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Abstract

Job exposure matrices (JEMs) represent a useful and efficient approach for estimating 

occupational exposures. This study uses a large dataset of full-shift measurements and employs 

imputation strategies to develop noise exposure estimates for almost all broad level standard 

occupational classification (SOC) groups in the US. The JEM was constructed using 753 702 

measurements from the government, private industry, and the published literature. Parametric 

Bayes imputation was used to take advantage of the hierarchical structure of the SOCs and the 

mean occupational noise exposures were estimated for all broad level SOCs, except those in major 

group 23–0000, for which no data were available. The estimated posterior mean for all broad 

SOCs was found to be 82.1 dBA with within- and between-major SOC variabilities of 22.1 and 

13.8, respectively. Of the 443 broad SOCs, 85 were found to have an estimated mean exposure 

>85 dBA while 10 were >90 dBA. By taking advantage of the size and structure of the dataset we 

were able to employ imputation techniques to estimate mean levels of noise exposure for nearly all 

SOCs in the US. Possible sources of errors in the estimates include misclassification of job titles 

due to limited data, temporal variations that were not accounted for, and variation in exposures 

within the same SOC. Our efforts have resulted in an almost completely-populated noise JEM 

that provides a valuable tool for the assessment of occupational exposures to noise. Imputation 

techniques can lead to maximal use of available information that may be incomplete.
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Background

Noise induced hearing loss (NIHL) is the most common workplace injury, affecting an 

estimated 11.4% of workers in the United States.1 While it is difficult to quantify the 

economic costs of NIHL, the US Veterans Administration reported direct costs of $1.2 

billion in 2006 on hearing disability and tinnitus in addition to $288 million spent annually 

by the Veterans Administration on hearing aids.2,3 More recently, we have estimated the 

direct and indirect costs of preventable NIHL to be between $58 and $152 billion annually in 

the US, with a central estimate of $123 billion per year.4 Thus it is reasonable to assume that 

NIHL has a substantial and underappreciated ongoing impact on the US economy. Despite 

the clear relationship between hazardous noise exposure (>85 dBA) and hearing loss it is 

estimated that more than 22 million US workers are exposed to hazardous levels of noise at 

work.5,6

While it is well-established that hazardous noise exposure causes NIHL, conducting 

occupational epidemiological studies to further elucidate and quantify this relationship is 

challenging. Ideally, prospective cohort studies would be implemented to follow workers 

and monitor their noise exposure for a decade or more until the onset of significant NIHL. 

However, the costs and time required to conduct a longitudinal study make this approach 

difficult and rare. Typically, researchers instead rely on retrospective cohort studies to assess 

the relationship between an occupational exposure and a disease.7 In these retrospective 

studies it can be difficult to develop to accurately estimate exposures.8 To overcome 

these difficulties researchers have increasingly relied on job exposure matrices (JEMs) to 

retrospectively assess occupational exposures.7,9–13

In its most basic form a JEM consists of two axes: one axis contains a list of jobs or 

job descriptions, and the other contains qualitative or quantitative information about the 

magnitude and/or prevalence an exposure.7 A JEM can be further refined by adding further 

information on specific job tasks, and the time period of exposure. The main advantage 

of a JEM is that it allows the use of previously collected industrial hygiene measurement 

records that greatly simplify epidemiological exposure assessment. A well-constructed JEM 

also makes it possible to identify occupations and industries that have potentially high levels 

of an exposure so that additional assessment and targeted controls can be implemented to 

reduce potential exposures.

There are many issues that arise when using a JEM as an exposure assessment tool. The 

first is that exposure varies depending on both a worker’s job title and the industry that 

the worker is employed in.14 Workers with similar job titles can have large differences in 

their exposures depending on the industry they are employed in. It has also been shown 

that the majority of purportedly homogeneously exposed groups (HEGs) of workers – often 

based on job title – in the same workplace had more than a 2-fold difference in exposures.15 

The second issue is that exposure typically vary over time for a worker in the same job as 

changes in their workplace lead to a change in exposure patterns.7,15 Finally, data scarcity 

often necessitates the use of qualitative exposure measures, which reduce the statistical 

power of a JEM to detect an exposure-response relationship.16
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The JEM we describe here consists of 753 702 full-shift occupational noise measurements 

made according to the Occupational Safety and Health Administration’s (OSHA) 

Permissible Exposure Limit (PEL) for noise.17 Our previous meta-analysis of a subset of 

715 867 measurements included in this JEM found that 26.4% of 235 job titles had no 

heterogeneity across sources (literature, government and industry reported sources), while 

63.0% of job titles were found to have moderate to high levels of heterogeneity18. Despite 

the size and scope of this dataset, many job titles still lack exposure information. The 

goal of this present study is to take advantage of the hierarchical structure of the job title 

system used in this JEM in order to develop imputation strategies to calculate estimates of 

exposure and variability for job titles in which no exposure information is available and then 

determine which job titles have an estimated exposure greater than the current OSHA action 

level (AL) of 85 dBA and PEL of 90 dBA.

