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Abstract

Air pollution exposure prediction models can make use of many types of air monitoring data. 

Fixed location passive samples typically measure concentrations averaged over several days to 

weeks. Mobile monitoring data can generate near continuous concentration measurements. It is 

not known whether mobile monitoring data are suitable for generating well-performing exposure 

prediction models or how they compare with other types of monitoring data in generating 

exposure models. Measurements from fixed site passive samplers and mobile monitoring platform 

were made over a 2-week period in Baltimore in the summer and winter months in 2012. 

Performance of exposure prediction models for long-term nitrogen oxides (NOX) and ozone (O3) 

concentrations were compared using a state-of-the-art approach for model development based on 

land use regression (LUR) and geostatistical smoothing. Model performance was evaluated using 

leave-one-out cross-validation (LOOCV). Models performed well using the mobile peak traffic 

monitoring data for both NOX and O3, with LOOCV R2s of 0.70 and 0.71, respectively, in the 

summer, and 0.90 and 0.58, respectively, in the winter. Models using 2-week passive samples 

for NOX had LOOCV R2s of 0.60 and 0.65 in the summer and winter months, respectively. 

The passive badge sampling data were not adequate for developing models for O3. Mobile air 

monitoring data can be used to successfully build well-performing LUR exposure prediction 

models for NOX and O3 and are a better source of data for these models than 2-week passive 

badge data.
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INTRODUCTION

Exposure prediction is an essential part of any air pollution epidemiology study. Since 

exposure to outdoor air pollution is never directly measured, there is heavy reliance on 

exposure modeling. Various types of exposure models have been used for estimating air 

pollution exposure. These can be classified into: (1) geostatistical models that use methods 

such as proximity to monitors, interpolation, and land use regression (LUR); (2) dispersion 

models (e.g., Gaussian models) and integrated meteorological emission models; and (3) 

hybrid or fusion models that combine monitoring data with a dispersion or integrated 

meteorological emission model.1,2 The geostatistical models (and fusion models) make 

use of air pollution monitoring data generated from some type of air monitoring network, 

whereas monitoring data are typically not used by dispersion-type models.

Most often, routinely collected administrative air monitoring data, such as those collected in 

the US Environmental Protection Agency’s (EPA) Air Quality System (AQS), are used when 

air pollution monitoring data are needed for building geostatistical models.3–5 However, 

because of limitations in routinely collected data due to interrupted sampling schedules and 

sparse spatial coverage, purpose-designed monitoring is sometimes carried out to improve 

temporal or spatial coverage, or both. Better spatial coverage has the added benefit of 

allowing estimates of exposure at small spatial scales that is often desired in attempting to 

reduce exposure measurement error. Passive samplers (badges) for some gaseous pollutants 

have been used in monitoring campaigns designed to estimate exposure in the context of 

specific health studies, with 1- or 2-week samples typically collected several times over the 

duration of a study; these have been shown to produce data that are highly correlated with 

continuous monitoring data.1 Models for oxides of nitrogen (NOx), for example, have been 

successfully built using passive sampler monitoring data and LUR modeling approaches.6–11 

Mobile monitoring, in which a vehicle equipped with real-time air monitoring equipment is 

driven on prescribed routes, has generally been used in small regional monitoring campaigns 

or to identify regional or traffic-related pollution sources. Padro-Martinez et al. used mobile 

monitoring to observe decreasing trends in PM, NO and NO2 concentrations with increasing 

distances from main roads.12 Norris and Larson used mobile monitoring in the Seattle 

region to generate data to inform NO2 monitor siting.13 Mobile monitoring data are less 

commonly used for building exposure models. Larson et al. used mobile monitoring in 

Vancouver, Canada, together with LUR to generate surfaces of black carbon and light 

absorption coefficient.14,15 Montagne et al. used mobile monitoring in the Netherlands to 

build LUR models for ultrafine particles and black carbon.16 Mobile monitoring has the 

advantage of efficiently sampling a large number of locations in an urban area, albeit for 

only limited periods of time at each location, and may be especially useful for monitoring 

of pollutants that exhibit substantial diurnal variation17,18 or that cannot be measured using 

passive samplers.

