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Abstract

Suboptimal ambient temperature exposure significantly affects public health. Previous studies
have primarily focused on risk assessment, with few examining the health outcomes from an
economic perspective. To inform environmental health policies, we estimated the economic costs
of health outcomes associated with suboptimal temperature in the Minneapolis/St. Paul Twin
Cities Metropolitan Area.

We used a distributed lag nonlinear model to estimate attributable fractions/cases for mortality,
emergency department visits, and emergency hospitalizations at various suboptimal temperature
levels. The analyses were stratified by age group (i.e., youth (0-19 years), adult (20-64 years),
and senior (65+ years)). We considered both direct medical costs and loss of productivity during
economic cost assessment.

Results show that youth have a large number of temperature-related emergency department visits,
while seniors have large numbers of temperature-related mortality and emergency hospitalizations.
Exposures to extremely low and high temperatures lead to $2.70 billion [95% empirical
confidence interval (eCl): $1.91 billion, $3.48 billion] (costs are all based on 2016 USD value)
economic costs annually. Moderately and extremely low and high temperature leads to $9.40
billion [eCl: $6.05 billion, $12.57 billion] economic costs. The majority of the economic costs are
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consistently attributed to cold (>75%), rather than heat exposures and to mortality (>95%), rather
than morbidity. Our findings support prioritizing temperature-related health interventions designed
to minimize the economic costs by targeting seniors and to reduce attributable cases by targeting
youth.

Graphical Abstract

Total Mortality and Morbidity Costs Related to Sub-optimal Ambient Temperature
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Introduction

Ambient temperature exposures are associated with substantial adverse health impacts
involving a wide range of health conditions (Analitis et al., 2008; Basu, 2009; Chen et

al., 2016; Ye et al., 2011). As temperature is predicted to be more variable and extreme in
the future (U.S. Environmental Protection Agency, 2016), such health risks are particularly
concerning (Crimmins et al., 2016). Estimates from 2006 to 2010 show that 1300 and

670 premature deaths are related to extreme cold and heat exposure, respectively, in the
United States each year (Berko et al., 2014). However, these estimates are based only on
clinical diagnoses of temperature-related illnesses such as hypothermia and hyperthermia
and known to underestimate the true burden by omitting cases where ambient temperature
was a contributing exposure (Crimmins et al., 2016). Decision makers tasked with protecting
communities from environmental hazards like extreme temperatures not only need better
assessments of the number of individuals impacted but the associated economic burden

as well. The latter is critical as decision makers attempt to allocate resources and justify
budgets for environmental health planning across a range of environmental hazards (e.qg., air
pollution) that impact communities besides extreme temperature (Hutton and Menne, 2014).
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Although the relationship between ambient temperature and population health is well
studied, few investigators have linked health risks to economic costs. Knowlton et al. (2011),
Lin et al. (2012), and Schmeltz et al. (2016) are among the few that have provided such
economic estimates. However, the information provided in these studies is limited, as they
consider only a few health outcomes for limited periods in the year. For instance, Knowlton
et al. (2011) analyzed a specific two-week long heat wave in California during summer
2006, despite evidence that temperature-related adverse health impacts occur year-round and
with considerable seasonal variability (Gasparrini et al., 2015, 2016). Lin et al. (2012) and
Schmeltz et al. (2016) only considered hospitalizations, despite evidence that temperature
impacts a wider range of health outcomes (e.g., mortality (Gasparrini et al., 2015) and
emergency department visits (Saha et al., 2015; Zhang et al., 2014)). Failing to account

for multiple outcomes leads to an underestimation of the corresponding economic burdens.
These studies also provide insufficient information on how the health and economic burden
change over a larger range of temperature, limiting the integration of temperature and health
response functions into health intervention planning.

Targeting these research gaps, we introduce a comprehensive approach to assess the health
economic burden associated with exposure to a range of cold and hot temperatures in

the Minneapolis-St. Paul Twin Cities Metropolitan Area (TCMA). We include mortality,
emergency department visits, and emergency hospitalizations in this analysis. The economic
costs estimated account for direct medical costs and productivity loss.

