pmcEmerg Infect DisEmerg Infect DisEIDEmerging Infectious Diseases1080-60401080-6059Centers for Disease Control and Prevention36418008970756722-097110.3201/eid2812.220971Research LetterResearch LetterHemotropic Mycoplasma spp. in Aquatic Mammals, Amazon Basin, BrazilHemotropic Mycoplasma spp. in Aquatic Mammals, Amazon Basin, BrazilHemotropic Mycoplasma spp. in Aquatic Mammals, Amazon Basin, BrazilDuarte-BenvenutoAriciaSacristánCarlosEwbankAna CarolinaSacristánIreneZamana-RamblasRobertaGravenaWaleskaMelloDaniela M.D.Ferreira da SilvaVera M.MarmontelMiriamCarvalhoVitor L.MarigoJulianaCatão-DiasJosé L.University of São Paulo, São Paulo, Brazil (A. Duarte-Benvenuto, C. Sacristán, A.C. Ewbank, R. Zamana-Ramblas, J. Marigo, J.L. Catão-Dias); Centro de Investigación en Sanidad Animal, INIA-CSIC, Madrid, Spain (C. Sacristán, I. Sacristán); Universidade Federal do Amazonas, Coari, Brazil (W. Gravena); Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil (D.M.D. Mello, V.M. Ferreira da Silva); Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Brazil (M. Marmontel); Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, Brazil (V.L. Carvalho)Address for correspondence: Aricia Duarte-Benvenuto, Laboratório de Patologia Experimental e Comparada, 87 Prof. Dr. Orlando Marques de Paiva Ave, São Paulo 05508270, Brazil; email address: aricia.benvenuto@gmail.com1220222812255625592022https://creativecommons.org/licenses/by/4.0/Emerging Infectious Diseases is a publication of the U.S. Government. This publication is in the public domain and is therefore without copyright. All text from this work may be reprinted freely. Use of these materials should be properly cited.

Hemotropic Mycoplasma spp. (hemoplasmas) are uncultivable bacteria that infect mammals, including humans. We detected a potentially novel hemoplasma species in blood samples from wild river dolphins in the Amazon River Basin, Brazil. Further investigation could determine pathogenicity and zoonotic potential of the detected hemoplasma.

Keywords: hemoplasmashemotropic Mycoplasmabacteriazoonosesriver dolphininfectious diseasesmolecular detectionaquatic mammalsAmazon BasinBrazil

Hemotropic Mycoplasma spp. (hemoplasmas) are uncultivable, cell-wall–deficient, pleomorphic bacteria that infect mammals, including humans (1). Although previously linked to anemia, starvation, and death, especially among immunosuppressed humans and animals (2,3), most hemoplasma species have subclinical manifestations (1). Hemoplasmas are thought to be host specific, but some reports suggest interspecies transmission and zoonotic potential (35). In aquatic mammals, hemoplasmas have only been reported in California sea lions (Zalophus californianus) (6).

Amazon river dolphins (Inia geoffrensis), Bolivian river dolphins (I. boliviensis), and Amazonian manatees (Trichechus inunguis) are endemic to the Amazon Basin. Both dolphin species have been classified as endangered, and T. inunguis manatees are classified as vulnerable (7). Infectious disease studies in these species are scarce. We used 16S rRNA PCR to detect and characterize hemoplasmas among aquatic mammals from the Amazon Basin Region, Brazil.

We analyzed blood samples of 50 wild dolphins, including 32 I. geoffrensis and 18 I. boliviensis dolphins live captured in scientific expeditions (8), during 2015 in the Guaporé and Negro Rivers; 2017 in the Tapajós River; and 2020 near Balbina hydroelectric dam (Table). We performed field hematology on wild dolphins and also analyzed blood samples collected during health assessments of 25 T. inunguis manatees under human care in Manaus in February 2022 (Appendix Tables 1, 2).

