Economic Analysis of Nirsevimab in Pediatric Populations

David W. Hutton, PhD, MS

Associate Professor, Health Management and Policy, School of Public Health
Associate Professor of Global Public Health, School of Public Health
Associate Professor, Industrial and Operations Engineering, College of Engineering

Presentation to the ACIP February 23, 2023

University of Michigan

Research Team

University of Michigan

- David Hutton, PhD
- Lisa Prosser, PhD
- Angela Rose, MPH
- Kerra Mercon, MS

CDC

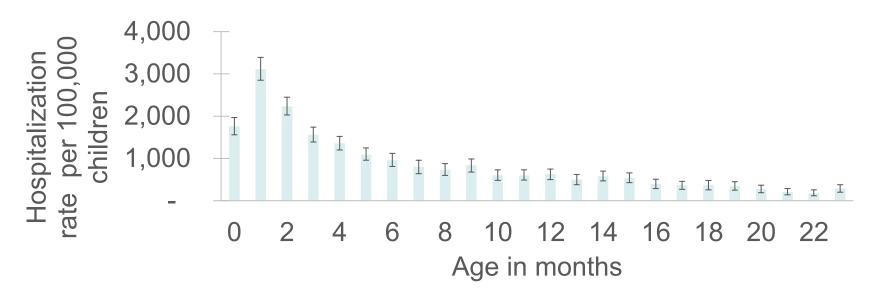
- Jefferson Jones, MD, MPH, FAAP
- Mila Prill, MSPH
- Meredith McMorrow, MD, MPH, FAAP
- Jamison Pike, PhD
- Katherine Fleming-Dutra
- Ismael Ortega-Sanchez, PhD
- Fiona Havers, MD
- Betsy Gunnels, MSPH

Conflicts of interest statements

Authors have no known conflict of interests.


Methods: Study question

- Determine the cost-effectiveness of nirsevimab by:
 - Evaluating the population burden of disease in pediatric US population in terms of
 - annual resource utilization
 - total cases
 - total costs
 - deaths
 - quality-adjusted life years
 - Comparing the incremental cost-effectiveness ratio of nirsevimab to no prevention.
 - Running scenario analyses outcomes that explore key areas of uncertainty.
- Perspective: Societal

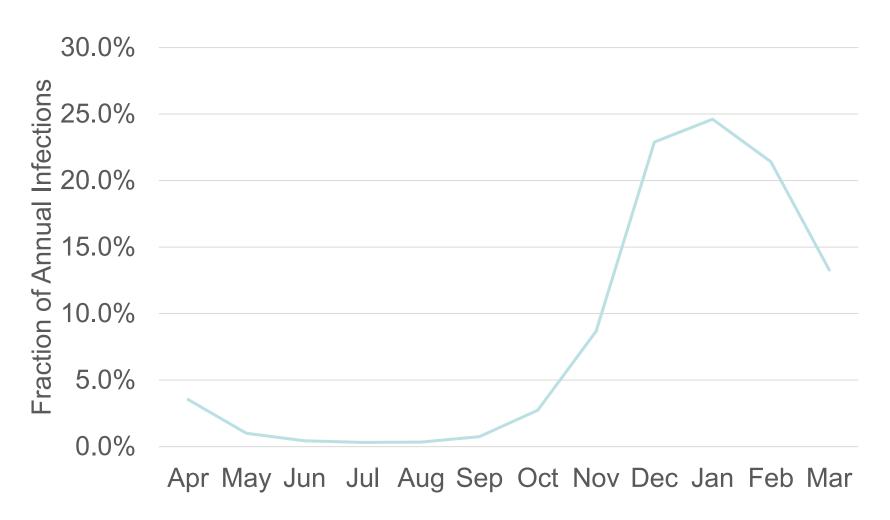

Methods: Intervention(s)

- Target population: US pediatric < 7 months of age entering their first RSV season
 - Secondary analysis high-risk infants in their second RSV season (7-18 months old)
- Interventions:
 - 1. No nirsevimab (Natural history)
 - 2. Nirsevimab against RSV illness
- Time horizon: 1 RSV season
- Analytic horizon: lifetime
- Discount rate: 3%