Data & methods

Public health data

The Twin Cities Metropolitan Area includes seven counties (Anoka, Carver, Dakota,
Hennepin, Ramsey, Scott, and Washington) and has total residents of over 3 million
(Minnesota Department of Health, 2015). We obtained all-cause mortality (MORT) data
(1998-2014) for these seven counties from the Office of Vital Records, Minnesota
Department of Health. All-cause morbidity data (2005-2014) were collected from all
emergency departments within the Minnesota Hospital Association (MHA) network,
available from the Minnesota Hospital Discharge Dataset (MNHDD). The MNHDD
contains patient claims data voluntarily submitted by members of the MHA, a trade
association representing Minnesota Hospitals. The Minnesota Department of Health (MDH)
purchases these data from MHA under a Memorandum of Understanding between MHA and
MDH. The morbidity dataset further breaks down to emergency department visits followed
by discharge (EDV) and emergency department visits followed by hospitalization (EDHSP).
For this analysis, we assume that patients do not stay for treatment in an emergency
department for longer than three days without being hospitalized, as emergency departments
normally cannot accommodate extended stays. Consequently, we removed 11,138 EDV
records (approximately 0.2% of total morbidity records) with emergency department stays
longer than three days. We stratified the data further by age: youth (0-19 years), adult
(2064 years), and senior (65+ years).
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2.2. Environmental data

We extracted historical hourly meteorological data for the TCMA for seven National
Weather Service weather stations within the TCMA on both raw data (i.e. air temperature)
and compound temperature indicators (i.e. heat index, wind chill index, and wet bulb global
temperature). We use daily maximum heat index (Hlnax) as the ambient temperature metric,
which is calculated using air temperature (°F) and relative humidity (%) according to

the method of Rothfusz (1990) for consistency with National Weather Service standards.
This choice is based on composition, current policy in place, time-at-exposure (e.g. few
individuals are exposed when minimum temperature is observed), and extensive model
comparison (using different temperature variables mentioned above and different statistics
including daily minimum, mean, and maximum). Outside of summer months, the values of
Hlpmax are comparable to daily maximum air temperature in the TCMA. We assumed that
all individuals within the TCMA had the same exposure level at any given time during the
study.

Although not selected for the final model, we considered air pollutants during the model
development phase. We obtained data on ozone (O3) and particulates with diameters equal to
or smaller than 2.5 pm (PM> 5) from the Minnesota Pollution Control Agency for the years
2000 to 2010. More details on the exploratory analysis using air pollution as a potential
confounder are in Supplemental Information Section 1.

2.3. Estimating the exposure-response functions

We used a DLNM to characterize the exposure-response function between temperature and
population health (Gasparrinia et al., 2010). This method is appropriate because there are
distinct temporal delays (lag /) between the exposures and responses considered in this study
(Anderson and Bell, 2009). Furthermore, this study used a quasi-Poisson generalized linear
model:

In(E(Y,)) = B, + cb + ns(Date,df) + p, - dow+ B, - holidays
Morbidity Models Only

where Y;is the daily counts of public health outcomes; cb s a cross-basis function that
captures both the exposure-response relationship (i.e., how different exposure levels affect
human health at a given time) and the lag-response relationship (i.e., how a given exposure
level affects human health at different time lags). We further adjusted for day of week (dow),
a long-term trend (aate), holiday effects (holidays, only for morbidity model based on the
results of likelihood ratio tests). More specifically, this model assumes that the exposure
response relationship is a natural cubic spline with three internal knots at 10th, 75th,

90th percentiles of the Hlyax distribution. The lag-response relationship is also assumed

to be a natural cubic spline function. Three internal knots are equally spaced through the
logarithmic lag range. The maximum lag considered is 28 days in order to capture the
delayed effects of cold exposure (Anderson and Bell, 2009). The long-term trend is assumed
to be a natural cubic spline function with 8 and 7 degrees of freedom given to each year

for the mortality and morbidity models, respectively. Holiday effect is only significant for
morbidity outcomes and is adjusted for by including a binary variable that equals 1 on
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federal holidays and 3 following days and 0 on other days. These model specifications
are based on extensive mode comparisons using quasi-Akaike Information Criterion and
Mean Absolute Errors. More details on model selection can be found in the Supplemental
Information Section 2.

We calculate all risk estimates relative to reference baselines that correspond to minimum
relative risk (RR) (Tobias et al., 2017). This baseline is referred to as the minimum effect
temperature (MET) in this study for both mortality and morbidity outcomes. For RR
estimates, statistical significance is defined as the probability of type I error is smaller than
0.05.

