 16,420] (0.6% [95% eCI: 

0.4%, 0.8%]) EDVs and 657 [95% eCI: 102, 1189] (0.5% [95% eCI: 0.1%, 0.9%]) EDHSPs 

are associated with extreme heat exposures. Heat exposures are not associated with health 

burden among adults (20–64 years) or seniors (65+ years) in the TCMA. Regarding cold, 

there are positive AFs and ACs for all health outcomes and for all age groups considering 

moderate to extreme exposures. Given EDV, youth has the highest AF as well as AC (7.03% 

[95% eCI: 5.9%, 8.1%], 137,622 [95% eCI: 115,749, 157,331], respectively). However, the 

EDHSP-specific analysis shows that although the youth has the highest AF (6.6% [95% 

eCI: 2.5%, 10.3%]), seniors have the highest AC (24,252 [95% eCI: 15,750, 32,327]). The 

underlying reason is that there are many more senior EDHSPs than youth EDHSPs. When 

we considered only extreme cold, all estimates become smaller, as expected, and the AF 

and AC among senior EDV cases were no longer positive; otherwise, all patterns were 

similar to those described above. The attributable EDHSPs for youth, adult, and senior are 

2488 [95% eCI: 1225, 3680], 4372 [95% eCI: 1992, 6732], and 4445 [95% eCI: 2319, 

6509] – their differences become smaller than that considering moderate to extreme cold 

exposures. Overall, youth is the most vulnerable but not always the most affected (measured 

by burden) age group. Based on EDHSP AC, seniors and adults are both have higher health 

burden compared to the youth. Numbers used to generate Figs. 2 and 3 are in Supplemental 

Information Section 6.

After taking into consideration inflation and income growth, based on total AC in the 65+ 

years age group and the VSL estimated by U.S. EPA (1997), the mortality costs related 

to moderate to extreme cold and heat exposures are $8119.33 million [95% eCI: $4158.15 

million, $11,862.49million] and $1167.50 million [95% eCI: $478.11 million, $1839.77 

million] per year, respectively. The mortality costs related to extreme cold and heat only 

are $2,00.67 million [95% eCI: $1152.52 million, $2809.77 million] and $665.06 million 

[95% eCI: $276.35, $1041.53 million] dollars per year, respectively. Using updated VSL 

values of Thomson and Monje (2015) did not lead to substantial changes in these estimates 

(Supplemental Information Section 4.1.5).

After taking into consideration inflation, the overall results show that the medical costs for 

EDHSP are higher than those of EDV due to the durations of stay. In addition, the medical 

costs due to cold exposures are higher than those of heat due to higher health burden (i.e. 

AC and AF). Among EDVs, the largest contributor to annual medical costs is the 0–19 

years age group under cold exposure. This age group accounts for $8.18 million [95% 

eCI: $7.82 million, $8.54 million] in medical expenses associated with moderate to extreme 

cold exposures and $2.21 million [95% eCI: $2.11 million, $2.32 million] associated with 
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only extreme cold exposures (Tables 2 and 3). Among EDHSPs, the largest contributor to 

annual medical costs is the 65+ year age group under cold exposure, which accounted for 

$37.20 million [95% eCI: $33.48 million, $40.85 million] in medical expenses associated 

with moderate to extreme cold exposures and $6.85 million [95% eCI: $5.81 million, $7.90 

million] associated with only extreme cold exposures.

Among adults (20–64 years), productivity loss was associated with relevant EDVs and 

EDHSPs under cold exposures. Considering moderate to extreme cold exposures among 

adults, the annual productivity loss is $1.63 million [95% eCI: $1.41 million, $1.84 million] 

due to EDVs and $1.93 million [95% eCI: $1.64 million, $2.22 million] due to EDHSPs. 

Considering extreme cold exposures only, the annual productivity loss is $0.29 million [95% 

eCI: $0.23 million, $0.35 million] due to EDVs and $0.46 million [95% eCI: $0.38 million, 

$0.55 million] due to EDHSPs.

Each year, the health burden associated with ambient temperature exposure leads to 

economic costs of approximately $9.40 billion [95% eCI: $6.05 billion, $12.57 billion] 

considering both moderate and extreme exposures and $2.70 billion [95% eCI: $1.91 billion, 

$3.48 billion] considering only extreme exposures in the TCMA. Morbidity loss makes up 

roughly 0.1–2.5% of the total costs depending exposure magnitude and age group.