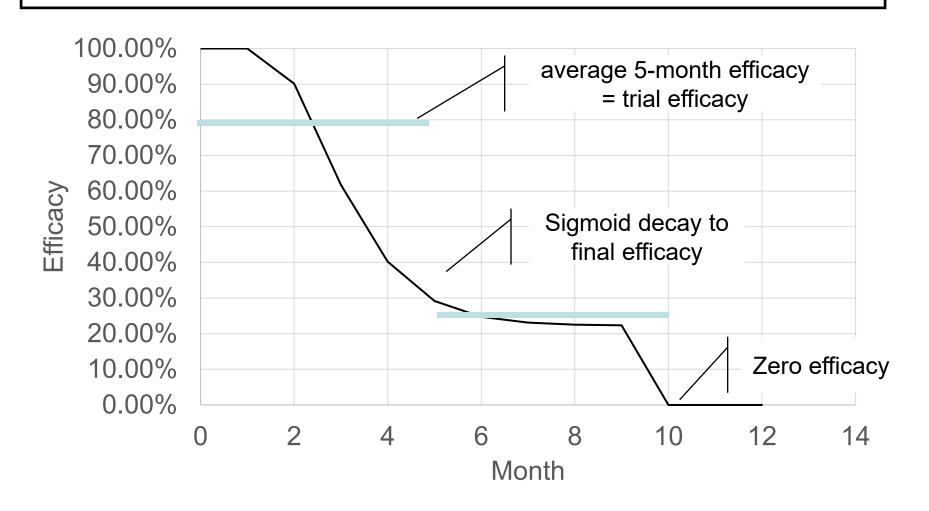
Methods: Decision Tree Model

Methods: Epidemiology Hospitalization

	Base Case	Range	Source
Respiratory syncytial virus (RSV) incidence, per 100,000	See Above	See Above	CDC NVSN, December 2016 to September 2020
Proportion with LRTI			
Age 0-5 months	1.0	0.5-1.0	Rainisch, 2020
Age 6-11 months	1.0	0.5-1.0	Rainisch, 2020


Methods: Epidemiology ED and Outpatient

Respiratory syncytial virus	Base	Range	Source
(RSV) incidence, per 100,000	Case		
Emergency Department			
Age 0-5 months	7,500	5,500 – 7,500	Lively 2019 (base case and range) ⁵ , Hall 2009 (range) ⁶
Age 6-11 months	5,800	5,700 - 5,800	
Age 12 -23 months	3,200	3,200 – 5,300	Hall 2009 (base case and range) ⁶ , Lively 2019 (range) ⁵
Proportion with LRTI			
Age 0-5 months	0.65	0.25-1.0	Rainisch, 2020 ⁴
Age 6-11 months	0.5	0.25-1.0	Rainisch, 2020 ⁴
Medically attended			
outpatient			
Age 0-5 months	21,600	13,200 – 21,600	Lively 2019 (base case and range) ⁵ , Hall 2009 (range) ⁶
Age 6-11 months	24,600	17,700 – 24,600	
Age 12 -23 months	18,440	6,600 – 29,620	Jackson 2021 (base case and range) ⁷ , Hall 2009 (range) ⁶
Proportion with LRTI			
Age 0-5 months	0.65	0.25-1.0	Rainisch, 2020 ⁴
Age 6-11 months	0.3	0.1-1.0	Rainisch, 2020 ⁴


Methods: Epidemiology Mortality

	Base Case	Range	Source
RSV mortality per			
hospitalization			
Age 0-5 months	0.04%	0.03-0.05%	Doucette 2016 ⁸
Age 6-11 months	0.04%	0.03-0.05%	
Age 12 -23 months	0.3%	0.24%-	Gupta 2016 ¹⁰
		0.28%	

Seasonality

Methods: Inputs

Methods: Efficacy

Variable	Base case value	Range for sensitivity analysis	Source
Nirsevimab			
Initial efficacy			MELODY trial
(months 1-5) against			and Phase 2b
RSV-associated			recommended
LRTI	80.0%	68.5% - 86.1%	dose
Efficacy months 6-			
10	25.0%	0.0% - 50.0%	
Efficacy after 10			
months	0.0%		

Methods: Provision of Nirsevimab

- Base case:
 - At birth for those born
 - October 1 March 31
 - October for those born in
 - April (~6-month visit)
 - June (~4-month visit)
 - August (~2-month visit)
 - November for those born in
 - May (~6-month visit)
 - July (~4-month visit)
 - September (~2-month visit)

Methods: Medical Costs

Variable	Value Range		Source
Disease-specific hospitalization costs (per hospitalization)			
Age 0-11 months Age 12- 23 months	\$11,487 \$11,469	11042 - 11933 11029 - 11910	Bowser 2022
Disease-specific ED costs (per ED visit)	\$563	544 – 581	Bowser 2022
Disease-specific outpatient costs (per outpatient visit)	\$82	46-118	Bowser 2022

- Bowser, 2022 is a systematic review using studies from 2014-2021
- Funded by Sanofi
- All numbers updated to 2022 dollars using GDP Deflator

Methods: Productivity Costs

Variable	Value	Range	Source
Productivity burden of RSV Disease (caregiver losses)			
Days of lost productivity			
Outpatient*	2.5	0-5	Fragaszy, 2018; Petrie, 2016; Van Wormer, 2017
·			Fragaszy, 2018; Petrie, 2016;
ED*	2.5	0-5	Van Wormer, 2017
Hospitalization^	7.4	0-14	
Lifetime productivity for those <1 year old (lost from death)	1,795,936		Grosse, 2019

^{*}Productivity for outpatient and ED based on adult influenza

[^]Hospitalization productivity loss = length of hospitalization + 2 days

Methods: Intervention Cost

Variable	Value	Range	Source
Immunization-related costs			
Nirsevimab, per dose	\$300	\$50-\$600	Assumption