2.4. Attributable fraction and attributable cases

We calculate attributable fractions (AF) and attributable cases (AC) to show the percentage
and number of cases of the health outcomes associated with hazardous ambient temperature
exposures. To calculate AFs and ACs, we used a method in Gasparrini and Leone (2014).
The underlying assumption is a backward perspective — the health response at a given time
tis a result of many exposure events that led up to it. More specifically, AF and AC are
defined as:

AF =1-exp(-Y . ) @

ACx,r = AFx,t ° Yr (3)

where x is the ambient temperature exposure level at time £, Bx;,is the natural logarithm
of RR given exposure at time #-/(i.e., xy.)) after /days have elapsed; N;is daily counts of
population health outcomes at time £ In this study, we examined attributable risks for two
temperature ranges: moderate to extreme exposures, defined by the bottom and top 30%

of the historical temperature record (40 and 76 °F, respectively); and extreme exposures,
defined by the bottom and top 5% of the historical temperature records (18 and 89 °F,
respectively). Exposure ranges are defined by percentiles as opposed to absolute temperature
values to ensure our results are comparable in different urban climate settings. The over-
arching goal is to compare the health outcomes and relevant economic burdens attributable
to different levels of cold and heat exposures. We examined both AF and AC to identify the
most vulnerable and the most affected age groups.

When it comes to uncertainty assessment for AF and AC, it is challenging to obtain an
analytical solution using the approach in Gasparrini and Leone (2014) (Graubard and Fears,
2005). Therefore, Monte Carlo simulations (n7=5000) were used to express uncertainty as
95% empirical confidence intervals (eCl).

2.5. Year-to-year variations for cost estimation

Various parameters for estimating costs, such as Cost-to-Charge Ratios (CCR), differ
drastically from year to year. Consequently, there is a need to explore the year-to-year
variability in terms of AC. This study proposes an incremental approach:

Sci Total Environ. Author manuscript; available in PMC 2023 May 15.
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Cac,,  y=1

AC(y), = { m, m,_
Y AC., - ) AC,, y> 1
i=1 i=1

Q]

where AC(Y),, denotes the point estimation of AC during year y; /m, is the number of
observations in the first yyears of the time series. The uncertainty around ACQ(}), is assumed
to depend on that of AQ())0¢ In other words, for each simulation result of total attributable
cases (ACyy sim) there is an annual attributable cases (ACs;,) defined as:

_ AC(),

AC(y)sim - AC

A Cror .sim (5)

The results of this intermediate step are shown in Supplemental Information Section 3.

2.6. Cost estimation

We use the Value of a Statistical Life (VSL) to estimate the total health-related costs of
mortality. VSL is the “societal willingness to pay for mortality risk reductions” (Kenkel,
2003) and is independent of any health, demographic, or socioeconomic characteristics. The
economic loss due to mortality is the product of total lives lost and VSL. We convert the
mean VSL estimate of $4.8 million (1990 USD) (U.S. EPA, 1997), which is based on a 1997
meta-analysis, to 2016 USD value (details in Supplemental Information Sections 4.1.1-
4.1.3). We also considered several updated VSL estimates (Thomson and Monje, 2015),
ranging from $5.56 to $13.90 million (2016 USD, details in Supplemental Information
Section 4.1.4). All cost parameters and estimates in this study are converted to 2016 USD
value unless otherwise specified.

Medical costs of temperature-related morbidity depend on the number of EDVs and
EDHSPs that are associated with temperature exposure and the loss in productivity for
extended stays at the healthcare facility. To estimate the population level medical cost, we
used three factors: total billed charges reflected on individual emergency department records
or discharge forms, cost-to-charge ratio (CCR), and the professional fee ratio (PFR). CCR
converts the total amount billed to an amount that approximates what the medical facility
receives (Levit et al., 2013). In this study, total billed charges and CCR were calculated
from emergency department records in the TCMA and differs from year to year. PFR
accounts for costs that are not facility-based, such as salaries for physicians and other
healthcare professionals. This study used the PFR value for EDV among commercially
insured individuals, 1.286, estimated by Peterson et al. (2015). Notably, PFR estimates for
EDHSP or for Medicaid visits do not vary substantially for other insurance types, based on
the same study.

