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Abstract

In the event of a radiological incident, the release of fission products into the surrounding
environment and the ensuing external contamination present a challenge for triage assessment
by emergency response personnel. Reference exposure rate and skin dose rate calibration

data for emergency response personnel are currently lacking for cases where receptors are
externally contaminated with fission products. Simulations were conducted to compute reference
exposure rate coefficients and skin dose rate coefficients from photon-emitting fission products
of radiological concern. To accomplish this task, simplified mathematical skin phantoms

were created using surface area and height specifications from International Commission on
Radiological Protection Publication 89. Simulations were conducted using Monte Carlo radiation
transport code using newborn, 1-y-old, 5-y-old, 10-y-old, 15-y-old, and adult phantoms for 22
photon-emitting radionuclides. Exposure rate coefficient data were employed in a case study
simulating the radionuclide inventory for a 17 x 17 Westinghouse pressurized water reactor,
following three burn-up cycles at 14,600 MWd per metric ton of uranium. The decay times
following the final cycle represent the relative activity fractions over a period of 0.5-30 d.
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The resulting data can be used as calibration standards for triage efforts in emergency response

protocols.
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INTRODUCTION

IN THE event of a radiological incident, the release of fission products into the surrounding
environment with ensuing external contamination to members of the public presents a
challenge for triage assessment by emergency response personnel. Emergency response
personnel operate a plurality of instrumentation to assess exposure and dose rates to
externally contaminated receptors (Scarboro et al. 2009; Manger et al. 2011; Dewji et al.
2013; Anigstein et al. 2016a and b) for which standard reference data for instrumentation
calibration is deficient. In the scope of this work, external exposure rate coefficients were
computed as a standard reference value available to a broad range of instrumentation that
may be used to assay contamination during a radiological emergency event, which is an
operational quantity that could be correlated with the skin dose contaminated with fission
products. Reference data for exposure rate and skin absorbed dose rate coefficients were
computed for photon-emitting fission product sources that are externally deposited on a
person, resulting in skin contamination.

METHODOLOGY

Reference skin absorbed dose-rate coefficients and exposure- rate coefficients were
generated in the scope of this work. This was accomplished by creating mathematical skin
phantoms representing newborn to adult ages, simulating surface skin contamination on

the phantoms from identified photon-emitting fission products of radiological interest, and
computing coefficients normalized per unit-deposited activity (in becquerel) of radionuclide
homogenously distributed on the phantom using Monte Carlo radiation transport code.
Exposure rate coefficients were computed at distances of 5 ¢cm, 30 cm, 60 cm, and 90 cm
from the midline height of the body.

Fission product identification

To determine fission products of radiological concern, a case study employing a
Westinghouse 17 x 17 pressurized water reactor (PWR) was conducted to determine

the radionuclide inventory of fission products following three burn-up cycles. This was
accomplished using the ORIGEN-ARP radiation burn-up package in the ORIGEN-ARP/
SCALE 6.3 code developed at Oak Ridge National Laboratory (ORNL) (Bowman and
Gauld 2010). Fuel was assumed to have an enrichment of 4.0% 235U. Burn-up cycles were
assumed to last 1y at 14,600 MWd per metric ton of uranium (MTU). The burn-up and
decay cycles are summarized in Table 1. Decay periods of 30 d were meant to represent
outage periods; e.g., refueling. From the output of the third burn-up cycle, a radionuclide
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inventory of fission products was generated as a function of post-release/shutdown decay
time.

This methodology was validated and integrated with the methodology employed by

Freibert (2010), who identified fission products present at fuel release from Nuclear
Chemical Engineering (Benedict et al. 1981) and published by the US Nuclear Regulatory
Commission (NRC) Report 1465 (NUREG-1465), Accident Source Terms for Light-Water
Nuclear Power Plants (Soffer et al. 1995). From the identified list of photon-emitting

fission products, Freibert established a toxicology index and prioritized a final list of photon-
emitting fission products. Photon-emitting fission products are of interest in the scope of this
study to determine exposure rates as a function of distance from a contaminated person.