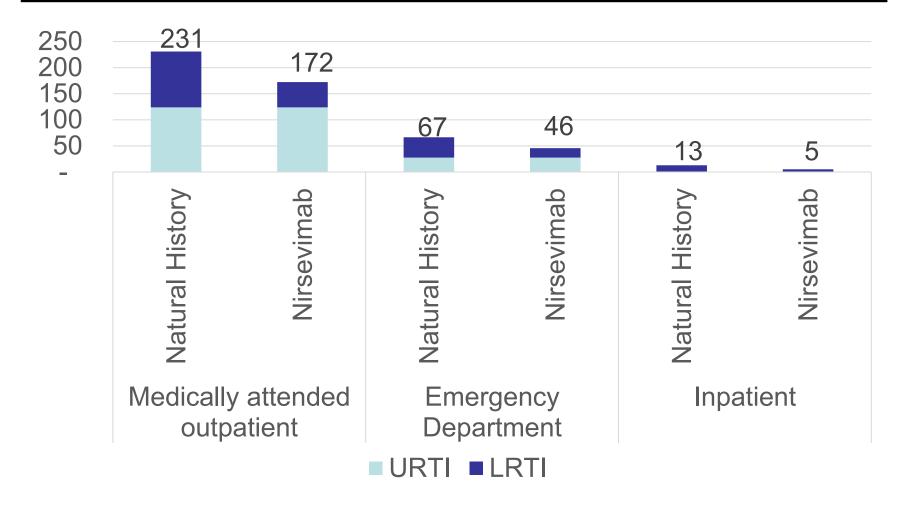
Methods: RSV Health-Related Quality-of-Life

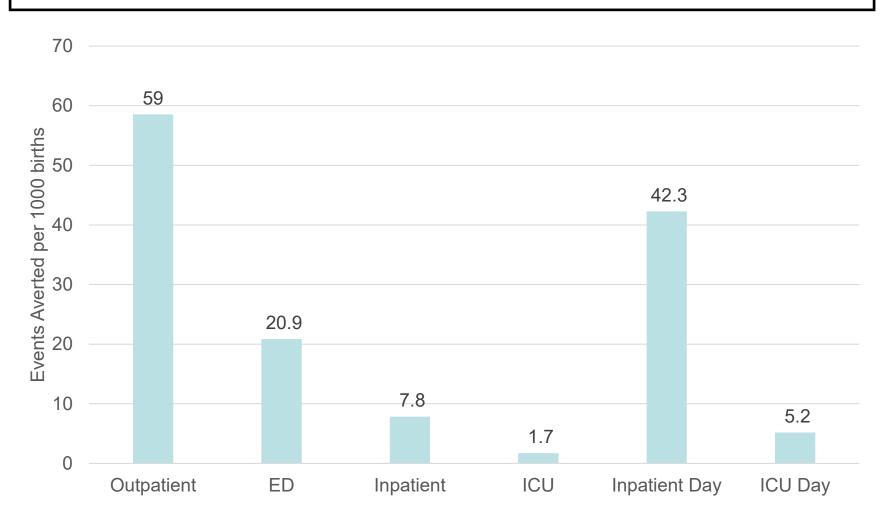
Measured in **Days Lost**

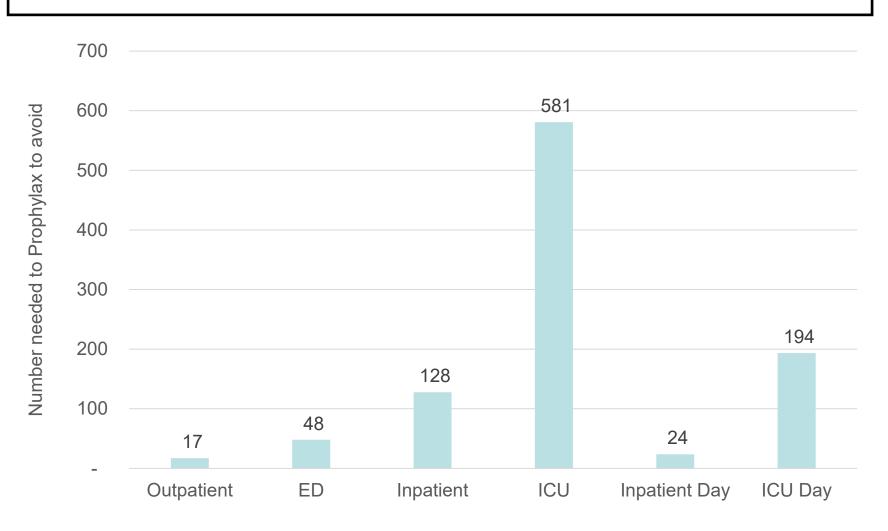
LRTI quality adjusted life DAYS lost	Base	Lower (Regnier)	Upper (JIVE)
Outpatient: Child	3.1	1.8	16.6
Outpatient: Caregiver	1.5	0	9.1
ED: Child	4.9	2.9	16.6
ED: Caregiver	2.5	0	9.1
Hospitalized: Child	6.2	3.7	26.5
Hospitalized: Caregiver	2.4	0	13.6

