The authors have declared that no competing interests exist.
Conceived and designed the experiments: DLH MZI SFA ARF DAM LMM. Performed the experiments: MZI EW KV GH ESS HEA ARAW DAM. Analyzed the data: DLH MZI DAM LMM KV GH EW. Contributed reagents/materials/analysis tools: ARF ESS HEA ARAW LMM. Wrote the paper: DLH MZI DAM LMM EW ARF.
Control of rabies requires a consistent supply of dependable resources, constructive cooperation between veterinary and public health authorities, and systematic surveillance. These are challenging in any circumstances, but particularly during conflict. Here we describe available human rabies surveillance data from Iraq, results of renewed sampling for rabies in animals, and the first genetic characterisation of circulating rabies strains from Iraq. Human rabies is notifiable, with reported cases increasing since 2003, and a marked increase in Baghdad between 2009 and 2010. These changes coincide with increasing numbers of reported dog bites. There is no laboratory confirmation of disease or virus characterisation and no systematic surveillance for rabies in animals. To address these issues, brain samples were collected from domestic animals in the greater Baghdad region and tested for rabies. Three of 40 brain samples were positive using the fluorescent antibody test and hemi-nested RT-PCR for rabies virus (RABV). Bayesian phylogenetic analysis using partial nucleoprotein gene sequences derived from the samples demonstrated the viruses belong to a single virus variant and share a common ancestor with viruses from neighbouring countries, 22 (95% HPD 14–32) years ago. These include countries lying to the west, north and east of Iraq, some of which also have other virus variants circulating concurrently. These results suggest possible multiple introductions of rabies into the Middle East, and regular trans-boundary movement of disease. Although 4000 years have passed since the original description of disease consistent with rabies, animals and humans are still dying of this preventable and neglected zoonosis.
Control of rabies requires cooperation between government departments, consistent funding, and an understanding of the epidemiology of the disease obtained through surveillance. Here we describe human rabies surveillance data from Iraq and the results of renewed sampling for rabies in animals. In Iraq, it is obligatory by law to report cases of human rabies. These reports were collated and analysed. Reported cases have increased since 2003, with a marked increase in Baghdad 2009–2010. There is no system for detecting rabies in animals and the strains circulating in Iraq have not previously been characterized. To address this, samples were collected from domestic animals in Baghdad and tested for rabies. Three out of 40 were positive for rabies virus. Comparison of part of the viral genetic sequence with other viruses from the region demonstrated that the viruses from Iraq are more closely related to each other than those from surrounding countries, but diverged from viruses isolated in neighbouring countries approximately 22 (95% HPD 14–32) years ago. Although 4000 years have passed since the original description of disease consistent with rabies, animals and humans are still dying of this preventable and neglected zoonosis.
The first written record of disease consistent with rabies is in the Laws of Eshunna, a Sumerian city in ancient Mesopotamia. Largely corresponding to the region of what is now the Republic of Iraq, Mesopotamia encompassed the Euphrates and Tigris river systems and is considered by many to be the birthplace of civilisation. Some of the earliest archaeological records of the domestication of dogs also originate from the area, and dogs are thought to have had religious significance during that time
Baghdad was established as the centre of the Arab world during the middle ages, and endured repeated changes in rule until the region came under the control of the Ottoman Empire in the 14th century. Although information on rabies incidence during Ottoman rule is scarce, the speed at which the medical authorities adopted Pasteur's vaccine after the development was first published in 1885, illustrates the importance of the disease at that time
The current borders of Iraq were demarcated by the Treaty of Sèvres in 1920, when the Ottoman Empire was fragmented after World War I. After a brief period under control of Great Britain, Iraq first became an independent Kingdom in 1932, and then a Republic when the monarchy was overthrown in 1958. An effective hospital based health system was developed, but was reported to have deteriorated toward the end of the 20th century due to conflict, embargoes and sanctions
Rabies is considered endemic in most countries in the Middle East, but establishing the true burden is prevented by a relative lack of systematic surveillance and reporting
There is minimal systematic surveillance for animal rabies in Iraq, and no laboratory confirmation of diagnosis. Vaccination is compulsory for dogs, but the majority of the urban dog population is considered ownerless, free-roaming and therefore presumed unvaccinated. There are no coordinated dog vaccination or sterilisation campaigns and dog population control has traditionally been attempted through culling, known to be an insufficient measure
To address the lack of available data on rabies and to inform control strategies, sampling was initiated in the Baghdad region in April 2010. Here we report results of laboratory diagnosis and virus characterisation from these initial sampling efforts alongside official surveillance data for human rabies across Iraq.
Human rabies is notifiable in Iraq through regional public health offices in each of the 18 Governorates (provinces). Private and public health centres and hospitals report rabies cases based on a clinical definition of encephalitis, combined with hydrophobia and history of animal bite. There is no routine laboratory diagnosis undertaken. The regional public health offices report to the Zoonoses Section of the Centre for Disease Control (CDC) in Baghdad, who also collate post-exposure prophylaxis and reported animal bite numbers. These anonymized data on human rabies cases, animal bites and post-exposure prophylaxis were reviewed for the period 2001–2010. Analysis of the data was approved by the AHVLA Ethics Committee. Differences in rabies incidence between groups (age, sex and rural/urban habitation) were assessed using Chi-squared tests. Expected frequencies for age and area of habitation were taken from a separate recent household survey undertaken by others
| Category | Population | Rabies cases (% of 186 cases) | ×2 | |
| 0–14 | 39.8 | 63 | ||
| 15+ | 60.2 | 37 | ||
| 41.4 | 0.0001 | |||
| Urban | 70.9 | 17 | ||
| Rural | 29.1 | 83 | ||
| 260 | 0.0001 | |||
| Male | 50.2 | 89 | ||
| Female | 49.8 | 11 | ||
| 113 | 0.0001 |
population estimates from
Between April 2010 and July 2011, forty clinically ill animals (38 dogs, 2 cattle) in the Greater Baghdad area were euthanased by private veterinary surgeons or Iraqi State Veterinary Company staff. Cases were selected where rabies could not be ruled out on the basis of clinical signs. Reported signs included one or more of: abnormal behaviour or vocalisation, aggression, hyper-salivation and neurological signs. A pool of brain tissues including brain stem were removed at post mortem and stored frozen. All samples were transported frozen on dry-ice to the OIE Reference Laboratory at the Animal Health and Veterinary Laboratories Agency, Weybridge UK.