Xu et al. Page 2

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here we report findings from a study that employed passive and mobile air monitoring 

campaigns in parallel in Baltimore, MD, in the summer and winter seasons. This allowed 

us to build and to compare the performance of sophisticated long-term exposure prediction 

models for NOX and ozone (O3) that were generated concurrently from either passive badge 

data or mobile monitoring data using LUR and geostatistical smoothing (kriging) methods.

METHODS

Monitoring Data and Preprocessing

We selected 43 sampling sites in Baltimore, MD (Figure 1), to provide reasonably 

regular spatial coverage of the area of participant locations of the Multi-Ethnic Study of 

Atherosclerosis cohort in Baltimore. The monitoring campaigns took place in the winter 

(11–22 February) and the summer (18–27 June) months of 2012. Two types of monitoring 

methods were utilized. One was a passive sampling method using fixed Ogawa badge 

passive samplers to obtain a cumulative sample over the 10- to 12-day sampling period at 

each of the 43 sites (NO, NO2, NOX, and O3 Sampling Protocol Using the Ogawa Sampler; 

Ogawa and Company, USA, Inc.: Pompano Beach, FL, USA, 1998). Duplicate passive 

samples were obtained at eight randomly chosen sites of the 43 sampling sites for assessing 

measurement precision; duplicate concentrations were averaged for these sites.

The other method employed a mobile monitoring platform described elsewhere,19 in which 

monitors were housed in a vehicle that was driven during peak traffic hours (1400 to 1900 

hours) over a prescribed route that passed several times through each of the 43 sites. A 

large three-loop route anchored at a fixed monitoring site (site #1 in Figure 1), with 15 

sites per loop (14 unique sites and the fixed site), was driven repeatedly with each loop 

driven once during each 3- to 4-day period of the 10- to 12-day campaign concurrent with 

the passive monitor sampling in both the summer and winter seasons (see details in online 

Supplementary Table 1). In addition, each of the 43 sites (termed “fuzzy points”) was 

centered within a 300-m radius of a small four-leaf cloverleaf route that was driven once 

on each of 3 days and took 5–8 min to complete (Figure 1 inset). Ten-second continuous 

concentrations and corresponding global positioning system coordinates were obtained at 

all times along the routes. Ten-second measurements were also made at the fixed site (site 

#1) where a passive monitor also obtained cumulative measurements concurrently. O3 and 

NOX were measured by an Ozone Analyzer 3.02P-A and a NO Model 410, Converter 

410, respectively, in both the mobile and fixed monitoring platforms.19 Hourly NOX and 

O3 concentration data were also obtained from two AQS monitoring sites (one for NOx 

and one for O3, Figure 1). Fixed site and AQS monitoring data were used for adjusting 

measurements for temporal variation in concentrations (see below).

Because each route was driven at different times on different days, the mobile monitoring 

data required adjustment using fixed site or AQS monitoring data. Time adjustment 

adjusted each 10-s measurement for the hourly or afternoon (1400 to 1900 hours) variation 

in pollutant concentrations relative to the 2-week average concentration. In the winter, 

concentrations were adjusted by hourly averaged values of the one fixed monitoring site. 

Because the NOX and O3 data in the summer at the fixed site had many missing values, and 

there was good agreement of the fixed site with the AQS site (R2 = 0.75 for NOx and R2 
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= 0.83 for O3), the mobile NOX and O3 concentrations in the summer were adjusted using 

corresponding afternoon averaged concentrations (1400 to 1900 hours) of the AQS sites. 

Equation (1) shows the time adjustment arithmetic:12

Concadj = Concorig × Conc2wk/Conchr 1

where Concadj is the final adjusted 10-s concentration; Concorig is the raw 10-s mobile 

monitoring concentration; Conchr is the corresponding hourly or afternoon averaged fixed 

or AQS site concentration; and Conc2wk is the average concentration for the afternoon 

periods over the 10 or 12 days (~2 weeks) at the fixed or AQS site. When the hourly 

or afternoon concentration was the same as the 2-week average, there was no adjustment. 