4. Discussion

This study presents estimates of the health-related economic costs associated with ambient 

temperature exposures for the TCMA – approximately $9.40 billion annually when both 

extreme and moderate exposures are considered. This comprehensive estimate relies 

on multiple criteria, capturing different population health outcomes. The World Health 

Organization recommends the use of such multi-criteria approach for estimating health-

related costs associated with climate change as a means of internalizing an array of external 

costs, enabling comparison across different outcomes, and providing explicit rules for 

balancing a range of information (Hutton et al., 2013). Based on such a multi-criteria 

approach, our results show that cold exposures are responsible for the economic costs for the 

TCMA considering mortality and emergency department visits. This holds true regardless 

of the health outcome or age group. Harsh winters and freezing temperatures pose serious 

health risks even for a well-acclimatized population. The methods developed in this study 

demonstrate strengths that recommend its application for other jurisdictions and types of 

environmental exposures.

Our findings highlight that temperature-related costs vary by age. Seniors are the only age 

group for which extreme temperature conditions are associated with increased mortality. 

These results are broadly consistent with Hajat et al. (2014), Dang et al. (2016), and Yang et 

al. (2012), which demonstrate that mortality associated with ambient temperature exposure 

is greater for persons 65 years or older compared to younger age groups. Consequently, the 

overall mortality costs are essentially mortality costs for seniors. Factors that make seniors 

more vulnerable to ambient temperature exposures include social isolation (Naughton et al., 

2002), poverty (Basu and Ostro, 2008), a high prevalence of chronic health conditions (Hajat 

et al., 2014), and reduced ability to take preventive actions to mitigate exposures (Ebi et al., 
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2006). Regarding morbidity outcomes, the relative risks for youth increase more rapidly than 

other age groups as temperature move to the extremes of both cold and heat. Cold exposures 

affect all three age groups, consistent with the results of Cui et al. (2016) and Zhang et 

al. (2014). The youth age group has the highest AF associated with cold exposures. Heat 

exposures, on the other hand, affect only the youth. Regarding this particular observation, 

current literature provides inconsistent evidence (Nitschke et al., 2007, 2011; Kingsley et 

al., 2015; Zhang et al., 2014). It is important to keep in mind that there are many more 

senior EDHSP cases than youth cases. Seniors hospitalized after emergency department 

visits likely require more intensive and extensive medical services due to co-morbidities and 

reduced physiological capacity (Ebi et al., 2006; Hajat et al., 2014). Therefore, it is plausible 

that seniors contribute more to medical costs even though youth are associated with higher 

health risks of EDHSP given hazardous temperature exposure.

This study suggests that studies that limit to seniors a priori, under the assumption that 

other age groups are not as severely impacted by ambient temperatures, may be substantially 

underestimating the total health burden. There are a large number of individuals 0–19 years 

whose emergency department visits are also associated with ambient temperature although 

few of them result in death. Therefore, this study confirms that the youngest and the oldest 

age groups both need to be considered at risk (Sarofim et al., 2016; Xu et al., 2013). With 

regard to public health services, focusing on both the youngest and the oldest individuals 

appears necessary. This analysis provides information for supporting strategic prioritization 

of different age groups in intervention programs (e.g., risk communication and education). 

Specific application will depend on the objective of the decision maker. For instance, 

targeting youth is justifiable when the goal is to protect the most vulnerable individuals. 

Targeting seniors, especially when exposed to cold, may be more efficient in reducing the 

overall economic costs.

The multi-criteria developed in this study is an extension of the theoretical framework in 

Knowlton et al. (2011), with the goal of improving economic costs assessment of health 

risks associated with ambient temperature exposure. This design accounts for various 

different aspects of economic costs, such as medical expenses and productivity loss, 

simultaneous while considering a single mortality or morbidity case. The overall economic 

costs can be considered a composite indicator of impact measurement. This indicator allows 

for potential comparison between the public health consequences of different environmental 

exposures, such as air pollution and extreme temperature exposure, which involve multiple 

health outcomes and aspects of economic costs. The capacity for comparison is crucial to 

public health decision-makers with needs to prioritize at-risk population and allocate scarce 

resources to manage different environmental exposures.

Although different public health outcomes are eventually summed to obtain the total 

economic costs, it is easy to backtrack to the itemized cost criterion that contributes the most 

(or the least) to the overall economic burden. For instance, in our study, we attribute 98% 

of the total economic burden to mortality although the remaining 2% affects a much larger 

number of individuals (see Supplemental Information Section 7). The theoretical framework 

of this study is flexible. When new parameter estimates become available, cost estimates can 

be easily updated.
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In the absence of personal exposure monitoring, the assignment of exposure(s) from sparsely 

spaced monitors to an entire population is imprecise. However, with this available exposure 

information, we attempt our best to establish an association of how temperature fluctuations 

affect adverse health outcomes and characterize this across a wide range of temperature 

extremes that could subsequently be used in public health messaging. There are some 

additional limitations. On mortality, we assume VSL to be insensitive to age. Although 

consistent with the current government practices (Thomson and Monje, 2015; U.S. EPA 