Epidemiologic and molecular data of Hemotropic <italic>Mycoplasma</italic> spp. in aquatic mammals, Amazon Basin, Brazil*
Sample no.SpeciesAge class/sexCapture dateRiverHemoplasma detectionGenBank accession no.
1 Inia geoffrensis Adult/F2017 Oct 6TapajósYON711292
2 I. geoffrensis Calf/M2017 Oct 6TapajósNNA
3 I. geoffrensis Adult/M2017 Oct 7TapajósNNA
4 I. geoffrensis Juvenile/M2017 Oct 8TapajósNNA
5 I. geoffrensis Juvenile/F2017 Oct 10TapajósYON721292
6 I. geoffrensis Adult/M2017 Oct 10TapajósYON721292
7 I. geoffrensis Adult/M2017 Oct 10TapajósYON721292
8 I. geoffrensis Adult/M2017 Oct 11TapajósYON721300
9 I. geoffrensis Adult/M2017 Oct 11TapajósYON721302
10 I. boliviensis Adult/M2015 Feb 6GuaporéYON721303
11 I. boliviensis Calf/M2015 Sept 22GuaporéYON721296
12 I. boliviensis Adult/M2015 Sept 22GuaporéNNA
13 I. boliviensis Adult/F2015 Sept 22GuaporéYON721301
14 I. boliviensis Juvenile/F2015 Sept 22GuaporéNNA
15 I. boliviensis Juvenile/M2015 Sept 22GuaporéNNA
16 I. boliviensis Adult/F2015 Sept 23GuaporéNNA
17 I. boliviensis Calf/M2015 Sept 23GuaporéNNA
18 I. boliviensis Adult/F2015 Sept 23GuaporéYON721296
19 I. boliviensis Adult/M2015 Sept 23GuaporéYON721301
20 I. boliviensis Adult/M2015 Sept 24GuaporéYON721297
21 I. boliviensis Juvenile/M2015 Sept 24GuaporéNNA
22 I. boliviensis Juvenile/M2015 Sept 25GuaporéNNA
23 I. boliviensis Adult/M2015 Sept 26 GuaporéYON121301
24 I. boliviensis Adult/F2015 Sept 27GuaporéYON721296
25 I. boliviensis Adult/M2015 Sept 27GuaporéYON121301
26 I. boliviensis Adult/M2015 Sept 27GuaporéYON711298
27 I. boliviensis Adult/M2015 Sept 27GuaporéYON721297
28 I. geoffrensis Calf/M2015NegroNNA
29 I. geoffrensis Adult/F2020 Dec 2BalbinaYON721299
30 I. geoffrensis Calf/F2020 Dec 2BalbinaNNA
31 I. geoffrensis Juvenile/M2020 Dec 2BalbinaNNA
32 I. geoffrensis Adult/M2020 Dec 2BalbinaYON721299
33 I. geoffrensis Adult/M2020 Dec 2BalbinaNNA
34 I. geoffrensis Juvenile/M2020 Dec 3BalbinaYON721299
35 I. geoffrensis Adult/M2020 Dec 3BalbinaNNA
36 I. geoffrensis Juvenile/M2020 Dec 3BalbinaYON721299
37 I. geoffrensis Juvenile/M2020 Dec 4BalbinaNNA
38 I. geoffrensis Juvenile/M2020 Dec 4BalbinaNNA
39 I. geoffrensis Juvenile/F2020 Dec 4BalbinaYON721299
40 I. geoffrensis Juvenile/M2020 Dec 4BalbinaYON721299
41 I. geoffrensis Adult/M2020 Dec 4BalbinaYON721299
42 I. geoffrensis Juvenile/M2020 Dec 4BalbinaYON721295
43 I. geoffrensis Juvenile/M2020 Dec 5BalbinaYON721299
44 I. geoffrensis Juvenile/M2020 Dec 5BalbinaYON721299
45 I. geoffrensis Adult/M2020 Dec 5BalbinaYON721293
46 I. geoffrensis Juvenile/M2020 Dec 5BalbinaYON721293
47 I. geoffrensis Juvenile/M2020 Dec 5BalbinaYON721299
48 I. geoffrensis Juvenile/M2020 Dec 5BalbinaYON721299
49 I. geoffrensis Adult/M2020 Dec 6BalbinaYON721294
50 I. geoffrensis Juvenile/M2020 Dec 6BalbinaNNA

*Amazon river dolphins (I. geoffrensis) and Bolivian river dolphins (I. boliviensis) were live captured in scientific expeditions in Guaporé, Tapajós, and Negro rivers, and at the Balbina hydroelectric dam. NA, not applicable.

We extracted DNA by using the DNeasy Blood & Tissue Kit (QIAGEN, https://www.qiagen.com), following manufacturer instructions. We screened samples for Mycoplasma spp. by 16S rRNA PCR targeting a 384-bp fragment (9). We subjected positive samples to PCR targeting a 1,400-bp fragment of 16S rRNA (10) and confirmed amplicons by sequencing in both directions.