When the hourly or afternoon concentration was lower than the 2-week average, the original 

10-s concentration was adjusted upwards, and when the hourly or afternoon concentration 

was higher than the 2-week average, the original concentration was adjusted downwards. 

To remove extreme and negative values, each data set was initially trimmed at four times 

the interquartile range. After time adjustment, the median NOX concentration (to avoid the 

influence of extreme outliers) and mean O3 concentration at each site were used as the raw 

data for the models.

Geographic Data

More than 300 geographic variables were available from our database to be used as potential 

LUR covariates, of which 257 were retained after excluding uninformative variables that 

showed limited variation (Table 1). Categories of variables included: (1) population (US 

Census Bureau, 2001); (2) distance to and length of major roads (for A1, A2, and A3 

census feature class codes) and their mutual intersections (TeleAtlas Dynamap, 2000); 

(3) distance to relevant sites (commercial, city hall, airport, shipping port, railways, and 

railway yards20) (4) percentage of 12 kinds of land use categories (see Table 121) (5) 

summaries of Normalized Difference Vegetation Index (NDVI),22 a measure of green space; 

(6) percentage of impervious surfaces; (7) elevation23 and (8) total emissions of CO, NOX, 

PM2.5, PM10, SO2 (in tons per year24). Except for the distance to features variables, all 

variables were specified as feature within circular buffers of increasing radii. Table 1 shows 

details of the geographic variables and the buffer sizes used.

In order to produce maps that reflect the spatial heterogeneity of our exposure models, 

geographic covariates were calculated for grid points at several different resolutions. Grids 

were designed to show the outlying areas of Baltimore at a 1 – 1 km resolution and the 

center of city area at a 500 × 500 m2 resolution.

Prediction Models

Conceptually, the prediction models are generated in a two-step process in which residuals 

from a LUR that are spatially correlated are smoothed (interpolated) using kriging. In 

practice, the regression and smoothing steps are combined in universal kriging (UK) 

as in Sampson et al.25 The large number of geographic variables were first reduced 

using partial least squares (PLS) regression. PLS is conceptually similar to principal 

components analysis, with the PLS components, in contrast to principal components analysis 
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components, being computed as linear combinations of the original covariates to maximize 

the covariance between the dependent variable and the independent components. Details are 

presented in Sampson et al.25 PLS regressions were performed using the PLS package26 in 

R (R Core Team). The kriging parameters (nugget τ2, partial sill σ2 and range φ2) and the 

final regression coefficients of the UK model were estimated by maximum likelihood using 

the GeoR package in R.

In all, there are eight sets of pollutant data: two monitoring methods for each of two seasons 

for both O3 and NOX. For PLS, O3 and NOX were centered and geographic variables 

were centered and standardized by their variance. For UK, in addition, badge NOx data 

and mobile O3 data were square root transformed and mobile NOX data were standardized 

by their variance. Geographic covariates at unobserved locations (i.e., residences of cohort 

members) were then used to predict concentrations at those locations using the prediction 

models.

Evaluation of Model Performance

Leave-one-out cross-validation (LOOCV) was used for evaluation of model performance 

and to determine the number of PLS components. Each monitoring site was excluded 

and models were rerun using data from the other remaining 42 sites. Predicted and 

monitored values were then used to calculate errors. Model performance statistics included 

cross-validated root mean squared prediction error (RMSEP) and the cross-validated R2, 

calculated as 1-RMSEP2/Var(Obs) on transformed data scales.

RESULTS

Monitoring Results

NOX and O3 concentrations monitored at the 43 sites using the two approaches both in 

the summer and the winter are shown in Figure 2. High concentrations of NOX were more 

typically present in the center of the city (sites 1–4, 15–16, 29–31): maximum of 37 and 

74 p.p.b. for badge samples in the summer and the winter, respectively, and 23 and 38 

p.p.b. for mobile samples in the summer and the winter, respectively. Lower concentrations 

were observed in less central areas (sites 7–9, 24–26, 38–40) with minimums of 5.5 and 

23 p.p.b. for badge samples in the summer and the winter, respectively, and −2.1 and 2.4 

p.p.b. for mobile samples in the summer and the winter, respectively. The pattern of mobile 

O3 concentrations across sites was nearly the mirror image of that of NOX. The mobile O3 

concentrations, and both badge and mobile NOX concentrations, had similar spatial trends in 

the two seasons. For the badge O3 data, there was little spatial variability in the summer. For 

NOX, both monitoring approaches measured generally higher levels in the winter, and higher 

O3 concentrations in the summer, although there were more exceptions to this for O3 badge 

data.