We used the Daily Production Value (DPV) to calculate the productivity loss for the days
when individuals were at the healthcare facility as a result of EDV or EDHSP. Grosse et al.
(2009) provided the DPV estimates for 5-year age groups starting from 15 to 19 years using
a combination of factors such as average daily working hours, usual hourly compensation,
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daily market compensation and more. The implication for this study is that the youth (0-19
years) and senior (65+ years) age groups generally do not work >14 h/week on average

for formal market compensation. The adult (20-64 years) age group tends to work 21-35
h/week. Consequently, the average DPV, weighted by age distribution, in Minneapolis (2010
U.S. Census) is $8.74/day for the youth, $175.78/day for the adult, and $57.12/day for the
senior populations. These values, originally estimated for 2007, are converted to 2016 for
consistency, based on methods described in the Supplemental Information Section 4.2.

Thus, the total costs of temperature-related morbidity can be expressed at the following:

Morbidity Cost = Medical Cost + Productivity Loss
= Attributable EDV or EDHSP X (Total Billed Charges x CCR x PFR + Length of Stay x DPV)

Research involving the collection or study of existing data and if the information is recorded
by the investigator in such a manner that subjects cannot be identified, directly or through
identifiers link to the subjects, is exempt from the International Review Board approval at
the Minnesota Department of Health.

3. Results

Descriptive statistics of the study population are in Table 1. Between 1998 and 2014, there
were 301,198 deaths in the TCMA, with a majority being seniors (65+ years). The morbidity
dataset contains 8,117,358 records with a majority being adults (20-64 years). Among them,
17.9% (1,447,793) were EDHSPs with an average hospital stay of 4.42 days.

In Fig. 1, we show the exposure-response functions for total and age group-specific daily
mortality and morbidity. These functions characterize the relative risk associated with
each temperature exposure level compared to the reference level (i.e., MET). In the total
population (Fig. 1(a)), MET is 84 °F for mortality and 71 °F for EDV and EDHSP. (MET
estimates in Fig. 1(b—d) are shown in Supplemental Information Section 5). As expected,
the U- or J- shapes of the exposure-response functions show low health risk at moderate
exposure levels. High temperatures are associated with increased risk for mortality and
EDV but not for EDHSP. Low temperatures are associated with increased risk across

all population health outcomes. Age-specific analyses reveal three additional pieces of
information that are important for understanding the relationship between temperature and
population health. First, ambient temperature exposure is associated with mortality in the
oldest age group (65+ years) only. Based on our results, ambient temperature exposure

is not associated with mortality in the two younger age groups. Thus, we do not provide
the relevant mortality burdens for them. Second, based on measures of morbidity, extreme
heat exposures only affect youth (Fig. 1(b—d)). Third, moderate and extreme cold affects
morbidity in all age groups. Uncertainty around RR estimated here are further captured by
ACs, discussed below and in Supplemental Information Section 6, through the Monte Carlo
simulation process mentioned above (Gasparrini and Leone, 2014).

Figs. 2 and 3 show AFs and ACs across exposure types (cold and heat) and magnitudes
(moderate to extreme exposures and extreme exposures only) by age group. Mortality
results, marked in red, are only shown for seniors (65+ years). From 1998 to 2014, inclusive,

Sci Total Environ. Author manuscript; available in PMC 2023 May 15.
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13,991 (6.2%) deaths among seniors are attributed to moderate to extreme cold exposures
and 3444 (1.5%) to extreme cold exposures. During the same period and in the same age
group, 2016 (0.9%) deaths are attributed to moderate to extreme heat exposures and 1144
(0.5%) to extreme heat exposures.

