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Statistical Appendix  

Generalized Additive Logistic Regression Model 
Our use of GAMs was suggested by the fact that some of the potential confounders have a non-linear effect on the logit-transformed risk of 

birth defects. Specifically, our GAM models the risk of birth defects as 

𝑙𝑜𝑔𝑖𝑡(𝑏𝑖𝑟𝑡ℎ 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 𝑟𝑖𝑠𝑘) = 𝛽0𝐸 + 𝑓1(𝑋1) + ⋯ + 𝑓𝑝(𝑋𝑝), 

which includes the logistic regression model as a special case, and where 𝐸 is a binary indicator for the medication exposure of interest, 𝑋𝑗,

1 ≤ 𝑗 ≤ 𝑝 are (potential) confounders,  𝑓𝑗(⋅) is a function characterizing the effect of 𝑋𝑗, 1 ≤ 𝑗 ≤ 𝑝, and exp(𝛽0) is the odds ratio associated 

with the exposure 𝐸. 

In the implementation that we used, R package mgcv, the functions 𝑓𝑗(⋅) are smoothing spline bases (default option) that are estimated 

adaptively and may be reduced to a simple linear function as in the common logistic regression when supported by the data. In summary, 

GAMs allow us to better capture and adjust for confounding. The GAM fitting requires a large sample size, so we took advantage of the 

over 1 million births in the registry.  

As an example of nonlinear confounding effects demonstrated by GAM fitting, the figure below characterizes the effect of maternal age on 

the logit transformed birth defect risk suggested by the data (>1 million observations, y-axis centered on 0). The GAM selected 3.22 degrees 

of freedom, 2.22 more than the 1 degree of freedom for a linear impact. A linear function of maternal age would have failed to account for 

the approximately null effect of age up to age 35, with a progressive increase afterwards. This pattern is in agreement with the literature. 

 



 

 

The flexibility provided by the functions 𝑓𝑖(⋅) is implemented in mgcv by wrapping variables in s(), which sets up a scatterplot smoother base. 

For example, the following R code allows flexible adjustment of birth year, income, and parents’ ages via GAM, in addition to other categorical 

confounding variables. 

model<-gam(birth defect ~ drug name + s(birth year) + 

  education father + s(income father) + s(age father) + 

  education mother + smoking status mother + s(age mother), 

  data = data, 

  subset = liveborn singletons after exclusion criteria, 

  family = binomial()) 

The default option, maintained here, is smoothing splines, which have a knot at every observation, with a penalty on the total amount of 

change accumulated over a variable’s domain. The optimal penalty is determined from cross validation. Details can be found in Statistical 

Models in S by Chambers and Hastie and Generalized Additive Models by Wood. The use of GAM adjustment in the analysis of covariance 

has been recommended in the literature (Regression modeling strategies: with applications to linear models, logistic and ordinal regression, 

and survival analysis (Vol. 3). By Harrell, F.E., 2015) 



 

Clustering by father 
To account for clustering by father, we set up a wild bootstrapping algorithm that accounted for such clustering without imposing any 

particular correlation structure. To mimic the conventional bootstrap which assigns random multinomial weights with mean 1 and variance 

1 to each birth, our wild bootstrap procedure assigns the same unit exponential random weight (also having a mean 1 and variance 1) to all 

births sharing the same father. 

For each of the 𝑖 = 1, ⋯, 10 imputed data sets, the complete datasets were obtained: 

Data.i <- complete(mids object, i) 

The following algorithm (with a simulated data set) was then adjusted to the data: 

 

############################################################################## 

### Y is binary outcome 

### X1 is the medication;  X2 and X3 are confounders to adjust; father is id for fathers (should be integer, can be obtained through 

as.integer(as.factor(father)) if father is character, or through: 

## Index father id  by "1, 2, 3, ... " 

father.id=unique(father) 

n.father=length(father.id) 

father.new=rep(NA, n) 

for(i in 1:n) 

   father.new[i]=(1:n.father)[father[i]==father.id] 

  

###  generate data for demonstration purposes 

n=500  

x1=rbinom(n, 1, 0.2) 



x2=rnorm(n) 

x3=rexp(n) 

father=sample(n, n, T) 

odds=exp(-0.5+x1+0.5*log(x3))  

prob=odds/(1+odds) 

y=rbinom(n, 1, prob) 

 

######################################################### 

## Main analysis 

fit=gam(y~x1+s(x2)+s(x3), family="binomial") 

beta0=fit$coef[2] # can by multiple coefficients if need be 

# Will give warning of non-integer number of outcomes due to wild bootstrap. Can be ignored. 

 

## Wild Bootstrap  

## Fix the penalty parameter so save running time 

sp0=fit$sp 

 