Building the Models

Table 2 presents summaries of the leave-one-out cross-validation (LOOCV) R2 statistics 

of the PLS-only model and the UK model (PLS +ordinary kriging) for each monitoring 

scenario, as well as the maximum likelihood estimates of the three empirical variogram 
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parameters. The best fitting variogram form used in the semivariogram plots is shown at the 

bottom of Table 2; the exponential variogram was used for NOX and spherical variogram 

for O3. The optimal number of PLS components based on the highest R2 is also shown. For 

badge NOX, one component was selected for both seasons, whereas for mobile NOX, two 

components were selected for the summer and three for the winter. For mobile NOX data, 

LOOCV R2 increased by about 0.1–0.2 after UK, indicating that the model residuals had 

spatial correlation structure. For badge O3 data, it was not possible to construct models, as 

no PLS component had any explanatory power; in both seasons, R2 was very small. Models 

using mobile O3 data were better, with R2 from models with two PLS components of 0.71 

and 0.58 in the summer and the winter, respectively. Kriging contributed substantially to 

model R2 with the mobile data for NOx and O3, but added little to the badge data models for 

NOX.

Figures 3a and b is a graph of the 257 geographic variable loadings onto each of the two 

PLS component scores for NOX and O3 for mobile monitoring summer data. For NOX, 

high positive loadings for the first component include population, number of major road 

intersections (A1 to A3), water land for large buffer sizes, nearby emission of pollutants, 

impervious surface, high- and medium-developed areas, and length of major road. High 

negative loadings include distance to features (coast, city hall, port), all NDVI scores, forest 

land use in larger buffers, and low-, open-development. Hence, the first score could be 

considered an “urbanization” component. The second PLS component is orthogonal to the 

first component, with high positive loadings from distance to some features (distance to 

A2 and A2–A2 or A3 intersections and airport), land use such as pasture, shrub, crop, and 

some near A3 roads, and major roads length and intersections. Barren land, and two kinds 

of wetland, and far emission of pollutants contribute to negative loadings. The second score 

could be considered as “traffic-related.”

For O3, in contrast to NOX, the positive loadings were largely of natural features for 

both components, whereas negative loadings were of features associated with development 

(urbanization). Also, distance to features (city hall, commercial area, distance to A3, and 

related intersections), near emissions, and length of far A1 roads have considerable positive 

loadings on the second component, in contrast to NOX. For O3, then, the first score generally 

reflects natural features, whereas the second score reflects more anthropogenic features.

For O3, the PLS loadings on the two components were similar in the winter (data not 

shown). For NOX, PLS loadings were also similar in the winter except for the addition of 

a third component with loadings reflecting largely water features (data not shown). Using 

badge NOX, the one PLS component had similar feature loadings as the first mobile NOx 

component, for both seasons (data not shown), reflecting urbanization.

Model Performance and Predictions

Figure 4 shows predicted concentration (estimated from the UK models with the optimal 

number of components) plotted against observed concentration at the 43 monitoring sites, 

together with linear regression lines by season of predicted on observed with corresponding 

regression R2. As noted above, no predictions could be made using the badge O3 data. For 

NOX, R2 of predicted on observed concentrations were better using the mobile data than 
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the badge data, as were LOOCV R2 (Table 2), particularly in the winter. For badge NOX, 

based on either regression R2 or LOOCV R2, models performed equally well in the summer 

and the winter, but for mobile NOX data, the winter model R2 was better than the summer 

model. For the mobile O3 data, the summer model performed somewhat better than the 

winter model. Agreement between observed and predicted was good for all models. The 

regression R2 was generally slightly higher than the corresponding LOOCV R2 from the UK 

model. Of note, although the model R2 for the mobile NOX data are uniformly good (Table 2 

and Figure 4), based on the scatterplots (Figure 4), predictions from the model seem to over 

predict the observed data at low concentrations and underpredict at higher concentrations 

more than either the NOX badge data model or the O3 mobile data model.