We used GraphPad Prism version 5 (GraphPad Software, https://www.graphpad.com) to compare prevalence among host species, sampling sites, sampling year, age, and sex, and hematological values in infected and noninfected animals; we considered p<0.05 statistically significant. We used the median joining method in PopART software (University of Otagao, https://www.popart.otago.ac.nz) to generate a nucleotide sequence type network. We assessed phylogeographic structure among species and sampling sites by using pairwise fixation index tests (FSTs) in Arlequin (http://cmpg.unibe.ch/software/arlequin3), determining level of significance with 1,000 permutations, and using the nearest-neighbor statistic (Snn) in DnaSP version 5 (Universitat de Barcelona, http://www.ub.edu/dnasp).

We detected Mycoplasma DNA in samples from 21 (65.6%, 95% CI 48.2%–83.0%) I. geoffrensis and 11 (61.1%, 95% CI 36.2%–86.1%) I. boliviensis dolphins. The percentage of Inia spp. dolphins testing hemoplasma-positive was higher than that reported for Z. californianus California sea lions (12.4%) (6). All manatees in our study tested PCR-negative for hemoplasma.

Mycoplasma nucleotide sequences from Inia spp. dolphins had <94.0% identity with the closest available sequence (GenBank accession no. CP003731), which was detected in alpacas (Vicugna pacos). We submitted 12 representative sequence types to GenBank (Table). Multilocus sequencing typing will be necessary to further characterize the Mycoplasma species we detected.

Among animals sampled, adult dolphins had significantly higher hemoplasma prevalence than did calves (p = 0.0015). We saw no statistically significant differences among remaining variables, including the hematologic parameters between hemoplasma-positive and hemoplasma-negative dolphins; however, our sample size was small.

Network analyses differentiated the obtained nucleotide sequence types into 3 distinct groups: 1 comprises sequences of all I. geoffrensis dolphins samples from Balbina and Tapajós; the other 2, harbor sequences of all I. boliviensis dolphins samples from Guaporé, which are greatly divergent (Figure). Our analysis showed statistically significant differences among populations (Snn = 1.0, p = 0.0001; FST = 0.48, p = 0.003), confirming a geographic genetic structure. Haplotype diversity (Hd), average number of nucleotide differences (K), and nucleotide diversity (π) were higher among animals from Guaporé compared with the other 2 sites. For Guaporé, Hd was 0.82, K 43.6, and π 0.03; for Tapajós, Hd was 0.4, K 0.4, and π 0.0003; and for Balbina, Hd was 0.44, K 0.71, and π  0.0005. We also noted that Mycoplasma among host species shared genetic structure that differed between the 2 Inia species (Snn = 1.0, p = 0.0001; FST = 0.43, p = 0.000). The genetic structure difference between the species and sites likely reflects geographic separation of the studied populations (Appendix Figure 1). However, geographic separation does not explain the hemoplasma divergence between the 2 sequence types collected from I. boliviensis dolphins. All retrieved sequences clustered together and with other hemoplasma sequences of unknown pathogenicity (Appendix Figure 2).

ntST network analyses of hemotropic Mycoplasma spp. (hemoplasmas) from aquatic mammals, Amazon Basin, Brazil. We noted hemoplasmas divergence between 2 dolphin species (A) and sampling sites (B). The analysis differentiated the retrieved hemoplasmas nucleotide sequence types in 3 distinct groups: 1 group comprised all sequences obtained from Amazon river dolphins (Inia geoffrensis) from the Balbina Dam and Tapajós River; the other 2 harbored all sequences from Bolivian river dolphins (I. boliviensis) from the Guaporé River. ntST, nucleotide sequence type.

Our findings indicate that aquatic mammals can be infected by hemoplasmas, but epidemiology remains unknown. In terrestrial mammals, hematophagous vectors are the main proposed transmission route (1). T. inunguis manatees in our study tested hemoplasma-negative despite being housed in tanks close to the forest without vector protection. This finding suggests food could be a transmission route among aquatic mammals because river dolphins are piscivorous and manatees are herbivorous. Also, 5 female dolphins captured with calves tested positive, but the calves tested negative, which might exclude vertical transmission. Endoparasitism or direct contact are other possible transmission routes.

In conclusion, we detected hemoplasmas in I. geoffrensis and I. boliviensis river dolphins. Pathogenicity and zoonotic potential require further investigation, but the high hemoplasma prevalence in adult mammals and detection among animals over several years suggest hemoplasma endemicity in these dolphin populations.

Appendix

Additional information on hemotropic Mycoplasma spp. in aquatic mammals, Amazon Basin, Brazil.

This study was funded by Brazilian National Council for Scientific and Technological Development (scholarship no. 141868/2019-8 and fellowship no. 304999-18), Fundação de Amparo à Pesquisa do Estado de São Paulo (scholarship no. 2016/20956-0 and grant no. 2018/25069-7), and by the Juan the la Cierva incorporación and formación fellowship nos. IJC2020-046019-I and FJC2020-046311-1, the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Small Grant in Aid of Research from the Society for Marine Mammalogy.