We analyzed EDV and EDHSP results in the same way. Youth (0-19 years) is the only age
group with a substantial health burden associated with heat exposures. There are 23,478
[95% eCl: 8751, 37,860] (1.2% [95% eCl: 0.4%, 1.9%)]) cases of EDVs and 1089 [95%
eCl: 194, 1929] (0.78% [95% eCl: 0.1%, 1.4%]) EDHSPs associated with moderate to
extreme heat exposures. Among them, 12,079 [95% eCl: 7512, 16,420] (0.6% [95% eCl:
0.4%, 0.8%]) EDVs and 657 [95% eCl: 102, 1189] (0.5% [95% eCl: 0.1%, 0.9%]) EDHSPs
are associated with extreme heat exposures. Heat exposures are not associated with health
burden among adults (20-64 years) or seniors (65+ years) in the TCMA. Regarding cold,
there are positive AFs and ACs for all health outcomes and for all age groups considering
moderate to extreme exposures. Given EDV, youth has the highest AF as well as AC (7.03%
[95% eCl: 5.9%, 8.1%], 137,622 [95% eCl: 115,749, 157,331], respectively). However, the
EDHSP-specific analysis shows that although the youth has the highest AF (6.6% [95%
eCl: 2.5%, 10.3%]), seniors have the highest AC (24,252 [95% eCl: 15,750, 32,327]). The
underlying reason is that there are many more senior EDHSPs than youth EDHSPs. When
we considered only extreme cold, all estimates become smaller, as expected, and the AF
and AC among senior EDV cases were no longer positive; otherwise, all patterns were
similar to those described above. The attributable EDHSPs for youth, adult, and senior are
2488 [95% eCl: 1225, 3680], 4372 [95% eCl: 1992, 6732], and 4445 [95% eCl: 2319,
6509] — their differences become smaller than that considering moderate to extreme cold
exposures. Overall, youth is the most vulnerable but not always the most affected (measured
by burden) age group. Based on EDHSP AC, seniors and adults are both have higher health
burden compared to the youth. Numbers used to generate Figs. 2 and 3 are in Supplemental
Information Section 6.

After taking into consideration inflation and income growth, based on total AC in the 65+
years age group and the VVSL estimated by U.S. EPA (1997), the mortality costs related

to moderate to extreme cold and heat exposures are $8119.33 million [95% eCl: $4158.15
million, $11,862.49million] and $1167.50 million [95% eCl: $478.11 million, $1839.77
million] per year, respectively. The mortality costs related to extreme cold and heat only
are $2,00.67 million [95% eCl: $1152.52 million, $2809.77 million] and $665.06 million
[95% eCl: $276.35, $1041.53 million] dollars per year, respectively. Using updated VSL
values of Thomson and Monje (2015) did not lead to substantial changes in these estimates
(Supplemental Information Section 4.1.5).

After taking into consideration inflation, the overall results show that the medical costs for
EDHSP are higher than those of EDV due to the durations of stay. In addition, the medical
costs due to cold exposures are higher than those of heat due to higher health burden (i.e.
AC and AF). Among EDVs, the largest contributor to annual medical costs is the 0-19
years age group under cold exposure. This age group accounts for $8.18 million [95%

eCl: $7.82 million, $8.54 million] in medical expenses associated with moderate to extreme
cold exposures and $2.21 million [95% eCl: $2.11 million, $2.32 million] associated with

Sci Total Environ. Author manuscript; available in PMC 2023 May 15.
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only extreme cold exposures (Tables 2 and 3). Among EDHSPs, the largest contributor to
annual medical costs is the 65+ year age group under cold exposure, which accounted for
$37.20 million [95% eCl: $33.48 million, $40.85 million] in medical expenses associated
with moderate to extreme cold exposures and $6.85 million [95% eCl: $5.81 million, $7.90
million] associated with only extreme cold exposures.

Among adults (20-64 years), productivity loss was associated with relevant EDVs and
EDHSPs under cold exposures. Considering moderate to extreme cold exposures among
adults, the annual productivity loss is $1.63 million [95% eCl: $1.41 million, $1.84 million]
due to EDVs and $1.93 million [95% eCl: $1.64 million, $2.22 million] due to EDHSPs.
Considering extreme cold exposures only, the annual productivity loss is $0.29 million [95%
eCl: $0.23 million, $0.35 million] due to EDVs and $0.46 million [95% eCl: $0.38 million,
$0.55 million] due to EDHSPs.

Each year, the health burden associated with ambient temperature exposure leads to
economic costs of approximately $9.40 billion [95% eCl: $6.05 billion, $12.57 billion]
considering both moderate and extreme exposures and $2.70 billion [95% eCl: $1.91 hillion,
$3.48 billion] considering only extreme exposures in the TCMA. Morbidity loss makes up
roughly 0.1-2.5% of the total costs depending exposure magnitude and age group.

4. Discussion

This study presents estimates of the health-related economic costs associated with ambient
temperature exposures for the TCMA — approximately $9.40 billion annually when both
extreme and moderate exposures are considered. This comprehensive estimate relies

on multiple criteria, capturing different population health outcomes. The World Health
Organization recommends the use of such multi-criteria approach for estimating health-
related costs associated with climate change as a means of internalizing an array of external
costs, enabling comparison across different outcomes, and providing explicit rules for
balancing a range of information (Hutton et al., 2013). Based on such a multi-criteria
approach, our results show that cold exposures are responsible for the economic costs for the
TCMA considering mortality and emergency department visits. This holds true regardless
of the health outcome or age group. Harsh winters and freezing temperatures pose serious
health risks even for a well-acclimatized population. The methods developed in this study
demonstrate strengths that recommend its application for other jurisdictions and types of
environmental exposures.