Figures 5a–f show maps of predicted NOX and O3 concentrations at two levels of resolution 

and interpolated by ordinary kriging for display. Higher NOX concentrations were in central 

Baltimore, and notably near the A1 and A2 roads in the less urban areas, especially with 

badge data. In contrast, O3 higher concentrations were outside of central Baltimore and in a 

small area northwest of the city, whereas lower O3 concentrations were found near A1 and 

A2 roads.

DISCUSSION

Summary

Exposure prediction models for O3 and NOX in Baltimore using a UK model with PLS-

based LUR were developed from passive, time-integrated monitoring data and from mobile 

continuous monitoring data collected during peak traffic periods at the same monitoring 

sites and over the same time periods. Models based on the mobile modeling data performed 

well for both NOX and O3 in both the summer and winter seasons. The NOX models based 

on the passive monitoring data also performed reasonably well, although not as well as 

those based on the mobile monitoring data. The passive O3 monitoring data exhibited little 

spatial structure, which did not allow development of models using geographic variables and 

kriging.

The Monitoring Data

The purpose of comparing the utility of the two monitoring approaches was not to assess 

the comparability of the data generated by the two approaches, but rather to compare their 

respective utility in generating exposure prediction models. Clearly, average concentrations 

from the time-integrated passive badge data and the peak afternoon traffic data were not 

comparable. Average peak traffic O3 concentrations from mobile monitoring in the summer 

were higher than the 2-week averaged values from badge samplers (Figure 2), reflecting 

the afternoon peak in summertime O3 concentrations and the nighttime minima, despite the 

measurements being made on various sized roadways. NOX concentrations did not show a 

similar pattern. NOX concentrations from 1400 to 1700 hours were low, likely due to the 

increase in mixing depth and photochemical reactions, a pattern also seen at the AQS site. 

There was also some uncertainty in our NOX measurements, with negative values being 

sometimes recorded, possibly obscuring differences if they were present. These negative 
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values were likely caused by O3 and VOC interferences with the NOX instrument we used, 

and may have obscured some of the spatial variability in NOX.

A crucial and formidable problem in mobile monitoring is how to adjust for the 

influence of time on measurements made at different points in space. That is, pollution 

concentrations in an airshed change over time during the period of driving on any of 

the driving routes, so the contribution of temporal variation to the variability in spatial 

measurements should be removed to the extent possible. In essence, this entails estimating 

background concentrations. Brantley et al. recently reviewed several approaches for doing 

this, distinguishing approaches that use a site or sites considered to be representative of 

background, or using the time series of on-road measurement.27 We elected to use our 

fixed site and the two AQS fixed sites for this purpose. Because of extensive missing 

data in our continuous fixed site monitoring data in the summer, we relied on AQS sites 

in the summer. One AQS site for NOX was close to the one fuzzy point common to all 

three sampling loops, and for O3, the AQS site located close to site 39 was used (Figure 

1). Both sites were considered to reasonably represent the regional temporal variation in 

pollution concentrations. The use of afternoon averages of the fixed (AQS) site resulted in 

better model performance in the summer than the hourly data, based on LOOCV R2 values. 

However, in the winter, corresponding hourly average values were preferred.

Model Performance

All of the PLS and UK models had good prediction accuracy based on the optimized 

LOOCV R2 values (Table 2) for O3 using the mobile monitoring data or, for NOX, either the 

mobile or passive data. PLS for dimension reduction has been shown to be effective in this 

setting25,28 and has advantages relative to other variable selection approaches. Second, the 

increase in LOOCV R2 of the PLS-based UK models relative to the PLS-only models for the 

mobile monitoring data indicates that the residuals of the PLS regression models using the 

mobile monitoring data have more spatial structure than in models based on badge data, and 

this spatial structure could be used to further improve model performance. The performance 

of our NOX model based on mobile monitoring data in the winter was generally better 

than or at least comparable to other efforts reported for NO, NO2, and NOX, with R2 of 