Methodology

The JEM was constructed using OSHA17 and Mine Safety and Health Administration 

(MSHA)19 PEL measurements (i.e. a 90 dBA criterion level and threshold, and 5 dB 

time-intensity exchange rate) from government databases maintained by OSHA and MSHA, 

measurements from the published literature, and measurements submitted by private 

industry (Table 1). Details about the data cleaning process for the JEM have been described 

elsewhere.18,20 Briefly, data was received from the various sources in an electronic format, 

typically a Microsoft Excel file (Redmond, WA). The data was imported in to STATA 14 

(College Station, TX) for data cleaning. Industry information was first coded using the 2012 

North American Industrial Classification System (NAICS) from the US Census Bureau.21 

Using information on the industry of employment and job titles from the various government 

agencies, companies, and published literature from which measurement data were drawn, 

each measurement was assigned a job title using the Bureau of Labor Statistics’ 2010 

Standard Occupational Classification (SOC).22

The SOC structure is hierarchical and made up of major, minor, broad, and detailed groups. 

Figure 1 provides an example of this structure using the detailed SOC 33–9099 which 

corresponds to the SOC group of “Protective Service Workers, All Other” and is nested in 

the broad SOC 33–9090, “Miscellaneous Protective Service Workers”. The broad SOC is in 

turn nested in the minor SOC 33–9000, “Other Protective Service Workers,” which resides 

within the major SOC 33–0000, “Protective Service Occupations”.

To take advantage of the hierarchical structure of the SOC system we chose to use a 

parametric Bayes imputation method to impute missing values at the broad SOC level. 

Imputation is a widely used method for filling out missing values.23 We performed a 

parametric imputation algorithm24–26 ( assuming that some broad SOC means are observed 

while other broad SOC means are missing at random, and that these observed broad SOC 

means and the broad SOC means to be estimated are all normally distributed defined by a set 

of parameters).27 All models were performed in R. There were a total of 461 broad SOCs, 

222 (48%) of which had missing data. Of these 222 broad SOCs four were in the major 

SOC group 23–0000 (Legal Occupations). Because we did not have any measurements for 

this occupational group we could not perform any imputation; imputation was possible for 
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all other broad SOCs. We first created training and validation datasets to evaluate imputation 

accuracy by comparing observed and imputed data in the validation dataset in order to 

benchmark our imputation against the truth. We then used the full dataset to impute missing 

values for each broad SOC to be used for future research.

Model Construction and Validation

As the SOC preserves a hierarchical structure such that there is a hierarchy of nested 

populations, it is natural to consider using an appropriate statistical model that efficiently 

captures this data structure. A hierarchical model was used to estimate missing values in 

the dataset in our analysis.28 The derivation of the method used is presented in Appendix 

1. Let i denote the index of major SOCs and let j denote the index of broad SOCs that are 

nested within the major SOCs. There are two data components in this model: the observed 

SOCs and the missing SOCs. We assign separate indices for these two data components. For 

those broad SOCs that are observed, Y ij
obs is the sample mean of the jth broad SOC in the 

ith major SOC. Consider a model describing our information about a hierarchical dataset 

Y 1
obs, …, Y I

obs  where Y i
obs = Y i1

obs, …, Y ini
obs  consisting of all the observed data in the ith 

major SOC. sijobs and nijobs are the corresponding sample standard deviation and sample size, 

respectively, corresponding to the jth broad SOC nested in the ith major SOC. All that is 

known about this dataset are Y ij
obs, sijobs and nijobs and the hierarchical structure of the dataset. 

θij
obs is the true (unknown) mean of jth observed broad SOC in the ith major SOC and is 

described Equation 1 while θik
mis is the true mean of kth missing broad SOC in the ith major 

SOC.

Y ij
obs N(θij

obs,
(sijobs)2

nijobs ) Equation 1

The random variables θij
obs can be thought of as independent samples from the major SOC 

with index i, described by some fixed but unknown feature parameter θi and σ2 where θi 

is the true mean of ith major SOC and σ2 is the variation of broad SOCs within this major 

SOC. Similarly, the random variables θik
mis can also be thought of as independent samples 

from the major SOC with index, i, described by θi and σ2. In the normal model, we model 

the data as conditionally independent and identically distributed (i.i.d.) normal (θi, σ2):

θijobs N θi, σ2

θik
mis N θi, σ2

To represent the information about θi, we treat θi, i = 1, … , I as independent samples from 

the population mean. Assume the true population mean level is μ and the variation among all 

major SOCs is τ2. Then the distribution of θi is:
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θi N μ, τ2

In sum, we have a hierarchical normal model that describes the heterogeneity of means 

across different broad SOCs and major SOCs. In this hierarchical model we assume that the 

within- and between-major SOC sampling models are both normal. We further assume that 

the sample mean of each broad SOC is distributed around the true mean of that broad SOC. 