Brain samples were tested using a standard fluorescent antibody test (FAT) for lyssavirus antigen
Bayesian Markov Chain Monte Carlo (MCMC) phylogenetic analysis of the resulting consensus nucleoprotein sequences was implemented using the BEAST package (version 1.4.8)
Data on reported rabies cases were supplied by all 18 regional public health offices. In the 10 years between 2001 and 2010, there was an average of 17 (SD 6.9) human rabies cases reported annually in Iraq (
Data reported to National Zoonosis Centre, Baghdad from all 18 Governorate regional health offices. A. Annual reported incidence of human rabies deaths in Iraq, B Annual reported incidence of human rabies in Baghdad. C Annual reported dog bites in Baghdad. (nd = no data).
Governorates are coloured by number of human rabies cases per 100,000 population 2001–2010. Population estimates were taken from a recent household survey
Rabies prophylaxis is available in Iraq, although is not always initiated, and is rarely completed. The five-dose (Essen) regime is most frequently followed, and although a large proportion of dog bite victims receive the first vaccination (75%) a much lower number complete the full course (7%).
From 2002 to 2004 there were less than 1000 dog bites reported annually in Baghdad, corresponding to an incidence of 20 (95% CI 18.76–21.24) bites per 100,000 people, based on a population estimate of 5 million
Three out of 40 brain samples were positive for rabies virus by both FAT and RT-PCR. The three positive samples yielded unique partial nucleoprotein gene (N-gene) sequences (Genbank accession numbers JX524176-8). Phylogenetic analysis using a 400 base pair region of the N-gene showed that the viruses are closely related, forming a well supported clade separated from other published sequences (
Analysis implemented in BEAST (v1.8), showing the relationship between viruses characterised in this study and published sequences from RABVs isolated in the Middle East (
Rabies is a preventable disease, and yet the data presented here demonstrate that it remains a significant public and animal health challenge in Iraq. All except two of the 18 Governorates reported human rabies cases during the period of study, indicating that rabies is endemic and widespread across the country. The reported incidence of human rabies far exceeds that reported by some neighbouring countries. Incidence during 2009 is estimated from these data at 0.89 deaths per million population, compared with 0.025 for Turkey and 0.02 for Iran
As with all studies using human rabies surveillance data, the data presented here have limitations. The low reported numbers of human rabies cases in Baghdad preclude robust statistical comparison, meaning that the apparent increase in cases in Baghdad could be the result of annual variation rather than a genuine increase in cases. In addition, human rabies cases are currently only diagnosed based on clinical data without laboratory confirmation. The incidence of other diseases with overlapping clinical presentations such as bacterial or viral encephalitis, could affect reporting if they are misdiagnosed as rabies, or if rabies cases are incorrectly diagnosed as other diseases
The low numbers of bite victims completing a full course of post exposure prophylaxis is a significant risk to public health, but is a problem that is not unique to Iraq
There is no reported laboratory confirmation of rabies in Iraq, and circulating strains have not been previously characterised. In this study, brain samples for rabies diagnosis were analysed on an opportunistic basis from animals euthanased during the sampling period with one or more signs consistent with rabies. The prevalence of rabies in the sampled population (3/40) is lower than might be expected in a rabies endemic country. The clinical criteria for the sampled population included all animals with one or more sign consistent with rabies. Considering many signs of rabies are common to other diseases, this definition will include many non-rabid animals. All three positive samples were from Northern Baghdad, and two of the three positive cases were cattle. Cattle are considered dead-end hosts for rabies, and therefore these cases in cattle are likely to be spill over of the virus from undetected cases in dogs, or wildlife, in the area. This is supported by the phylogenetic evidence, suggesting these cases are from the same lineage circulating in dogs. The species bias towards large and economically important livestock animals provides supporting evidence to the hypothesis that the incidence is higher than these results suggest, and that many dog or wildlife cases go undetected or unreported. In addition, due to the necessary opportunistic nature of sampling, absence of cases in other areas does not imply freedom from rabies, and the same public and animal health interventions should be applied in all areas. Security concerns were a key restriction on sampling location and strategy in this study, and more comprehensive and systematic surveillance would be required to provide estimates of the incidence of animal rabies.
There are few isolates available from the region for phylogenetic analysis and hence sequence data from these cases therefore provide valuable information. A previously sequenced RABV reportedly from a dog in Iraq
These close relationships between viruses from Iraq and neighbouring countries reiterate that rabies does not respect cultural or political barriers and elimination of rabies must be approached at a regional level, with global cooperation from international veterinary (OIE/FAO) and health (WHO) providers. This is already being addressed through NGOs, and the MEEREB network but will require consistent commitment and resources
(DOC)
Click here for additional data file.
(DOC)
Click here for additional data file.
The authors are grateful to Hooman Goharriz, Colin Black, William Newell, and the Central Sequencing Unit (AHVLA), Akiko Kamata and Ahmed Elldrissi (FAO) for assistance and advice.