Methods: Additional Inputs

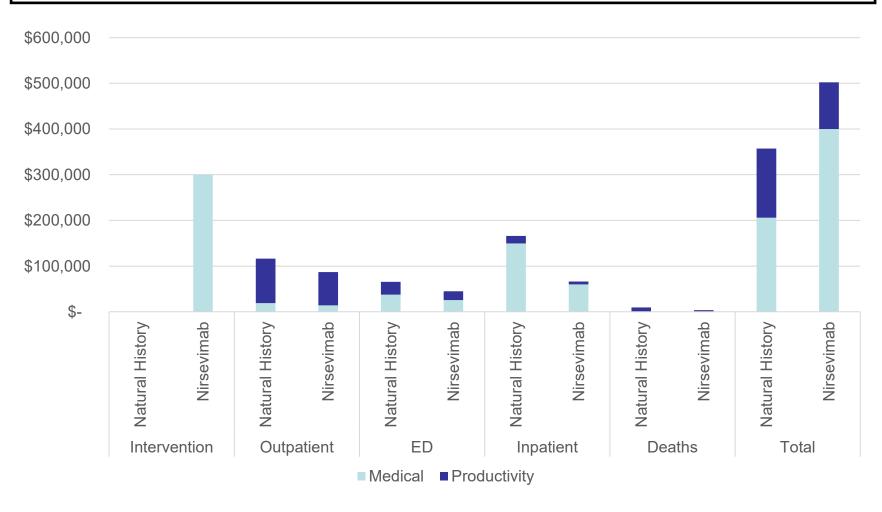
- Also included nirsevimab adverse events
 - Systemic reactions
 - Injection site reactions
 - Serious adverse events
 - Medical costs
 - Productivity costs
 - Quality-adjusted life-years lost

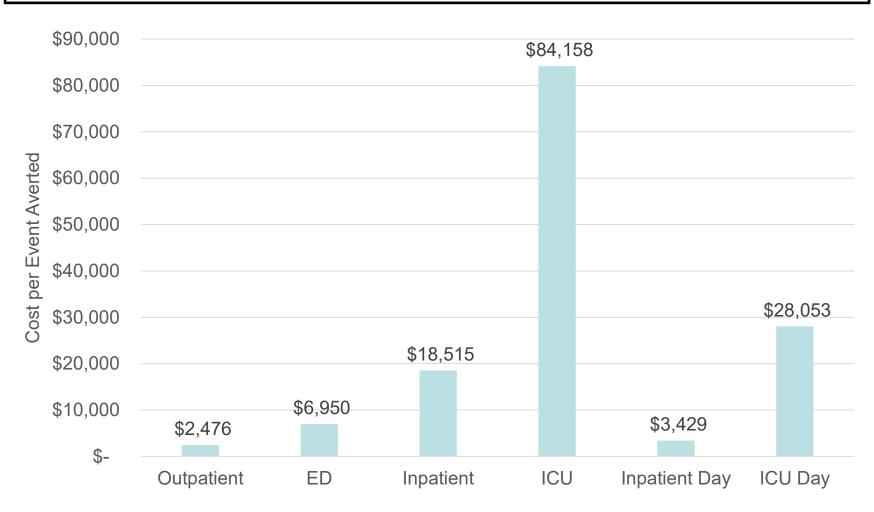

Methods: Uncertainty analyses


One-way sensitivity


- Scenarios:
 - Upper respiratory infection effect
 - Timing of administration
- Additional Scenario:
 - High-risk children entering the second RSV season

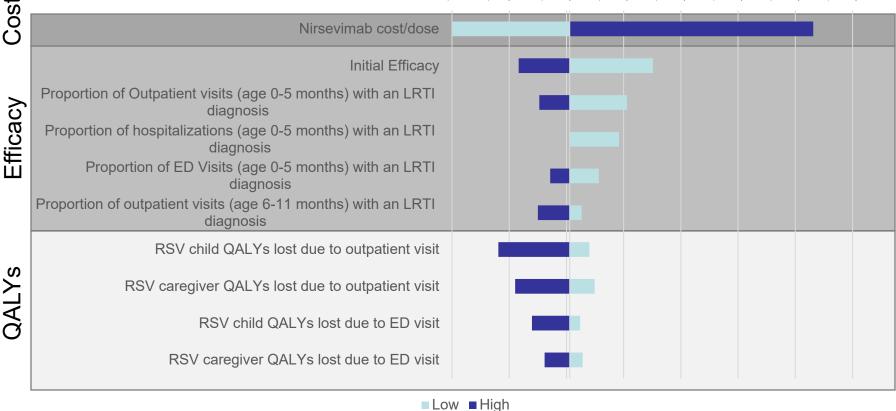
Results: Base Case


- Base Case:
 - Population of 1,000 births
 - 100% uptake in the nirsevimab group
 - First RSV season
 - \$300/dose
 - Nirsevimab only impacts LRTI