The within-major SOC sampling variance σ2 is assumed to be constant across major SOC 

groups and the between-major SOC sampling variance τ2 is also assumed to be constant. 

The fixed but unknown parameters in this model are θij
obs, i = 1, … , I; j = 1, …, niobs, θik

mis, 

i = 1, … , I; k = 1, …, nimis, θi, i = 1, … , I and μ, τ2, σ2 which will be estimated. For the 

parameters μ, τ2, σ2, we need to specify prior distributions on them. We chose to use the 

standard conjugate normal and inverse-gamma prior distributions for these parameters as 

shown in equation 2.

τ2 Inv − gamma η0
2 ,

η0τ0
2

2 ; σ2 Inv − gamma v0
2 ,

v0σ0
2

2 ; μ N μ0, γ0
2 Equation 2

Implying the densities p(τ2) = 1

τ2(
η0
2 + 1)

exp(−
η0τ0

2

2τ2 ) and p(σ2) = 1

σ2(
v0
2 + 1)

exp(−
v0σ0

2

2σ2 ). Since 

no prior information is available, we specify non-informative priors for all these parameters. 

A graphical representation of the model is presented in Figure 2.

The unknown quantities include the broad SOC means θij
obs, i = 1, … , I; j = 1, …, niobs, θik

mis, 

i = 1, … , I; k = 1, …, nimis, the major SOC means θi, i = 1, … , I, the population mean μ, 

the within major SOC sampling variance σ2 and the between major SOC sampling variance 

τ2. Posterior inference for these parameters can be made by constructing a Gibbs sampler, 

which is an iterative algorithm that construct a dependent sequence of posterior samples 

by sweeping through each variables to sample from its conditional distribution with the 

remaining variables fixed at their current values 29. After some calculation, we find that the 

conditional distribution of every mean parameter, including the broad SOC means θij
obs, i = 

1, … , I; j = 1, …, niobs, θik
mis, i = 1, … , I; k = 1, …, nimis, the major SOC means θi, i = 1, … , 

I, the population mean μ, is normal. The conditional distribution of SOC sampling variance 

σ2 and the conditional distribution of the between major SOC sampling variance τ2 are both 

inverse gamma.

Posterior approximation proceeds by iterative sampling of each unknown quantity from its 

full conditional distribution. We choose the number of iterations S to be 10000 and set 

the starting values for each of these parameters. Given a current state of the unknowns 

θ11
obs(s), …, θInI

obs(s), θ11
mis(s), …, θInI

mis(s), θi
(s), μ(s), τ2(s), σ2(s) , a new state is generated as follows:
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1. Posterior step: sample θi
(s + 1), i = 1, … , I from 

θi ∣ μ(s), θi1
obs(s), …, θini

obs(s), θi1
mis(s), …, θini

mis(s), τ2(s), σ2(s) based on its full conditional 

distribution

2. Posterior step: sample μ(s+1) from μ ∣ θ1
(s + 1), …, θI

(s + 1), τ2(s)

3. Posterior step: sample τ2(s+1) from τ2 ∣ θ1
(s + 1), …, θI

(s + 1), μ(s + 1)

4. Posterior step: sample σ2(s+1) from 

σ2 ∣ θ11
obs(s), …, θInI

obs(s), θ11
mis(s), …, θInI

mis(s), θ1
(s + 1), …, θI

(s + 1)

5. Posterior step: sample θij
obs(s + 1), i = 1, … , I, j = 1, …, niobs from 

θij
obs ∣ θi

(s + 1), σ2(s + 1)

6. Imputation step: sample θij
mis(s + 1), i = 1, … , I, j = 1, …, nimis from 

θij
mis ∣ θi

(s + 1), σ2(s + 1)

The procedures were repeated S times until convergence has reached. After a thinning 

procedure and a burn-in period, the draws were used for the posterior inference. A detail 

description of this Bayesian parametric imputation procedure is presented in Appendix 1.