Our findings highlight that temperature-related costs vary by age. Seniors are the only age
group for which extreme temperature conditions are associated with increased mortality.
These results are broadly consistent with Hajat et al. (2014), Dang et al. (2016), and Yang et
al. (2012), which demonstrate that mortality associated with ambient temperature exposure
is greater for persons 65 years or older compared to younger age groups. Consequently, the
overall mortality costs are essentially mortality costs for seniors. Factors that make seniors
more vulnerable to ambient temperature exposures include social isolation (Naughton et al.,
2002), poverty (Basu and Ostro, 2008), a high prevalence of chronic health conditions (Hajat
et al., 2014), and reduced ability to take preventive actions to mitigate exposures (Ebi et al.,
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2006). Regarding morbidity outcomes, the relative risks for youth increase more rapidly than
other age groups as temperature move to the extremes of both cold and heat. Cold exposures
affect all three age groups, consistent with the results of Cui et al. (2016) and Zhang et

al. (2014). The youth age group has the highest AF associated with cold exposures. Heat
exposures, on the other hand, affect only the youth. Regarding this particular observation,
current literature provides inconsistent evidence (Nitschke et al., 2007, 2011; Kingsley et
al., 2015; Zhang et al., 2014). It is important to keep in mind that there are many more
senior EDHSP cases than youth cases. Seniors hospitalized after emergency department
visits likely require more intensive and extensive medical services due to co-morbidities and
reduced physiological capacity (Ebi et al., 2006; Hajat et al., 2014). Therefore, it is plausible
that seniors contribute more to medical costs even though youth are associated with higher
health risks of EDHSP given hazardous temperature exposure.

This study suggests that studies that limit to seniors a priori, under the assumption that
other age groups are not as severely impacted by ambient temperatures, may be substantially
underestimating the total health burden. There are a large number of individuals 0-19 years
whose emergency department visits are also associated with ambient temperature although
few of them result in death. Therefore, this study confirms that the youngest and the oldest
age groups both need to be considered at risk (Sarofim et al., 2016; Xu et al., 2013). With
regard to public health services, focusing on both the youngest and the oldest individuals
appears necessary. This analysis provides information for supporting strategic prioritization
of different age groups in intervention programs (e.g., risk communication and education).
Specific application will depend on the objective of the decision maker. For instance,
targeting youth is justifiable when the goal is to protect the most vulnerable individuals.
Targeting seniors, especially when exposed to cold, may be more efficient in reducing the
overall economic costs.

The multi-criteria developed in this study is an extension of the theoretical framework in
Knowlton et al. (2011), with the goal of improving economic costs assessment of health
risks associated with ambient temperature exposure. This design accounts for various
different aspects of economic costs, such as medical expenses and productivity loss,
simultaneous while considering a single mortality or morbidity case. The overall economic
costs can be considered a composite indicator of impact measurement. This indicator allows
for potential comparison between the public health consequences of different environmental
exposures, such as air pollution and extreme temperature exposure, which involve multiple
health outcomes and aspects of economic costs. The capacity for comparison is crucial to
public health decision-makers with needs to prioritize at-risk population and allocate scarce
resources to manage different environmental exposures.

Although different public health outcomes are eventually summed to obtain the total
economic costs, it is easy to backtrack to the itemized cost criterion that contributes the most
(or the least) to the overall economic burden. For instance, in our study, we attribute 98%

of the total economic burden to mortality although the remaining 2% affects a much larger
number of individuals (see Supplemental Information Section 7). The theoretical framework
of this study is flexible. When new parameter estimates become available, cost estimates can
be easily updated.