The identified photon-emitting radionuclides of concern following a fission product release
are given in Table 2 and represent the radionuclides investigated in the scope of this

study (with associated decay modes/yields). The activities (in becquerel) of the 22 fission
products of radiological interest were excerpted from the SCALE simulation output and are
summarized in Table 3 (note 13’MBa can be considered to be in equilibrium with 137Cs).
Table 3 summarizes the activities from the 22 radionuclides, as well as the fraction of

the sum of their activities to the total radionuclide inventory computed in SCALE. The
contributions of the 22 fission products increase from 7% to 64% over the 30 d decay
period, with 50% of the total activity comprising these 22 radionuclides 5 d after shutdown,
demonstrating the increase in contribution to the total fission product activity as the decay
time increases. The fraction of the activity of each of the 22 fission products to the total
radionuclide inventory in the SCALE simulation is depicted in Fig. 1.

Mathematical skin phantom

Skin phantoms were designed for each age listed in International Commission on
Radiological Protection (ICRP) Publication 89 (2002) using the adult phantom model as

a template created by Veinot et al. (2017) to compute skin doses due to noble gas exposures
in various room sizes. ICRP Publication 89 outlines specifications for the surface area and
height of each phantom—newborn, 1-y-old, 5-y-old, 10-y-old, 15-y-old (male and female),
and adult (male and female). The physiological specifications are summarized in Table 4 for
each phantom.

Using the data from ICRP Publication 89 (2002), a width (radius) for each phantom was
calculated to create a simplified phantom geometry represented by a hemispherical head
situated atop a cylindrical body. The phantom is comprised of an International Commission
on Radiation Units and Measurements (ICRU) four-component tissue interior (density 1.00
g cm~3) and skin (90 pm thick), whose tissue material compositions are specified by ICRU
Report 46 (White and Wilson 1992). Skin dose in the sensitive layer is tallied over the 50-90
pum thickness. The phantoms stand on a concrete floor and are encased in a room filled

with uncontaminated air. Fig. 2 depicts the skin phantom rendering in Visual Editor (VisEd)
(Pelowitz et al. 2014).
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Monte Carlo simulations

RESULTS

The Monte Carlo N-Particle (MCNP) 6.1 radiation transport code (Pelowitz et al. 2014)
was employed to conduct the simulations for each phantom (age and gender) for each
photon-emitting 110 radionuclide. The photon energies and intensities employed in the
calculation of the skin surface 111 contamination were obtained from ICRP Publication 107
(2008). Skin contamination for each individual radionuclide was simulated as 1-um-thick
unit contamination homogenously and uniformly distributed within the outer regions of the
surface of the skin phantom (Fig. 2).

To estimate exposure rate coefficients at specified distances from each phantom due to
each radionuclide, point detector (F5) tallies were employed to simulate point detectors at
distances of 5 ¢cm, 30 cm, 60 cm, and 90 cm from the midline height of each phantom.
Simulations were run until statistical convergence of 5% relative error for each output
value was achieved in MCNP. The MCNP output was integrated with the air kerma per
unit fluence (pGy cm?) response functions reported in ICRP Publication 74 (1996) and
normalized to the emission intensity to determine the exposure rate coefficient ([uR s71]
Bq~1) for each source radionuclide and phantom modeled.8 Energy deposition (MCNP
F6) tallies were employed and output normalized to emission intensity to compute skin
absorbed dose coefficients ([pGy s~1] Bq~1) for each radionuclide, with relative errors
converging within 3%. In reality, skin doses due to many of the fission products in Table
1 would be dominated by beta and internal conversion (IC) electron contributions. In

the scope of exposure rate coefficients, simulation of photons on the skin is required to
determine exposure rates at a distance, for which electron contributions are negligible. In
the MCNP simulations, skin and exposure rate coefficients are computed due to skin photon
contamination. In the results, contributions due to photons and electrons (beta/IC) in skin
dose are reported for completeness.

Exposure rate (UR s~1) and skin absorbed dose rate coefficients (pGy s~1) were computed
from the Monte Carlo simulations and normalized per becquerel of exposure for each of the
22 fission products of radiological interest.

Skin absorbed dose rate and equivalent dose-rate coefficients

Skin dose coefficients due explicitly to the photon contributions for all phantoms are
summarized in Table 5. Skin equivalent dose coefficients from fission products, inclusive

of photon and electron contributions, are given for reference in Table 6. Progeny ingrowth
of daughter products (except for 137Cs/13’MBa in equilibrium) are not considered in the
computation of the skin dose and exposure rate coefficients. As tabulated in Table 5, the skin
absorbed dose rate coefficient for the newborn (00Y) is as much as an order of magnitude
higher than the remaining phantoms, because 1 Bq of the single radionuclide is distributed
over the surface area of a smaller phantom, resulting in a higher dose coefficient.