Prior to imputation of the full JEM, the imputation model was evaluated by dividing the 

available data in to a training and validation set. The training dataset consisted of 189 

broad SOCs that were randomly chosen from the available dataset of 239 broad SOCs 

provided the broad SOC contained more than one measurement, as imputation cannot be 

conducted with one measurement. The remaining 50 broad SOCs, including those with a 

single measurement, were assigned to the validation dataset. The posterior distribution of the 

mean and variances was calculated at the broad and major SOC level in the training dataset 

and compared to the observed data in the validation dataset. After the model evaluation, the 

training and validation datasets were combined, and all data were used for imputation of the 

final JEM. A level of confidence was assigned for each estimate based on the width of that 

estimate’s 95% creditable interval. Estimates with a 95% creditable interval with a width <3 

dB were considered high confidence, ≤3 dB but ≤12 dB moderate confidence, and >12 dB 

low confidence. These values were chosen because an increase of 3 dB roughly equivalent 

to doubling sound power and is also the doubling rate used by the US National Institute for 

Occupational Safety and Health (NIOSH), European Union, and International Organization 

for Standardization. 30–32

Temporal changes in exposure patterns have been shown to be important for multiple 

different agents. 14,20,33 However, the scarcity of data in certain broad level SOCs made 

it impractical to include a factor for the effect of time in the imputation model, in our 

study. Considering the possibility of temporal trend, a sub-analysis was further conducted to 

determine the effect of time on noise exposure levels across all the major SOCs. We chose 

five different year bins (before 1984, 1984–1992, 1993–2000, 2001–2009, and after 2009) 

which are approximately equal in length and also reflect regulatory changes promulgated 
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by OSHA and MSHA. This analysis cannot be used to adjust the estimates from the main 

analysis but provides additional insight in to a possible source of error in in the exposure 

estimates.

Code Availability

Both the STATA and the R code used for this analysis is available upon request of the 

corresponding authors.

Results

A summary of the estimates from the model validation is presented in Table 2, where the 

population mean (μ), is estimated to be 82.4 dBA, the within-major SOC variance (σ2) is 

20.0 and the between-major SOC variance (τ2) is 13.3. The estimated mean noise exposure 

for each major SOC ranged from 78.4 (43–0000, “Office and Administrative Support 

Occupations”) to 85.5 dBA (45–0000. “Farming, Fishing, and Forestry Occupations”). The 

95% credible interval varied depending on the number of broad SOCs present within each 

major SOC (Table 3). Figure 3. displays a fairly strong agreement between the 189 estimated 

and observed broad SOC means in the training dataset. However, Figure 3b illustrates that 

the agreement between the observed and predicted SOC means in the validation dataset was 

not as strong as the training dataset as expected. Of the 50 broad SOCs in the validation 

dataset 11 observed sample means were outside the 95% credible interval and 39 fell inside 

the credible interval, however, 7 of those broad SOCs that fell outside contained only one 

measurement (Figure 4).

Table 4 summarizes the population mean, and the within- and between-major SOC variance 

for the entire dataset (i.e. the combined validation and training datasets). The population 

mean was estimated to be 82.1 dBA and the within- and between-major SOC variance was 

estimated to be 22.1 and 13.8, respectively. The estimated mean noise exposure for each 

major SOC ranged from 78.6 (25–0000, “Education, Training, and Library Occupations”) 

to 86.4 dBA (45–0000, “Farming, Fishing, and Forestry Occupations”). Similar to what we 

observed in the model validation results (Table 3), major SOCs that consisted of a larger 

number of broad SOCs had smaller 95% credible intervals.

The model predictions at the broad SOC level can be found in Appendix 2 or online at 

(http://noisejem.sph.umich.edu/full_results.pdf). The estimated population mean was 82.1 

dBA while the estimated population standard deviation was 3.1 dBA. Of the 443 broad 

SOCs, 338 (76.3%) were found to have an estimated mean exposure >80 dBA, while 85 

(19.2%) were found to have an estimated mean exposure greater than the current OSHA AL 

of 85 dBA. Additionally, 10 broad SOCs were found to have an estimated mean exposure 

greater that the OSHA PEL of 90 dBA. The distribution of estimated broad SOC means can 

be found in Figure 5, which indicates that the majority of broad SOCs have estimated mean 

noise exposure levels between 80 and 85 dBA. A total of 99 (22.3%) and 108 (24.3%) of 

the broad SOCs were found to have a high and moderate level of confidence in the estimate 

respectively.
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An additional sub-analysis was conducted, attempting to determine the effect of time on 

exposure estimates. The results of this additional analysis found that nine (40.9%) of 

the major SOCs (11–0000, 25–0000, 37–0000, 41–0000, 43–0000, 47–0000, 49–0000, 

51–0000, and 53–0000) had decreasing exposures over time. This suggests that for some 

broad and major SOCs temporal trends may impact exposures estimates. While these results 

provide additional insight in regard to the impact of time on the original exposure estimate, 

these new results have less practical use because the major SOCs do not provide sufficient 

job title specificity to accurately assign exposure estimates. The full results of this additional 

analysis can be found in Appendix 3.