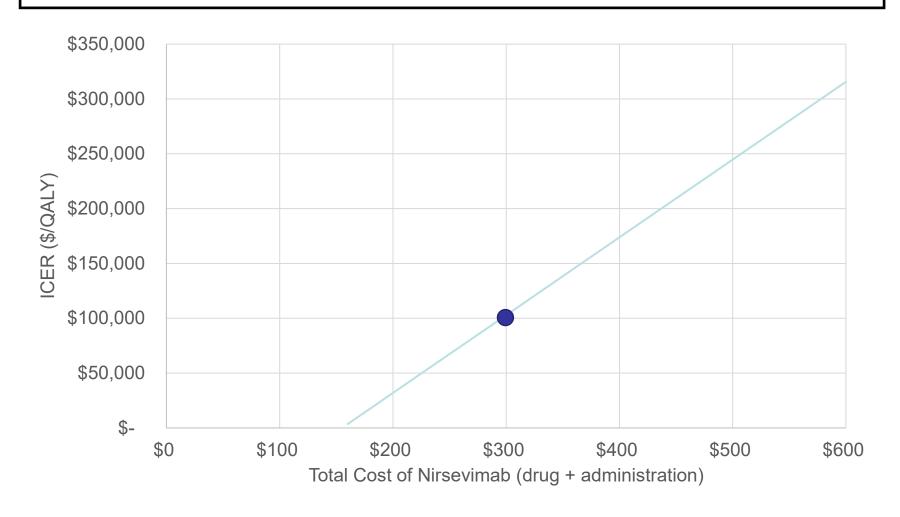


Results: Costs

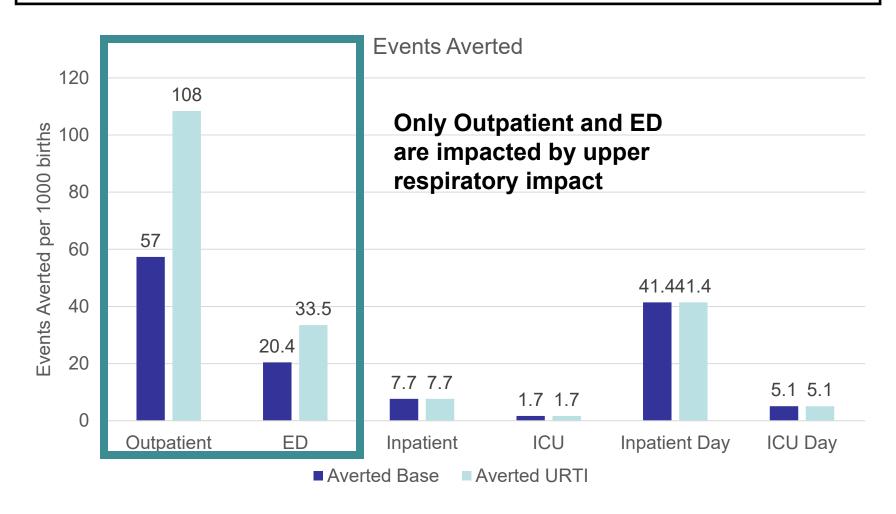
Results: QALYs Lost

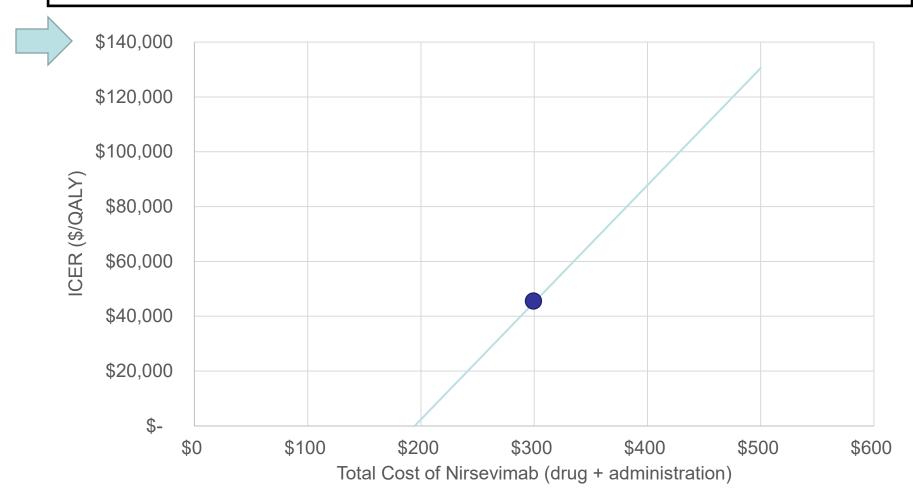

	Adverse Events	Ou	tpatient		ED	In	patient	Deaths		Total	Grand
		Child	Caregiver	Child	Caregiver	Child	Caregiver	Child	Child	Caregiver	Total
Natural											
History		1.95	0.98	0.90	0.45	0.22	0.09	0.15	3.22	1.51	4.73
Nirsevimab	0.03	1.46	0.73	0.62	0.31	0.09	0.03	0.06	2.25	1.07	3.32