0.4–0.87.1 Performance is also slightly better than our previously reported long-term NOX 

spatio-temporal model using fixed monitoring site data (R2 of 0.7–0.8),29 and similar to 

those from Keller et al.30 Our long-term O3 exposure model performed similarly to others 

reported in the literature (R2 = 0.4–0.6).3,4

Predictions from the NOx model based on mobile data overpredicted the observed data at 

low concentrations and underpredicted at higher concentrations, more than the predictions 

of the observed concentraitons from either the NOx badge data model or the O3 mobile 

data model (Figure 4). One possible explanation for this behavior is that mobile monitoring 

was done on roadways, and fuzzy points were on roadways, albeit relatively less trafficked 

roadways. This would tend to enhance the contribution of roadway-related variables to the 

mobile NOx model. In the central urban area where NOx concentrations are higher, there 

are other sources of NOx other than traffic emissions which are unable to contribute much 

to the model, resulting in model underestimation of NOx concentrations. In contrast, outside 
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of the central urban area, traffic volume is less, although there are still many roadways. The 

roadway contribution to NOx in that setting is therefore less than what would be predicted, 

resulting in model overpredictions.

Badge O3 Data Modeling

Badge O3 monitoring data could not be used to build models for either the summer 

or winter seasons; either the geographic variables could not explain any of the spatial 

variation in O3 concentrations or there was insufficient spatial variability in the badge 

O3 concentrations. The badge data are cumulative and include concentrations over the 

full 24 h of each of the days included in the monitoring period. For a pollutant such as 

O3, which has clear diurnal variation, the low nighttime values contribute substantially 

to the average. Nighttime concentrations in Baltimore were very low and even lower in 

rural sites resulting in homogenization of the cumulative average values measured by the 

badges. Findings from other studies using badge O3 data have been similarly affected by 

this phenomenon.31 The mobile monitoring data, on the other hand, were not affected in 

this way because they were only collected during periods when ambient O3 concentrations 

were relatively high. Others have successfully built long-term O3 exposure models using 

continuous fixed site measurements with diurnal temporal resolution.3,4,32,33 Alternatively, 

O3 spatial distributions could be different in other cities, which might allow badge data to 

be used. In light of our findings for NOX, even when badge data can be used, they are 

likely inferior to other sources of monitoring data for the purpose of building highly resolved 

spatial models.

Limitations

Although our exposure prediction models performed well, there is room for improvement. 

First, the short monitoring campaigns in each of two seasons may not have been long 

enough to fully capture long-term spatial variability over an entire year. Also, each of 

the sites was only sampled using the mobile monitoring platform on 3 or 4 days of the 

monitoring period. Second, temporal adjustment plays a critical role in allowing the raw 

mobile monitoring data to be used in a spatial model. We used fixed sites for this purpose, 

but the sites and averaging times were not entirely consistent across season. Also, the sites 

used for time adjustment may not have adequately reflected the regional concentrations, 

depending on the pollutant and the season. It is possible that other approaches to time 

adjustment may work better. Third, meteorology, such as wind direction, was not taken into 

account in assessing spatial variability due largely to lack of meteorology monitoring at fine 

enough spatial resolution. This information, from finely resolved modeled meteorology, for 

example, may have allowed us to use the data to better capture spatial contrasts. Finally, 

because the reported findings were from a single city in a single year, generalization of the 

conclusions should be viewed cautiously.

CONCLUSIONS

Overall, our UK with PLS-based LUR exposure prediction models had good prediction 

accuracy. The NOX models using mobile monitoring data performed better than models 

using passive badge data, whereas badge data could not be used at all for an O3 model. 
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Although more resource intensive, mobile monitoring data are preferred over passively 

collected badge data for developing spatial exposure predictions, especially for O3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AQS Air Quality System

LOOCV leave-one-out cross-validation

LUR land use regression

PLS partial least squares

UK universal kriging
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Figure 1. 
Map of the central locations of 43 sample sites in Baltimore and 2 AQS monitor sites (red 

dot for O3 and purple dot for NOX). Inset map shows the mobile routes around site 30; dots 

are location of each 10 s measure.
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Figure 2. 
Adjusted-median NOX concentrations and adjusted-mean O3 concentrations at 43 sites by 

monitoring approach and season. Two red dash lines in each panel divide sites into the three 

mobile monitoring routes. Each route was generally visited on the same day.
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Figure 3. 
(a and b) Loadings of the 257 geographic variables (Table 1) on the two PLS components 

for mobile NOX and O3 in the summer. The size of circles relates to buffer size, with 

increasing radius indicating larger buffer size.