Sci Total Environ. Author manuscript; available in PMC 2023 May 15.
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In the absence of personal exposure monitoring, the assignment of exposure(s) from sparsely
spaced monitors to an entire population is imprecise. However, with this available exposure
information, we attempt our best to establish an association of how temperature fluctuations
affect adverse health outcomes and characterize this across a wide range of temperature
extremes that could subsequently be used in public health messaging. There are some
additional limitations. On mortality, we assume VSL to be insensitive to age. Although
consistent with the current government practices (Thomson and Monje, 2015; U.S. EPA
NCEE, 2010), this assumption’s validity, i.e. how VSL varies by age, is still up for

debate among health economists (U.S. EPA NCEE, 2010) (Aldy and Viscusi, 2007). As

for morbidity, we did not include non-emergent clinical visits due to data availability. Non-
emergent morbidity could be potentially relevant to sub-optimal cold exposure, given the
likely delayed effects (Anderson and Bell, 2009). Future studies should consider expanding
to a more complete set of morbidity measures if data become available. This study considers
only direct productivity losses. For instance, the DPV of those aged 0-14 years is 0 while
calculating the overall DPV of the youth age-group (0-19 year olds). In other words, indirect
losses such as time off work that was taken by parents who need to take care of their

ill children are not included in the cost function, which may result in underestimation of

the total real cost. Regarding the overall cost function, it is important to point out that by
adding mortality costs and morbidity costs, theoretical costs (i.e., willingness-to-pay) are
added to transactions that have actually occurred (i.e., medical bills). To compensate for this
limitation, the itemized, as well as the overall costs of public health burden associated with
hazardous ambient temperature exposures, are both provided.

5. Conclusion

This study estimates economic costs incurred by the health burden of ambient temperature
exposures, a particularly relevant public health threat given the shifting temperature patterns
due to climate change. The results can help develop effective public health interventions that
target specific at-risk populations and inform resources allocation. Using multiple criteria to
aggregate economic estimates across different age groups leads to a useful, transparent, and
flexible composite indicator of costs. This approach can be adopted for assessing the overall
impact of other environmental exposures, such as air pollution, that involve multiple health
outcomes and aspects of costs.
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Abbreviations

CCR Cost-to-charge ratio

DPV Daily production value

DLNM Distributed lag nonlinear model

eCl Empirical confidence interval

EDHSP Emergency department visits followed by hospitalization
EDV Emergency department visits followed by discharge
EPA Environmental Protection Agency

HI Heat index

MDH Minnesota Department of Health

MET Minimum effect temperature

MM Millions

MORT Mortality

NWS National Weather Service

PFR Professional-fee ratio

RR Relative risk

TCMA Minneapolis — St. Paul Twin Cities Metropolitan Area
usb U.S. dollar

VSL Value of a statistical life
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HIGHLIGHTS
. The relationship between ambient temperature and population health varies
by age group.
. Suboptimal temperature is associated with serious mortality burden among

elderly and morbidity burden among youth.

. Suboptimal temperature is associated with large health-related economic costs
in an urban setting.

. Suboptimal low temperature has contributed more to health-related economic
costs than suboptimal high temperature.
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Fig. 2.

Attributable fraction of three health outcomes by age groups associated with temperature
exposure. The uncertainty range is defined by 95% empirical confidence intervals obtained
by Monte Carlo simulations (n7=5000). This figure does not include mortality results
regarding 0-19 year olds or 20-64 year olds because there is no increased relative risk of
mortality at any exposure level for these age groups.
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Atq[ributable cases of three health outcomes by age groups associated with temperature
exposure. The uncertainty range is defined by 95% empirical confidence intervals obtained
by Monte Carlo simulations (n = 5000). This figure does not include mortality results
regarding 0-19 year olds or 20-64 year olds because there is no increased relative risk of
mortality at any exposure level for these age groups.
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Mortality and morbidity in the Minneapolis-St. Paul Twin Cities Metropolitan Area.

Table 1

Age group (yo) Mortality (1998-2014)

Morbidity (2005-2014)

MORT EDV EDHSP

tot 1) 8 tot H 8 tot H 8
0-19 7034 1 1 1,957,692 536 84 139,318 38 9
20-64 68,550 11 3 3,980,639 1090 127 721,132 197 22
65+ 225,614 36 7 720,096 197 40 587,343 161 18
All 301,198 48 8 6,658,427 1823 210 1,447,793 396 36

Page 19

Three population health outcomes are Mortality; EDV - Emergency Department Visits; EDHSP - Emergency Department Visits followed by
hospital admission. fotsums the total number of cases for each population health outcomes over the course of 17 years for mortality and 10 years

for morbidity. - daily mean case counts; & - daily variability measured by standard deviation.
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