8For exposure and dose quantities, traditional units (rather than International System [SI] units) are used when they are the units most
likely to be provided by radiation detection instruments.
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Skin doses due strictly to photon contributions ranged from 4.16 x 104 (pGy s~1) Bq~!

for the adult male to 3.24 x 1073 (pGy s~1) Bq™! for the newborn for 1311. Skin doses due
strictly to photon contributions ranged from 6.78 x 10~ (pGy s~1) Bq™ for the adult male
t0 5.26 x 1073 (pGy s71) Bq~! for the newborn for 137Cs. When considering the photon and
electron contributions to the total equivalent skin dose coefficient, the photon contribution is
a minority contributor to the skin equivalent dose coefficient, as given in Table 7. Electron
skin dose rate coefficients were obtained from ICRP Publication 107 (2008). The largest
photon contribution is from 9°Nb with an average of 18.5% to the equivalent skin dose.
This is due to the emission yields and energies, as %°Nb emits a 766 keV photon with
99.8% yield. Electron emissions are 0.04 MeV with 100% and 341 keV with low yield
(0.0003). The remaining 21 radionuclides have photon contributions comprising <10% of
the equivalent skin dose.

Exposure rate coefficients

Exposure rate coefficients were computed for distances of 5 cm, 30 cm, 60 cm, and 90
cm from the midline height of the skin phantom. For all phantom ages and genders, the
exposure rate coefficient data are summarized in Tables 8-11.

Fission products of notable concern for emergency response during a radiological release
focus on 137MBa/137Cs and 1311. The exposure rate coefficients for the newborn ranged from
9.16 x 108 (uR s1) Bq~ L at 5 cmto 2.53 x 1079 (R s71) Bq~1 at 90 cm for 137Cs. The
exposure rate coefficients for the adult male ranged from 1.68 x 108 (uR s™1) Bq 1 at5
cm to 1.49 x 1079 (UR s71) Bq~2 at 90 cm forl37Cs. The exposure rate coefficients for the
newborn ranged from 5.79 x 1078 (R s™) Bg~ at 5 cm to 1.64 x 1079 (uR s71) Bq~L at 90
cm for 1311, The exposure rate coefficients for the adult male ranged from 1.06 x 1078 (uR
s Bg~tat5cmto9.62 x 10710 (uR s71) Bq~1 at 90 cm for 1311,

In Tables 8-11, the 140La, 136Cs, 148Mpm and 134Cs dose and exposure rate coefficients
dominate due to higher activities/yields per decay; however, it is important to note that the
magnitude of the exposure and skin dose rate coefficients is relevant only in the context of
the released fission product activity.

Minimum exposure rates as a function of skin dose

From a practical standpoint, when using commonly available ion chambers, an exposure rate
of 10 mR h~1 approximates the lowest exposure rate that can be measured with accuracy. To
better correlate skin dose rates with exposure rates from a practical measurement standpoint,
Table 12 summarizes skin dose rates (mrad h™1) corresponding to 10 mR h™1 exposure rates
at 30 cm. As an example, assuming this to be the exposure rate from a radionuclide at 30
cm, 1.74 x 108 Bq of 140Ba produces 10 mR h~1 at 30 cm (adult male), which produces a
skin dose rate of 18 mrem h™2. For 137Cs/137MBg, 5.19 x 10° Bq produces 10 mR h~1 at

30 cm (adult male), which produces a skin dose rate of 5 mrem h=2. For 131], 8.15 x 10°

Bq produces 10 mR h~ at 30 cm (adult male), which produces a skin dose rate of 8 mrem
h=1. Generally, for these three radionuclides, the exposure rate in mR h™1 at 30 cm compares
within a factor of ~2 to the skin dose rate in mrem h™1,
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Weighted exposure rate coefficients

The combined magnitude of the exposure rate coefficient with the fission product activity
must be considered in the context of a case study employing radionuclide inventories
following a realistic burn-up life cycle. Therefore, it is useful to determine the relative
contribution of the photon-emitting radionuclide coefficient per becquerel (total activity in
Table 3) of fission products. This will result in a weighted exposure rate coefficient due

to the cumulative photon contributions of the 22 radionuclides per unit activity (Bq) of the
entire fission product activity. A weighted exposure rate coefficient is summarized in eqn (1)
for a discrete time stamp (), spanning 0, 1, 2, 5, 10, 15, 20, 25, or 30 d postrelease:

. 122=1X1Al 1
X Weighted (1) = T Ao ) @
otal

where:
/= aradionuclide from the 22 radionuclides of interest.