Xu et al. Page 15

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Scatterplots of observed and predicted (from PLS + UK models) NOX and O3 data 

by season, with corresponding regression lines of predicted on observed and respective 

regression R2. S and W indicates summer and winter, respectively.
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Figure 5. 
Maps of predicted NOx and O3 concentration over the Baltimore area. (a) Badge NOx 

in summer; (b) badge NOx in winter; (c) mobile NOx in summer; (d) mobile NOx in 

winter; (e) mobile O3 in summer; mobile O3 in winter. The map is formatted with predicted 

concentrations at a 500-m grid resolution in central Baltimore and a 1-km grid resolution 

outside of central Baltimore. The raster images were computed in ArcGIS with ordinary 

kriging interpolation. Note that the color scales are different for each season.
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Table 1

Geographic variables used in the PLS regression models.

Variable description Details and buffer sizes (km)

Elevation From sea level

Count of points of same elevation within or more than 20 or 50 m Above, at, below 1 km and 5 km

Population (number) 0.5, 1, 1.5, 2, 2.5, 3, 5, 10, 15

Distance to nearest features: airport; large airport; large, medium, small port; railroad; rail yard; 
commercial zone; coastline; A1, A2, A3 roads

Not applicable

Emission: SO2, NOx, PM2.5, PM10, CO 3, 15, 30

Vegetative index (NDVI): 75th, 50th, 25th quartiles; winter; summer 0.25, 0.5, 1, 2.5, 5, 7.5, 10

Distance to main road intersection: A1–A1, A1–A2, A1–A3, A2–A2, A2–A3, A3–A3 0.5, 1, 3, 5

Lengths of main road: A1; A2; A3 0.05, 0.1, 0.15, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 3, 5

Land use percentage: barren, crop, deciduous forest, mixed forest, evergreen, grass, herb, 
ice, pasture, shrub, water, woody wetland, high development, median development, low 
development, open development;

0.25, 0.5, 1, 2.5, 5, 7.5, 10

Average impervious surface (percentage) 0.05, 0.1, 0.15, 0.3, 0.4, 0.5, 0.75, 1, 3, 5
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Table 2

Cross-validation R2, kriging parameters (τ, σ, φ), and coefficients (β0, β1, β2, β3) of PLS+UK models for NOx 

and O3 for the two monitoring approaches and seasons.

NOx Badge NOx Mobile O3 Badge O3 Mobile

Summer Winter Summer Winter Summer Winter Summer Winter

# of PLS components 1 1 2 3 0 0 2 2

LOOCV R2 of PLS 0.58 0.64 0.57 0.72 ≈0.00 ≈0.00 0.55 0.40

LOOCV R2 of PLS+UK 0.60 0.65 0.70 0.90 – – 0.71 0.58

Nugget (τ2)
a 0 0.295 0.137 0 – – 0.0532 0.35

Partial sill (σ2)
a 0.33 0.0005 0.106 0.0895 – – 0.0142 0.05

Range (φ2, m)
a 288.24 50.68 777.47 400.81 – – 4326.57 2855.65

β0 0.0025 0.000 −0.0058 0.004 – – 9.08 5.43

β1 0.818 0.083 0.0762 0.083 – – 0.0395 0.036

β2 – – – 0.140 – – 0.0664 0.071

β3 – – – 0.087 – – – –

Variogram model
b Exp Exp Exp Exp – – Sph Sph

a
Kriging parameters are estimated from transformed data (Standardized for mobile NOx and square root transformed for all others).

b
Exp, exponential function and Sph, spherical function, for the kriging models.
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