## run 100 bootstraps ### 

n=length(y) 

B=100 

beta.boot=rep(NA, B) 

for(b in 1:B) 



{set.seed(b) 

 weight=rexp(n) # exponential distribution with parameter 1 has mean and variance 1. 

 weight.boot=weight[father] 

 fit.bt=gam(y~x1+s(x2)+s(x3), sp=sp0,  weight=weight.boot, family="binomial") 

 beta.boot[b]=fit.bt$coef[2] # again, can be multiple coefficients if need be 

 print(b) 

 } 

# Will give warnings of non-integer number of outcomes due to wild bootstrap. Can be ignored. 

# On ~1 million births, the mean weights will be very close to 1 (law of large numbers) 

 

## The histogram should be normal with its center around "beta0" 

hist(beta.boot) 

lines(rep(beta0, 2), c(0, 100), col=2) 

 

## summary the standard error estimates accounting for correlations 

se.beta=sd(beta.boot) 

############################################################################## 

 

On a computational note, working with the 10 completed data sets rather than with the mids object has the advantage that 10 computing 

tasks (or 5, or 2) can be set up in parallel. 

 



Running GAMs on the imputed data  
First, GAM models above were fit for each of the 10 imputed datasets and the point estimator of the adjusted odds ratio (AOR), and its 

standard error estimate based on wild bootstrap were obtained. Then, we pooled the resulted estimates using Rubin’s rule: 

Pooled point estimate = mean estimate over 10 datasets  

Pooled variance estimate of the pooled point estimate = mean variance estimate of over 10 datasets + 1.1 * variance of 10 point estimates 

We implemented Rubin's rules to calculate the final point estimate for log(AOR) and its variance. A Wald-type confidence interval for the 

log(AOR) associated with the exposure was then calculated by assuming a Normal distribution for the point estimator based on large sample 

approximations. 

 

  



Supplement Table 1. Populating the model with potential confounders. Results in the main manuscript are from the bootstrapped version of model 5. 

a) Variables included in each of the models. Parental birth defects are any time in the period, before and after birth of their offspring. 

 

b) Adjusted odds ratios of the drug variables for insulins, metformin, sulfonylureas, and other diabetes drugs, all in one model. Reported are adjusted odds ratios with 95% 
confidence intervals. Birth year was the only variable that changed the coefficients materially. Nulliparity, birth defects of each of the parents, and low maternal education 
were all highly predictive of birth defects (p<0.001 with large coefficients for the former two), but did not change the coefficients of the drug variables. Results from GAMs 
assuming independence (i.e., do not account for clustering by father) as we merely wished to see the direction of the point estimate, which is unbiased also for unclustered 
analyses. 

 

  

 Year Father attributes: age, 
education, income 

Mother attributes: age, 
education, smoking 

Parental birth 
defects 

Nulliparity Preconception 
diabetes diagnoses 

Cardiovascular drugs 
and antidepressants 

Model 1        

Model 2 X       

Model 3 X X      

Model 4 X  X     

Model 5 X X X     

Model 6 X X X X    

Model 7 X X X X X   

Model 8 X X X   X  

Model 9 X X X    X 

 Insulins Metformin Sulfonylureas Other orals 

Model 1 0.99 (0.85 – 1.15) 1.57 (1.21 – 2.02) 1.30 (0.89 – 1.89) 0.74 (0.37 – 1.46) 

Model 2 0.98 (0.85 – 1.15) 1.44 (1.12 – 1.86) 1.38 (0.95 – 2.01) 0.68 (0.34 – 1.33) 

Model 3 0.98 (0.85 – 1.14) 1.42 (1.10 – 1.83) 1.37 (0.94 – 2.00) 0.67 (0.34 – 1.33) 

Model 4 0.98 (0.84 – 1.14) 1.40 (1.09 – 1.81) 1.35 (0.93 – 1.97) 0.67 (0.34 – 1.32) 

Model 5 0.98 (0.84 – 1.14) 1.41 (1.09 – 1.81) 1.36 (0.94 – 1.99) 0.67 (0.34 – 1.33) 

Model 6 0.98 (0.85 – 1.15) 1.41 (1.10 – 1.82) 1.35 (0.93 – 1.97) 0.67 (0.34 – 1.32) 

Model 7 0.99 (0.85 – 1.15) 1.43 (1.11 – 1.84) 1.35 (0.93 – 1.97) 0.66 (0.33 – 1.31) 

Model 8 1.00 (0.74 – 1.35) 1.49 (1.14 – 1.97) 1.43 (0.97 – 2.11) 0.70 (0.35 -1.40) 

Model 9 0.98 (0.84 – 1.14) 1.41 (1.09 – 1.83) 1.35 (0.93 – 1.97) 0.68 (0.34 – 1.34) 



Supplement Table 2. Adjusted odds ratios (AOR) and 95% confidence intervals (95% CI) for a regression including various classes of cardiovascular drugs and antidepressants. This is 
model 9 of Supplement Table 1. Birth defects that were elevated for betablockers included heart defects and various other categories. 