Discussion

In this study we used principled validation strategy to evaluate the performance of an 

imputation strategy to estimate noise exposures in a large JEM. The imputation strategy 

borrows information across broad SOCs by assuming a common hierarchical distribution 

with parameters that are shared. The imputed SOC means were assessed for imputation 

accuracy in a validation dataset consisting of randomly chosen subset of SOCs. The strong 

agreement between the 189 estimated and observed broad SOC means in the training 

dataset occurred because these observed broad SOCs were used to build the hierarchical 

model and thus their data were “known” to the model, which yielded statistically overly 

optimistic estimates. The broad SOCs in the validation dataset were not used in building 

the hierarchical model and were thus “unknown”. The estimated SOC mean of a broad 

SOC in the training set was a weighted average of the observed SOC mean Y ij
obs and the 

estimate of major SOC mean θi that it was nested in, and the weights were proportional to 

the estimated σ2 (variation within major SOC) and 
sijobs 2

nijobs  (variation in the observed SOC 

mean). As the variation within major SOCs was high and the variation in the observed broad 

SOC means were small for most broad SOCs, the estimated broad SOC mean would be 

more similar to the observed broad SOC mean than the major SOC mean, if that broad SOC 

mean had been observed. However, the estimated mean of a broad SOC in the validation 

set was entirely based on the estimated mean of the major SOC that it was nested in; no 

additional information was available that could be used for this purpose. As a result, the 

agreement between the observed and predicted SOC means in the validation dataset were not 

as strongly associated as the training dataset.

Our estimates were developed from large datasets of measurements provided by the 

government, private industry, and the published literature. By taking advantage of the 

hierarchical structure of the SOC system we were able to use imputation to iteratively 

impute the missing values of the mean of the broad SOCs and to draw updated samples 

of the parameters based on both the means of the observed broad SOCs and the means 

of the missing broad SOCs. Due to the limited sample size within each minor SOC, we 

chose to ignore the minor SOC level in this hierarchical model. Instead we assumed that the 

broad SOCs within the same major SOC are more alike those broad SOCs in other major 

SOCs. However, if more data are available in the future and there are at least moderate 

numbers of broad SOC with observed measurements for most minor SOCs, it is possible to 
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construct a hierarchical model with major SOC level, minor SOC level and broad SOC level. 

Such a hierarchical model incorporating the minor SOC level may be able to provide more 

accurate estimates of the broad SOC means. The validation analysis on the 50 randomly 

chosen SOCs provide a realistic sense of accuracy when a new missing exposure is predicted 

for an SOC. The level of confidence assigned to each estimate indicated that 236 (53.3%) 

of the broad SOCs had a 95% creditable interval wider than 12 dBA which suggests that 

caution should be exercised when using these exposure estimates until additional data can be 

collected, or the current estimates can be validated.

In the parametric Bayes imputation method that we used, we plugged in the posterior mean 

estimates of the unknown quantities as our single imputation results. However instead we 

could possibly create random draws from the posterior distributions of these quantities and 

then create multiple imputed datasets. The advantage of multiple imputation over the single 

imputation is that it takes into account the uncertainty in the imputation procedure.

Another potential source of error in our exposure estimates occurs because these data 

represents occupational noise exposures from 1970–2014. As reported by Middendorf 

in 2004 and Roberts et al. in 2016 occupational noise exposures have been decreasing 

overall in the general industry and mining sectors.14,20 However, the results of the few 

other longitudinal analyses of occupational noise exposures suggest that workers in the 

construction and manufacturing industries may not have experienced significant reductions 

over time. 34,33 If a majority of measurements for a particular occupation were clustered in 

a short time span then it is possible that the measurements used by the model to develop 

exposure estimates may be biased.

The largest potential source of error in our estimates is likely the variability of exposure 

within each broad SOC. This is a common issue for any JEM that attempts to quantify 

exposures across several different industries. As identified by Rappaport et al. there is 

considerable variation in personal exposure for workers with similar job titles within the 

same workplace.15 Grouping workers by job title is common practice in industrial hygiene 

because it is easy and straightforward to assign workers to an occupational group. However, 

as Anderson et al. have demonstrated, the standard occupational coding systems used in 

Canada were inadequate to accurately group workers in the pulp and paper industry.35