X; = the exposure rate coefficient of the /h radionuclide from the 22 radionuclides.

A, = the activity of the ith radionuclide at time #obtained from ORIGEN-ARP/
SCALE simulation.

Aiotal = the sum of the activities of all radionuclides from ORIGEN-ARP/SCALE
simulation.

Xweighted = the exposure coefficient due to the 22 radionuclides of interest, weighted

by the total activity of the entire fission product inventory (activity inclusive of the 22
radionuclides plus others).

Weighted exposure rate coefficients are tabulated in Table 13 for all phantoms and distances.

CONCLUSION

In this work, reference exposure rate and skin dose rate coefficient data were reported due to
external skin contamination by 22 photon-emitting radionuclides present in fission products.
These 22 radionuclides represent more than 50% of the fission product inventory at times
greater than 5 d post-reactor shutdown. These fission products of interest were identified
from ORIGEN-ARP/SCALE reactor burn-up and decay calculations and prioritized by a
toxicity index developed by Freibert (2010). Mathematical skin phantoms were created for
four pediatric (newborn, 1-y-old, 5-y-old, 10-y-old), 15-y-old, and adult gender-specific
phantoms. The phantom design was derived from reference data from ICRP Publication

89 (2002) and ICRU Report 46 (White and Wilson 1992) specifications on phantom
height/surface area and composition, respectively. Skin contamination was simulated as a
1-um-thick homogeneous deposition layer. For each radionuclide, exposure rate coefficients
were computed at 5 cm, 30 cm, 60 cm, and 90 cm distances from the midline of the
phantom. Skin dose coefficients were computed for each phantom age/gender, where the
photon contribution to the equivalent dose coefficient was quantified. For the majority of the
22 radionuclides of interest, actual skin dose was dominated by electron (beta) emissions;
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however, the photon contribution was of interest in determining exposure rate coefficients at
offset measurement distances from the phantom.

The reported data provide standard reference exposure rate and skin dose rate coefficients
for fission product radionuclides of interest and can be used in conjunction with release
fractions, atmospheric transport, deposition fractions, and specific reactor fission product
inventories to determine exposure rates and skin doses for radiological protection and
emergency response.
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Fig. 1.
ORIGEN-ARP/SCALE 6.3 generated activity inventory for fission products of interest as

a function of decay time postrelease following three 1-y burn-up cycles at 14,600 MWd
MTUL for a 17 x 17 Westinghouse PWR.
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Fig. 2.

Skin surface source contamination, shown in VisEd. Inner sensitive layer and outer layer of
skin in the phantom are depicted in expanded box (right). Deposition is simulated outside
the skin layer, but skin dose is determined from tally on inner sensitive skin layer.
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Table 1.

ORIGEN-ARP/SCALE 6.3. Burn-up and decay cycles assumed in the generation of fission production
libraries.

Cycle Type Duration (d) Specifications/notes

1 Irradiation 365 Operation 14,600 MWd MTU*

2 Decay 30 Outage

3 Irradiation 365 Operation 14,600 MWd MTLTt

4 Decay 30 Outage

5 Irradiation 365 Operation 14,600 MWd MTLT*

6 Decay 0 Release

7 Decay 0.5,1,2,5,10,15,20,30 Postrelease
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Reference values for height and surface area defined in ICRP Publication 89 (2002).

Height (m) Surface area (m?)
Age Male Female Male  Female
Newborn ~ 0.51 0.51 0.24 0.24
ly 0.76 0.76 0.48 0.48
5y 1.09 1.09 0.78 0.78
10y 1.38 1.38 112 1.12
15y 1.67 1.61 1.62 1.55
Adult 1.76 1.63 1.90 1.66
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Table 7.

Page 18

Average percent contribution of photon skin absorbed dose coefficient to skin equivalent dose coefficient.

Radionuclide  Photon dose contribution (%6)
1404 0.67
1ice 0.24
4ce 0.11
134Cs 8.09
136Cs 9.30
137Cg/137mBg 2.29
154Ey 4.14
156Ey 4.78
8 1.59
140 5 6.52
9SNb 18.50
95mNb 0.23
147Nd 0.47
148pm 1.77
148mpm 8.81
144pr 0.07
103Ry 5.50
125gp 3.59
127Te 0.02
1297¢ 0.15
129mTe 0.14
95zr 411
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