Results: Cost-Effectiveness

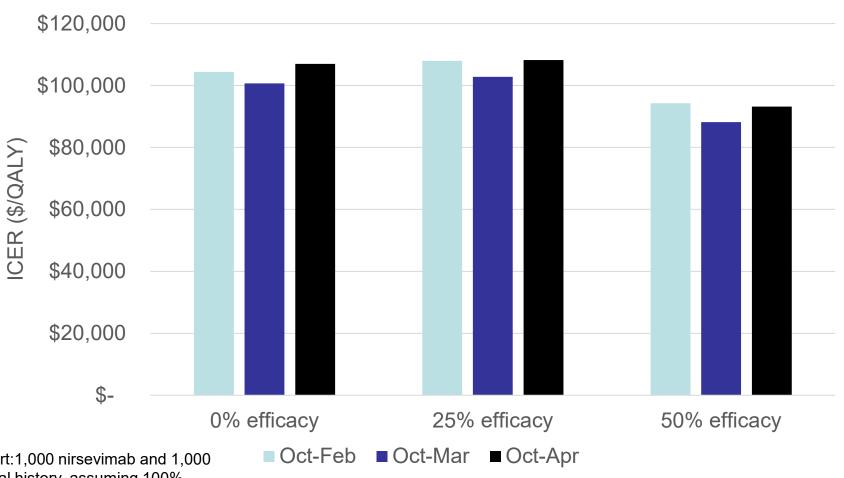

Overall	Costs		ICER (\$/QALY)
Natural			
History	\$ 357,151	4.73	
Nirsevimab	\$ 502,077	3.32	\$ 102,805

Sensitivity: Tornado


Incremental Cost-Effectiveness Ratio (\$/QALY) \$0 \$50,000 \$100,000 \$150,000 \$200,000 \$250,000 \$300,000 \$350,000


Sensitivity: Cost

Scenario: Upper Respiratory Infection Effect


Scenario: Upper Respiratory Infection Effect

Scenario: Timing Analysis

- Cost-effectiveness of an infant receiving nirsevimab as a newborn in
 - Oct-Feb
 - Oct-March
 - Oct-April
- With varying efficacy in months 6-10
 - -0%
 - -25%
 - -50%

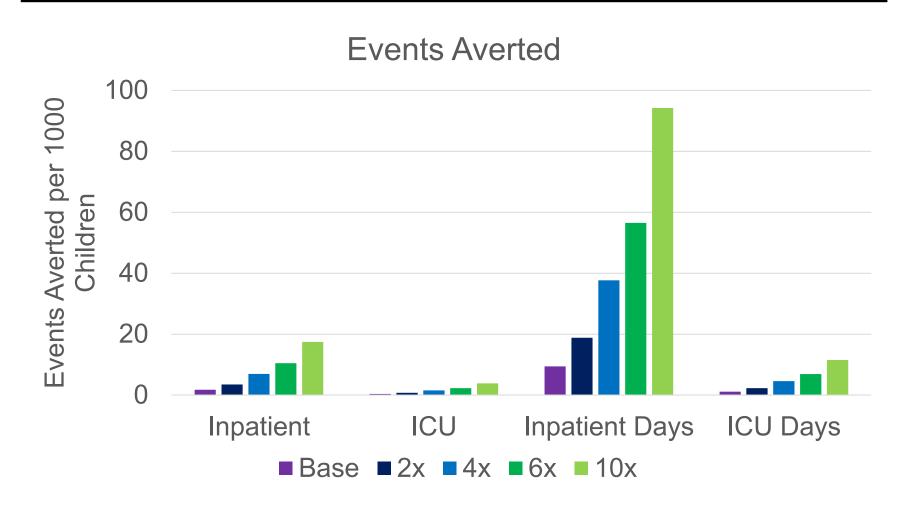
Scenario: Timing and Efficacy in months 6-10

Cohort:1,000 nirsevimab and 1,000 natural history, assuming 100% uptake in nirsevimab group

Base cost of \$300/dose

Slightly Lower ICERs for Oct-Mar

Scenario: Reduction in Palivizumab


- Potential cost impact if clinicians choose to use nirsevimab in palivizumab-eligible infants
- Savings assumptions:
 - 1.6% are high-risk (palivizumab-eligible)
 - 75% uptake in high-risk
 - 4.1 palivizumab doses/person on average
 - \$1,228/palivizumab dose

Overall	Costs	QALYs	ICER (\$/QALY)
Natural			
History	\$ 418,551	4.73	
Nirsevimab	\$ 502,077	3.32	\$ 59,250

Higher-risk children entering the second RSV season

- Immunization in October (under 19 months old in October)
- Incidence of RSV-associated hospitalization and mortality per hospitalization:
 - 1x, 2x, 4x 6x, 10x higher
- Cost
 - \$600 nirsevimab costs (2x \$300/dose)
 - \$1000 nirsevimab costs (2x \$500/dose)