We recognize that these shortcomings of the SOC system may result in misclassification 

of exposure. This misclassification can be exasperated by the model when limited data is 

available for a broad SOC within a major SOC where other broad SOCs with dissimilar 

exposures influence the major SOC mean. For example, the model estimated that the 

broad SOC 11–1010 (Chief Executives) had a mean exposure of 84.8 dBA, which runs 

counter to most professional intuitions. However, this high exposure value is due in part to 

the fact that the major SOC 11–0000 (Management Occupations) contains broad SOCs 

for jobs such as “Industrial Production Managers” and “Farmers, Ranchers, and other 

Agricultural Managers” who would be expected to have higher exposures and thus influence 

the exposure estimate for the “Chief Executive” broad SOC. This is due in part, to the fact 

that the SOC system was designed to track economic indicators and was not intended as a 

classification scheme for forming similar exposure groups. However, it is still advantages to 
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use this system, as there are numerous crosswalks available to convert SOC codes to other 

occupational classifications systems so that the exposure estimates can be more easily used 

in epidemiological studies.

However, the variability of broad SOC mean would be expected to decrease as the number 

of measurements increase because it would be expected that as more measurements are 

added to a broad SOC that the estimated mean would become closer to the true mean of the 

broad SOC. Exposure estimates could be further enhanced by using more informative priors 

based on expert knowledge and information from the published literature. However, we 

chose to make the imputation process more robust and less sensitive to subjective choices at 

the cost of making the process less efficient. Future efforts will be focused on incorporating 

expert judgment to enhance the accuracy of the JEM’s estimates, particularly for broad 

SOCs that we had low levels of confidence in the estimates.

The results of our analysis indicated that the majority of broad SOCs were estimated to 

be exposed to noise ≥ 80.0 and <85.0 dBA. While these broad SOCs are not estimated 

to exceed the OSHA action level, it is worth noting that the average estimated exposure 

and standard deviation for broad SOCs in this group were 82.3 and 3.6 dBA, respectively, 

with a 95% confidence interval between 72.3 and 89.4 dBA. This suggests that while the 

estimated mean exposure for these groups was below the action level, there is considerable 

variability in these exposures that must be considered when using these estimates to identify 

occupations that should be enrolled in hearing conservation programs (HCPs). In other 

words, individual exposures or minor SOCs within the broad SOC groups in the ≥ 80.0 and 

<85.0 dBA bin may still exceed the action level. This is in contrast to broad SOCs that are in 

the >=85.0, <90.0 dBA and > 90.0 dBA groups, which have an average estimated exposure 

of 87.1, 91.6 dBA and standard deviations of 1.2 and 0.8 dBA, respectively. For these two 

groups, there is far greater confidence that noise exposures exceed the action level or PEL 

and that location-specific measurements should be taken to determine if controls should be 

implemented to protect workers from excessive exposure.

Exposure estimates for individual broad SOCs can be found in Appendix 2. While these 

estimates cannot replace personal measurement data, they do provide a starting point for 

occupational health professionals to identify workers who may be overexposed to noise. 

Additionally, the provided measure of variability will help inform and guide the decisions 

of occupational health professionals regarding workers in job groups whose exposure may 

vary from day to day depending on the specific work tasks being conducted. Note that these 

exposure estimates are calculated based on the currently available data in the JEM. If new 

measurements are added to the JEM in the future, these exposure estimates can be refined 

and updated.

To our knowledge the exposure estimates from our model are based on the most 

comprehensive dataset of occupational noise exposure ever collected. The only other 

instance of a comprehensive JEM developed for occupational noise was reported by 

Sjӧstrӧm et al. in 2013. The authors of that paper used a mixture of 569 quantitative 

noise measurements and qualitative measurements made by expert judgment to assign 

exposure groupings for 129 unique job families.13 In contrast to what has been seen in 
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the US, occupational noise exposures in Sweden saw only a slight decrease from 1970 to 

2004 which, likely reflects the difference in the dates of promulgation and enforcement 

of occupational health laws in the US compared to Sweden.13,14 It is not straightforward 

to directly compare the results from our JEM to the JEM constructed by Sjӧstrӧm et al. 

because we only used quantitative measurements in our JEM. In addition, Sweden uses 

a more protective noise exposure standard than OSHA (85 dBA criterion level and 3 

dB time-intensity exchange rate) while OSHA uses the less protective 90 dBA criterion 

level and 5 dB time-intensity exchange rate, making it impossible to directly compare the 

measurements.36

Despite the limitations associated with this JEM we believe it represents a useful tool for 

occupational health professionals and researchers. Our future plans include combining the 

exposure estimates from this model with information on the frequency of noise exposure 

from Department of Labor’s Occupational Information Network (O*NET) system by using 

responses from survey question 4.C.2.b.1.a, which asks respondents to provide a response 

from 0–100% “How often does this job require working exposed to sounds and noise 

levels that are distracting or uncomfortable?”.37 This will build on previous work by Choi 

et al. that used the responses from O*NET’s databases to create statistical models to 

predict NIHL.38 Our exposure estimates can also be used with noise-induced hearing loss 

models published by the International Organization for Standards (ISO) to predict hearing 

threshold levels of participants in the National Health and Nutrition Examination Survey 