NCEE, 2010), this assumption’s validity, i.e. how VSL varies by age, is still up for 

debate among health economists (U.S. EPA NCEE, 2010) (Aldy and Viscusi, 2007). As 

for morbidity, we did not include non-emergent clinical visits due to data availability. Non-

emergent morbidity could be potentially relevant to sub-optimal cold exposure, given the 

likely delayed effects (Anderson and Bell, 2009). Future studies should consider expanding 

to a more complete set of morbidity measures if data become available. This study considers 

only direct productivity losses. For instance, the DPV of those aged 0–14 years is 0 while 

calculating the overall DPV of the youth age-group (0–19 year olds). In other words, indirect 

losses such as time off work that was taken by parents who need to take care of their 

ill children are not included in the cost function, which may result in underestimation of 

the total real cost. Regarding the overall cost function, it is important to point out that by 

adding mortality costs and morbidity costs, theoretical costs (i.e., willingness-to-pay) are 

added to transactions that have actually occurred (i.e., medical bills). To compensate for this 

limitation, the itemized, as well as the overall costs of public health burden associated with 

hazardous ambient temperature exposures, are both provided.

5. Conclusion

This study estimates economic costs incurred by the health burden of ambient temperature 

exposures, a particularly relevant public health threat given the shifting temperature patterns 

due to climate change. The results can help develop effective public health interventions that 

target specific at-risk populations and inform resources allocation. Using multiple criteria to 

aggregate economic estimates across different age groups leads to a useful, transparent, and 

flexible composite indicator of costs. This approach can be adopted for assessing the overall 

impact of other environmental exposures, such as air pollution, that involve multiple health 

outcomes and aspects of costs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CCR Cost-to-charge ratio

DPV Daily production value

DLNM Distributed lag nonlinear model

eCI Empirical confidence interval

EDHSP Emergency department visits followed by hospitalization

EDV Emergency department visits followed by discharge

EPA Environmental Protection Agency

HI Heat index

MDH Minnesota Department of Health

MET Minimum effect temperature

MM Millions

MORT Mortality

NWS National Weather Service

PFR Professional-fee ratio

RR Relative risk

TCMA Minneapolis – St. Paul Twin Cities Metropolitan Area

USD U.S. dollar

VSL Value of a statistical life
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HIGHLIGHTS

• The relationship between ambient temperature and population health varies 

by age group.

• Suboptimal temperature is associated with serious mortality burden among 

elderly and morbidity burden among youth.

• Suboptimal temperature is associated with large health-related economic costs 

in an urban setting.

• Suboptimal low temperature has contributed more to health-related economic 

costs than suboptimal high temperature.
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Fig. 1. 
Exposure-response functions for each health outcome by age groups. Solid lines indicate 

relative risks (compared to minimum effect temperature) significantly >1(p-value <0.05) and 

dotted lines indicate non-statistically significant results (p-value ≥ 0.05).
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Fig. 2. 
Attributable fraction of three health outcomes by age groups associated with temperature 

exposure. The uncertainty range is defined by 95% empirical confidence intervals obtained 

by Monte Carlo simulations (n = 5000). This figure does not include mortality results 

regarding 0–19 year olds or 20–64 year olds because there is no increased relative risk of 

mortality at any exposure level for these age groups.
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Fig. 3. 
Attributable cases of three health outcomes by age groups associated with temperature 

exposure. The uncertainty range is defined by 95% empirical confidence intervals obtained 

by Monte Carlo simulations (n = 5000). This figure does not include mortality results 

regarding 0–19 year olds or 20–64 year olds because there is no increased relative risk of 

mortality at any exposure level for these age groups.
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Table 1

Mortality and morbidity in the Minneapolis-St. Paul Twin Cities Metropolitan Area.

Age group (yo) Mortality (1998–2014) Morbidity (2005–2014)

MORT EDV EDHSP

tot μ δ tot μ δ tot μ δ

0–19 7034 1 1 1,957,692 536 84 139,318 38 9

20–64 68,550 11 3 3,980,639 1090 127 721,132 197 22

65+ 225,614 36 7 720,096 197 40 587,343 161 18

All 301,198 48 8 6,658,427 1823 210 1,447,793 396 36

Three population health outcomes are Mortality; EDV - Emergency Department Visits; EDHSP - Emergency Department Visits followed by 
hospital admission. tot sums the total number of cases for each population health outcomes over the course of 17 years for mortality and 10 years 
for morbidity. μ - daily mean case counts; δ - daily variability measured by standard deviation.
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