The Amazon river dolphins from the Tapajós River were sampled as part of the South American River Dolphin (SARDI) integrated strategy for the conservation funded by the World Wildlife Fund. The Amazon river dolphins from the Negro River and Balbina hydroelectric dam were sampled as part of Projeto Mamíferos Aquáticos da Amazonia, sponsored by Ampa/Petrobras Socioambiental, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001and by the Fundação de Amparo à Pesquisa do Estado do Amazonas (grant/award no. UNIVERSAL AMAZONAS/062.00891/2019). All study samples were collected in full compliance with specific federal permits issued by the Brazil Ministry of Environment (MMA) and the Chico Mendes Institute for Biodiversity Conservation (ICMBio) and approved by the Biodiversity Information and Authorization System (SISBIO authorization nos. 31226-1/2, 47780-4, 49597-1, 60171-1,72608-1, and 76904-3.), and ABIO no. 1169/2019, ICMBio/MMA (authorization no. 13157), and SISGEN authorization no. AAF009C.

Suggested citation for this article: Duarte-Benvenuto A, Sacristán C, Ewbank AC, Sacristán I, Zamana-Ramblas R, Gravena W, et al. Hemotropic Mycoplasma spp. in aquatic mammals, Amazon Basin, Brazil. Emerg Infect Dis. 2022 Dec [date cited]. https://doi.org/10.3201/eid2812.220971

Dr. Duarte-Benvenuto is a veterinarian and a doctorate student at the Laboratory of Wildlife Comparative Pathology in University of São Paulo, Brazil. Her primary research interest is wildlife disease and conservation, especially of aquatic mammals.

ReferencesMillán J, Di Cataldo S, Volokhov DV, Becker DJ. Worldwide occurrence of haemoplasmas in wildlife: Insights into the patterns of infection, transmission, pathology and zoonotic potential. Transbound Emerg Dis. 2021;68:323656. 10.1111/tbed.1393233210822Sykes JE, Tasker S. Hemoplasma infections. In: Sykes JE, editor. Canine and feline infectious diseases. St. Louis: Saunders; 2013. p. 390–398.Descloux E, Mediannikov O, Gourinat AC, Colot J, Chauvet M, Mermoud I, et al. Flying fox hemolytic fever, description of a new zoonosis caused by Candidatus Mycoplasma haemohominis. Clin Infect Dis. 2021;73:e144553. 10.1093/cid/ciaa164833119064dos Santos AP, dos Santos RP, Biondo AW, Dora JM, Goldani LZ, de Oliveira ST, et al. Hemoplasma infection in HIV-positive patient, Brazil. Emerg Infect Dis. 2008;14:19224. 10.3201/eid1412.08096419046522Sacristán I, Acuña F, Aguilar E, García S, López MJ, Cevidanes A, et al. Assessing cross-species transmission of hemoplasmas at the wild-domestic felid interface in Chile using genetic and landscape variables analysis. Sci Rep. 2019;9:16816. 10.1038/s41598-019-53184-431727935Volokhov DV, Norris T, Rios C, Davidson MK, Messick JB, Gulland FM, et al. Novel hemotrophic mycoplasma identified in naturally infected California sea lions (Zalophus californianus). Vet Microbiol. 2011;149:2628. 10.1016/j.vetmic.2010.10.02621111543International Union for Conservation of Nature and Natural Resources. The IUCN red list of threatened species [cited 2021 Jun 18]. https://www.iucnredlist.orgda Silva VMF, Martin AR. A study of the Boto, or Amazon River Dolphin (Inia geoffrensis), in the Mamirauá Reserve, Brazil: operation and techniques. Occas Pap IUCN Species Surviv Comm. 2001;23:12130.Cabello J, Altet L, Napolitano C, Sastre N, Hidalgo E, Dávila JA, et al. Survey of infectious agents in the endangered Darwin’s fox (Lycalopex fulvipes): high prevalence and diversity of hemotrophic mycoplasmas. Vet Microbiol. 2013;167:44854. 10.1016/j.vetmic.2013.09.03424176254Harasawa R, Orusa R, Giangaspero M. Molecular evidence for hemotropic Mycoplasma infection in a Japanese badger (Meles meles anakuma) and a raccoon dog (Nyctereutes procyonoides viverrinus). J Wildl Dis. 2014;50:4125. 10.7589/2013-09-22924484489