(NHANES) which contains both audiometric and employment history data.39,40 Finally, the 

estimates in our JEM may be used to drive additional targeted surveillance and assessment 

efforts in specific occupations; these efforts could leverage smart device-based measurement 

technologies, which under certain circumstances can yield low-cost, reasonably accurate 

noise exposure measurements.41,42 Each of these steps will yield better noise exposures 

estimates that can, in turn, be used to guide efforts to control noise exposures and reduce 

occupational NIHL.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of the hierarchical structure in the SOC system reprinted from the 2010 SOC User 

Guide (22).
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Figure 2. 
An illustration of the hierarchical structure used in this analysis. There are 22 major SOCs 

and various number of broad SOCs within each major SOC. For example, the first major 

SOC has 22 broad SOCs and the 22nd major SOC has 3 broad SOCs.
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Figure 3. 
Comparison of predicted and observed broad SOC means for the training (a) and validation 

(b) dataset set.
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Figure 4. 
Posterior and observed broad SOCs means for the validation dataset (n=50). The sample size 

for the observed mean is shown in parentheses.
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Figure 5. 
The distribution of estimated mean noise exposures (dBA) at the broad SOC level. The 

numbers above the bars indicate the number of SOCs with estimated mean exposures that lie 

within that bar.
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Table 1.

Source of data used in the analysis.

Total Before 1984 1984–1992 1993–2000 2001–2009 After 2009 Total

Total

109 123 203 071 157 471 198 987 85 050 753 702

Government

MSHA 90 305 187 886 142 899 151 078 70 909 643 077

OSHA 55 318 159 701 132 302 135 753 66 065 549 139

34 987 28 185 10 597 15 325 4 844 93 938

Private Industry

Agriculture Forestry Fishing and Hunting 18 256 15 067 13 566 46 107 11 922 104 918

Mining Quarrying and Oil and Gas Extraction 638 44 56 15 51 804

Utilities 1 388 6 085 5 695 7 514 1 830 22 512

Construction 13 8 111 56 458 646

Manufacturing 827 186 719 1 113 161 3 006

Wholesale Trade 14 995 8 279 6 272 36 875 8 986 75 407

Retail Trade 16 17 4 194 129 360

Transportation and Warehousing 30 12 87 13 25 167

Information 38 152 56 51 96 393

Finance and Insurance 26 11 1 1 0 39

Real Estate and Rental and Leasing 0 0 0 0 0 0

Professional Scientific and Technical Services 0 0 0 0 1 1

Management of Companies and Enterprises 9 0 2 11 1 23

Administrative and Support and Waste Management and 
Remediation Services

0 0 0 0 0 0

Educational Services 19 14 11 2 8 54

Health Care and Social Assistance 42 17 39 124 125 347

Arts Entertainment and Recreation 26 14 44 18 8 110

Accommodation and Food Services 0 0 11 11 9 31

Other Services (except Public Administration) 6 28 34 46 2 116

Public Administration 67 69 194 56 14 400

116 131 230 7 18 502

Published Literature

562 118 1 006 1 802 2 219 5 707
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Table 2.

Summary of posterior distribution of parameters from the model validation.

Parameter Posterior mean Posterior standard deviation 95% Credible interval

μ 82.3 0.9 80.6–84.2

σ2 20.0 2.5 15.7–25.9

σ 4.4 0.3 3.9–5.1

τ2 13.3 5.3 6.2–26.5

τ 3.5 0.7 2.5–5.2
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Table 3.

Posterior distribution of major SOC means from the model validation.