 OAR (95% CI) 

Insulins 0.98 (0.84 – 1.14) 

Metformin 1.41 (1.09 – 1.83) 

Sulfonylureas 1.35 (0.93 – 1.97) 

Betablocker * 1.25 (1.06 – 1.47) 

Diuretic † 1.18 (0.91 – 1.51) 

Calcium channel blocker ‡ 0.94 (0.76 – 1.17) 

ACE inhibitor or similar § 1.05 (0.91 – 1.22) 

Lipid-modifying agent ‖ 0.91 (0.77 – 1.09) 

Antidepressant ¶ 0.95 (0.87 – 1.03) 

*All ATC C07  

† All ATC C03 

‡ All ATC C08 

§ All ATC C09 

‖ All ATC C10 

¶ All ATC N06A  



Supplement Table 3. Timeframe analysis. Birth characteristics by timing of metformin exposure. Columns overlap. 

 
>1 year before 

(n=1,861) 
1 year before 

(n=1,751) 
sperm development 

(n=1,451) 
1 year after 
(n=2,484) 

>1 year after 
(n=28,112) 

Age mother, years, Q2 (Q1 – Q2) 33.4 (29.8 – 37.3) 33.3 (29.9 – 37.3) 33.4 (30.0 – 37.5) 33.1 (29.6 – 37.1) 31.2 (27.5 – 34.9) 

Low education mother (n) 31% (520) 32% (499) 32% (413) 32% (704) 33% (8,637) 

Mother smoked during pregnancy (n) 12% (218) 11% (194) 11% (159) 12% (298) 19% (4,497) 

Age father, years, Q2 (Q1 – Q2) 40.2 (35.0 – 46.3) 40.1 (35.2 – 46.3) 40.3 (35.6 – 46.3) 39.8 (34.9 – 45.7) 35.8 (31.5 – 40.6) 

Low education father (n) 33% (562) 33% (534) 32% (429) 32% (735) 33% (8,677) 

Paternal income, 1,000 DKK, Q2 (Q1 – Q3) 175 (123 – 242) 172 (123 – 239) 172 (123 – 236) 167 (121 – 235) 146 (108 – 193) 

Father on betablocker (n) * 4.3% (80) 4.9% (86) 5.4% (78) 4.4% (109) 1.5% (416) 

Father on diuretic (n) † 3.3% (62) 4.0% (70) 4.5% (66) 3.3% (81) 1.1% (311) 

Father on calcium channel blocker (n) ‡ 5.2% (97) 5.8% (102) 6.9% (100) 5.2% (128) 1.3% (374) 

Father on ACE inhibitor or similar (n) § 19% (360) 21% (376) 25% (369) 18% (448) 3.4% (967) 

Father on lipid-modifying agent (n) ‖ 24% (448) 28% (492) 34% (493) 23% (560) 3.0% (856) 

Father on antidepressant (n) ¶ 4.8% (90) 5.7% (100) 6.7% (97) 5.9% (147) 2.7% (767) 

Gestational age, days, Q2 (Q1 – Q3) 279 (273 – 286) 278 (272 – 286) 278 (273 – 286) 278 (273 – 286) 278 (273 – 287) 

Nulliparity (n) 31% (583) 31% (546) 31% (451) 33% (828) 36% (10,032) 

Birth weight, kg, Q2 (Q1 – Q3) 3.5 (3.1 – 3.8) 3.5 (3.1 – 3.8) 3.5 (3.1 – 3.8) 3.5 (3.1 – 3.8) 3.5 (3.1 – 3.8) 

Birth length, cm, Q2 (Q1 – Q3) 52 (50 – 53) 52 (50 – 53) 52 (50 – 53) 52 (50 – 53) 52 (50 – 53) 

Major birth defect (n) 4.0% (74) 4.4% (77) 5.2% (75) 4.3% (107) 3.3% (921) 

Male sex (n) 49.7% (925) 49.7% (871) 49.4% (717) 49.8 (1,237) 51.3% (14,412) 

 

Q1 = first quartile, Q2 = second quartile (median), Q3 = third quartile 

n = number 

DKK = Danish crowns 

*All ATC C07  

† All ATC C03 

‡ All ATC C08 

§ All ATC C09 

‖ All ATC C10 

¶ All ATC N06A 