Second Season, High-Risk

Second Season, High-Risk

	ICER by cost of nirsevimab (product plus administration) (\$/QALY)					
Hospitalization and Mortality rate		\$600		\$1000		
1x (base)	\$	815,051	\$	1,410,155		
2x	\$	449,238	\$	800,666		
4x	\$	145,014	\$	282,945		
6x	\$	53,061	\$	122,409		
10x	\$	404	\$	27,390		

Limitations

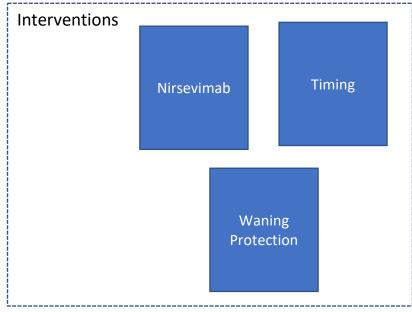
- Model Structure
 - No risk groups
 - No dynamic transmission. No impact of the vaccine on transmission and indirect effects
- Uncertain inputs
 - Nirsevimab cost
 - QALYs lost
 - Upper respiratory tract infections
 - Palivizumab utilization

Summary

- Nirsevimab may be cost-effective
- Results sensitive to:
 - Cost per dose (Cost-Saving 316,000 \$/QALY)
 - Efficacy (75,000 153,000 \$/QALY)
 - URTI/LRTI
 - Proportion of infections with LRTI
 - Or efficacy of nirsevimab against URTI
 - QALYs lost (41,000 125,000 \$/QALY)
 - Hospitalization, Outpatient, ED
 - Child, Parent

URTI: Upper Respiratory Tract Infection LRTI: Lower Respiratory Tract Infection

QALY: Quality-Adjusted Life-Year


Thank You

- Please send comments to:
- dwhutton@umich.edu

Appendix

Methods: Epidemiological model

Health Economics

Health Burden/

- Outpatient
- ED
- Hospitalizations

Cost Burden/

- Outpatient
- ED
- Hospitalizations

Health Effects

- Outpatient
- ED
- Hospitalizations
- Deaths

Economic Effects

- Intervention
- Disease
- Societal
- QALYs
- ICER

Incidence

- Raw reported incidence may be underreported because of imperfect PCR sensitivity, so we consider an additional scenario in sensitivity analysis:
 - based on CDC Unpublished re-analysis of raw data from Zhang et al study which found decreased RSV PCR sensitivity in light of paired serology testing (adjustment factor: 87.6%).

Variable	Value	Range	Source
Probabilities of Pediatric			
Adverse Events			
Systemic Reaction	0.005		Sanofi/AstraZeneca
			ACIP data request
Probability of outpatient visit	1x	-	Assumption; Deluca et
given Systemic Reaction	Outpatient		al (under review)
	Visit		
Anaphylaxis	0	0 - 0.0000010	Sanofi/AstraZeneca
			ACIP data request
Injection Site Reaction	0.002		Sanofi/AstraZeneca
			ACIP data request
Probability of outpatient visit	0.1		Assumption; Deluca et
given Injection Site Reaction			al (under review)
Serious Adverse Event	0.000001		Prosser, 2006 ¹²

^{*} ISR grade 3 not reported by arm. We assumed the ISR grade 3 rates by arm were proportional to ISR of any severity by arm. Range is based on 95% CI based on binomial proportion from the base value.

Variable Value Range Source

Pediatric Quality-Adjusted Life-

Years lost due to adverse events

Systemic reaction	0.0056	0.00051-0.0061	Deluca et al (under
			review)
Anaphylaxis	0.0137	0.0135-0.0139	
Serious Adverse Event	0.141	0.092-0.199	(Guillain-Barre)
			Prosser, 2006 ¹²

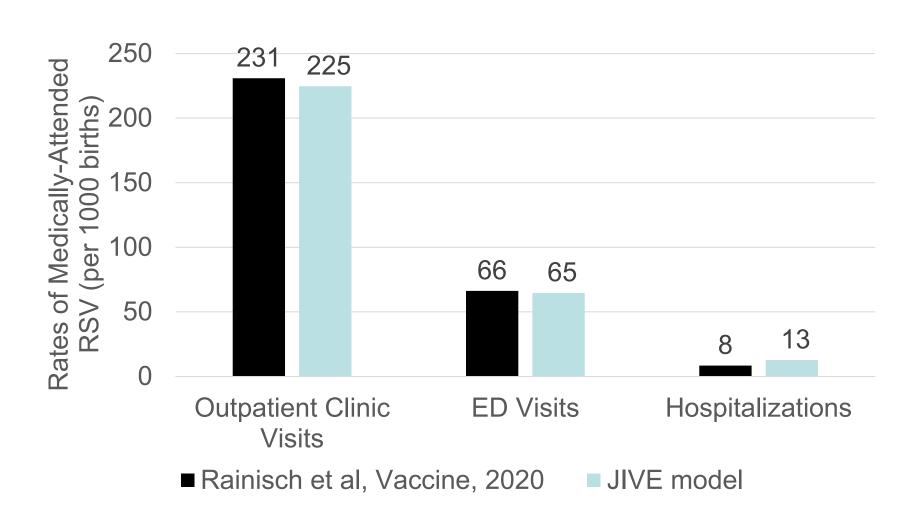
^{*} No SAEs were reported in the nirsevimab trial. Values in the table above are based on the incidence of Guillian-Barre syndrome following influenza vaccination.