Major SOC Major SOC Title
Posterior 

mean

Posterior 
standard 
deviation

95% credible 
interval

Number of 
broad 

SOCs
1 Total Number of 

Measurements

11–0000 Management Occupations 81.8 1.8 78.4–85.3 7 277

13–0000
Business and Financial 

Operations Occupations 82.7 2.4 78.2–87.6 3 39

15–0000
Computer and Mathematical 

Occupations 80.9 2.7 75.4–86.1 2 25

17–0000
Architecture and Engineering 

Occupations 80.7 1.6 77.6–84.0 7 1 446

19–0000
Life, Physical, and Social 

Science Occupations 82.8 2.0 78.9–86.8 4 183

21–0000
Community and Social Service 

Occupations 80.7 2.8 74.7–86.0 2 7

25–0000
Education, Training, and 

Library Occupations 84.0 2.9 78.5–89.6 2 33

27–0000
Arts, Design, Entertainment, 

Sports, and Media Occupations 82.1 2.00 78.2–86.1 5 77

29–0000
Healthcare Practitioners and 

Technical Occupations 79.9 1.8 76.2–83.3 6 89

31–0000 Healthcare Support Occupations 82.3 2.9 76.6–87.9 1 15

33–0000 Protective Service Occupations 81.2 1.8 77.6–84.7 5 106

35–0000
Food Preparation and Serving 

Related Occupations 82.7 1.7 79.7–85.9 8 107

37–0000
Building and Grounds Cleaning 

and Maintenance 85.0 2.5 80.2–89.8 2 353

39–0000
Personal Care and Service 

Occupations 84.8 1.9 80.9–88.6 5 47

41–0000 Sales and Related Occupations 82.3 2.1 78.2–86.6 3 191

43–0000
Office and Administrative 

Support Occupations 78.4 1.2 76.2–80.6 16 433

45–0000
Farming, Fishing, and Forestry 

Occupations 85.5 2.0 81.7–89.5 4 305

47–0000 Construction and 83.5 0.9 81.8–85.1 27 93 531

49–0000

Extraction Occupations 
Installation, Maintenance, and 

Repair Occupations 83.3 1.2 80.9–85.5 14 8 923

51–0000 Production Occupations 85.2 0.7 83.9–86.6 43 26 989

53–0000
Transportation and Material 

Moving Occupations 83.3 0.9 81.5–85.2 21 16 456

55–0000 Military Specific Occupations 78.9 2.8 73.2–83.9 2 12

1
Number of broad SOCs in the training dataset
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Table 4.

Summary of posterior distribution of parameters from the model imputation.

Parameter Posterior mean Posterior standard deviation 95% Credible interval

μ 82.1 0.9 80.3–83.9

σ2 22.1 2.5 17.7–27.5

σ 4.7 0.3 4.2–5.3

τ2 13.8 5.1 6.6–26.6

τ 3.7 0.7 2.6–5.2
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Table 5.

Posterior distribution of major SOC means from the model imputation.

Major SOC Major SOC Title
Posterior 

mean

Posterior 
standard 
deviation

95% credible 
interval

Number of 
broad 

SOCs
1 Total Number of 

Measurements

11–0000 Management Occupations 82.0 1.6 78.6–85.1 9 1 380

13–0000
Business and Financial 

Operations Occupations 81.4 2.0 77.3–85.1 5 39

15–0000
Computer and Mathematical 

Occupations 80.4 2.3 75.9–84.8 4 25

Architecture and Engineering

17–0000 Occupations 81.3 1.5 78.3–84.4 9 7 176

19–0000
Life, Physical, and Social 

Science Occupations 81.4 1.9 77.7–85.1 6 776

21–0000
Community and Social Service 

Occupations 80.6 3.0 74.7–86.3 2 7

25–0000
Education, Training, and 

Library Occupations 78.6 2.2 74.1–82.9 4 139

27–0000
Arts, Design, Entertainment, 

Sports, and Media Occupations 83.5 1.9 79.9–87.1 7 264

29–0000
Healthcare Practitioners and 

Technical Occupations 81.5 1.7 78.2–84.9 8 220

31–0000
Healthcare Support 

Occupations 82.1 2.9 76.4–87.9 1 67

33–0000 Protective Service Occupations 79.7 1.6 76.5–82.9 7 480

35–0000
Food Preparation and Serving 

Related Occupations 82.8 1.42 79.9–85.6 10 319

37–0000
Building and Grounds Cleaning 

and Maintenance 84.6 2.6 79.7–89.8 2 1 675

39–0000
Personal Care and Service 

Occupations 84.6 1.8 81.0–88.2 7 178

41–0000 Sales and Related Occupations 81.1 1.9 77.4–84.8 5 935

43–0000
Office and Administrative 

Support Occupations 78.8 1.1 76.6–80.9 18 2 038

45–0000
Farming, Fishing, and Forestry 

Occupations 86.4 1.8 83.0–89.8 6 1 384

47–0000
Construction and Extraction 

Occupations 83.6 0.9 81.9–85.3 29 46 9231

49–0000
Installation, Maintenance, and 

Repair Occupations 83.3 1.2 81.2–85.7 16 44 769

51–0000 Production Occupations 85.4 0.7 84.0–86.8 45 135 533

53–0000
Transportation and Material 

Moving Occupations 83.7 1.0 81.8–85.7 23 81 951

55–0000 Military Specific Occupations 78.8 2.8 73.1–84.1 2 12

1
Total number of broad SOCs in the training and validation datasets
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