Variable Value Range Source

Costs due to adverse events[^]

Medical Costs			
Cost of outpatient visit for systemic reaction	\$313	\$27 - \$1,337	Marketscan unpublished Deluca et al (under review)
Cost of outpatient visit for injection site reaction	\$326	\$48 - \$1,101	Marketscan unpublished Deluca et al (under review)
Anaphylaxis medical costs	\$7,706	\$89 - \$23,414	Marketscan unpublished Deluca et al (under review)
Serious Adverse Event	\$36,163.76	\$10372.31 - \$122,145.60	Prosser, 2006 ¹²
Productivity Costs			
Recipient time for office visit (fraction of day)	0.25		
Parent time for anaphylaxis (days)	1	1-3	Shimabukuro, 2021 ¹³
Daily productivity	190	169.41 – 211.03	Grosse, 2019 ¹⁴

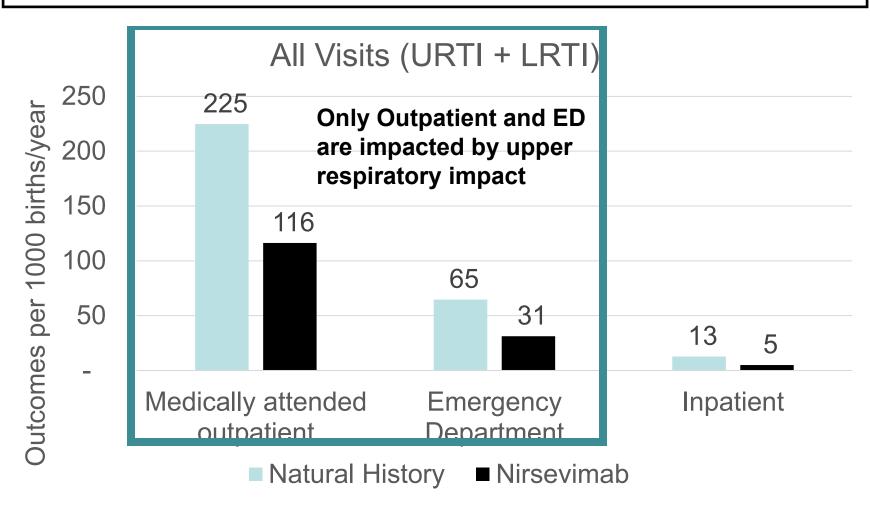
^{*} Daily productivity rate calculated by dividing mean annual total productivity (both market and non-market) for each age group by 365.25 days 46


[^] Costs updated to 2022\$ using GDP deflator

Health-Related Quality-of-Life

Sources

- Glaser (2022)
 - Estimate based on comparison of utility losses between premature children who had RSV vs. premature children without RSV and their caregivers
 - Used as base case for hospitalization for children and their caregivers
- Regnier (2013)
 - Estimate QALY losses for hospitalization, ED visits, and outpatient visits for children with pertussis
 - Use relative QALYs between hospitalization, ED, and outpatient to estimate base losses for ED and outpatient in base case
- JIVE RSV Utilities Survey (2021)
 - Estimates QALY losses for hospitalization and outpatient visits for child and caregiver
 - Estimates may be impacted by COVID-related concerns about respiratory viruses
 - Inform upper bound of range


Validation

Results: Costs

	Medical				Productivity							
	Intervention	Outpatient	ED	Inpatient	Total RSV Medical	Total Health System	Outpatient	ED	Inpatient	Deaths	Total Productivity	Total
Natural History	_	18,942	37,440	149,716	206,097	206,097	97,390	28,036	16,265	9,363	151,054	357,151
1113613		. 3,0 12	27,110				21,000	_0,000	.0,200	0,000		337,101
Nirsevimab	300,246	14,142	25,700	59,799	99,641	399,886	72,709	19,245	6,496	3,740	102,191	502,077

Scenario: Upper Respiratory Infection Effect

Second Season, High-Risk

	ICER by cost of nirsevimab (product plus administration)							
Hospitalization and Mortality rate	ICE	R at \$600	ICE	R at \$1000	ICE	ER at \$1200		
1x (base)	\$	815,051	\$	1,410,155	\$	1,707,707		
2x	\$	449,238	\$	800,666	\$	976,379		
4x	\$	145,014	\$	282,945	\$	351,911		
6x	\$	53,061	\$	122,409	\$	157,083		
10x	\$	404	\$	27,390	\$	40,883		