

## Supplementary Appendix

Supplement to: Price AM, Olson SM, Newhams MM, et al. BNT162b2 protection against the omicron variant in children and adolescents. *N Engl J Med.* DOI: 10.1056/NEJMoa2202826

This appendix has been provided by the authors to give readers additional information about the work.

## SUPPLEMENTARY APPENDIX

This appendix has been provided by the authors to give readers additional information about their work.  
Supplement to: Price A.M., Olson S.M., Newhams M.M., Halasa N.B. et al. Effectiveness of BNT162b2  
Vaccine Against Omicron Hospitalizations in U.S. Children

**Table of Contents:**

**Overcoming COVID-19 Study Group Investigators (Pages 2-3)**

**SUPPLEMENTARY METHODS (Pages 4-6)**

**SUPPLEMENTARY TABLES (Pages 7-10)**

- **Table S1 (Page 7):** Model selection using change in estimate approach to evaluate for potential confounding
- **Table S2 (Page 9):** Comparison of vaccine effectiveness using the fully adjusted logistic regression model with census region and with clustering standard errors by hospital
- **Table S3 (Page 10):** Measure of fit for the logistic regression models

## **Overcoming COVID-19 Network Study Group Investigators**

### **(listed in PubMed, and ordered by U.S. State)**

The following study group members were all closely involved with the design, implementation, and oversight of the Overcoming COVID-19 study.

**Alabama:** Children's of Alabama, Birmingham. Michele Kong, MD; Meghan Murdock, RN.

**Arizona:** University of Arizona, Tucson. Mary Glas Gaspers, MD, MPH; Katri V. Typpo, MD, MPH; Connor P. Kelley, MPH.

**Arkansas:** Arkansas Children's Hospital, Little Rock. Katherine Irby, MD; Ronald C. Sanders, MD; Masson Yates; Chelsea Smith.

**California:** Rady Children's Hospital, San Diego. Melissa A. Cameron, MD; Katheryn Crane, RN.

**California:** UCSF Benioff Children's Hospital Oakland, Oakland. Natalie Z. Cvijanovich, MD; Geraldina Lionetti, MD; Juliana Murcia-Montoya, BS.

**California:** UCSF Benioff Children's Hospital, San Francisco. Matt S. Zinter, MD; Denise Villarreal-Chico, BA.

**California:** Children's Hospital Los Angeles, Los Angeles. Pia S. Pannaraj, MD, MPH; Adam L. Skura, BS; Daniel Hakimi; Harvey Peralta, BA; Yea Ji Sea, MS; Kennis-Grace Mrotek.

**Colorado:** Children's Hospital Colorado, Aurora. Aline B. Maddux, MD, MSCS; Justin M. Lockwood, MD; Emily Port, BA, PMP; Imogene Carson, MS.

**Florida:** Holtz Children's Hospital, Miami. Brandon M. Chatani, MD.

**Georgia:** Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta. Satoshi Kamidani, MD; Keiko M. Tarquinio, MD; Laila Hussaini, MPH; Nadine Baida.

**Illinois:** Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago. Kelly N. Michelson, MD, MPH; Bria M. Coates, MD; Simone T. Rhodes, BS; Hassan A. Khan, BS.

**Indiana:** Riley Hospital for Children, Indianapolis. Samina S. Bhumbra, MD; Courtney M. Rowan, MD, MS; Mary Stumpf, MS, CCRC.

**Louisiana:** Children's Hospital of New Orleans, New Orleans. Tamara T. Bradford, MD; Marla S. Johnston, RN, MSN.

**Massachusetts:** Boston Children's Hospital, Boston. Adrienne G. Randolph, MD; Margaret M. Newhams, MPH; Suden Kucukak, MD; Amber O. Orzel, MPH; Sabrina R. Chen, BS; Benjamin J. Boutselis; Timothy P. McCadden; Edie Weller, PhD; Laura Berbert, MS; Jie He, MS.

**Michigan:** Children's Hospital of Michigan, Detroit. Sabrina M. Heidemann, MD.

**Michigan:** University of Michigan CS Mott Children's Hospital, Ann Arbor. Heidi R. Flori, MD, FAAP; Patrick Moran, MD.

**Minnesota:** University of Minnesota Masonic Children's Hospital, Minneapolis. Janet R. Hume, MD, PhD; Ellen R. Bruno, MS; Lexie A. Goertzen, BA.

**Minnesota:** Mayo Clinic, Rochester. Emily R. Levy, MD; Supriya Behl, MSc; Noelle M. Drapeau, BA.

**Mississippi:** Children's Hospital of Mississippi, Jackson. Charlotte V. Hobbs, MD; Lora Martin, MSN; Lacy

Malloch, BS; Virginia Austin Harrison, MD; Cameron Sanders, BS; Kayla Patterson, MS.

**Missouri:** Children's Mercy Kansas City, Kansas City. Jennifer E. Schuster, MD; Shannon M. Hill, RN, BSN; Melissa Sullivan, RN, BSN.

**Nebraska:** Children's Hospital & Medical Center, Omaha. Melissa L. Cullimore, MD, PhD; Valerie H. Rinehart, MD; Lauren A. Hoody.

**New Jersey:** Cooperman Barnabas Medical Center, Livingston. Shira J. Gertz, MD.

**North Carolina:** University of North Carolina at Chapel Hill, Chapel Hill. Stephanie P. Schwartz, MD; Tracie C. Walker, MD; Paris C. Bennett.

**Ohio:** Akron Children's Hospital, Akron. Ryan A. Nofziger, MD; Nicole A. Twinem, RN, ADN; Merry L. Tomcany, RN, BSN.

**Ohio:** Cincinnati Children's Hospital, Cincinnati. Mary Allen Staat, MD, MPH; Chelsea C. Rohlfs, BS, MBA.

**Ohio:** Nationwide Children's Hospital, Columbus. Katherine Bline, MD; Amber Wolfe, RN, BSN.

**Pennsylvania:** Children's Hospital of Philadelphia, Philadelphia. Kathleen Chiotos, MD, MSCE; Rebecca L. Douglas, RN, BSN; Kathryn Phengchomphet, BA.

**South Carolina:** MUSC Children's Health, Charleston. Elizabeth H. Mack, MD, MS; Megan M. Bickford, MS; Lauren E. Wakefield, MHA; Laura Smallcomb, MD.

**Tennessee:** Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville. Natasha B. Halasa, MD, MPH; Laura S. Stewart, PhD; Meena Golchha, MD.

**Texas:** Texas Children's Hospital and Baylor College of Medicine, Houston. Julie A. Boom, MD; Leila C. Sahni, PhD, MPH; Jennifer N. Oates, MPH.

**Texas:** University of Texas Southwestern, Children's Medical Center Dallas, Dallas. Mia Maamari, MD; Cindy Bowens, MD, MSCS.

**CDC COVID-19 Response Team on Overcoming COVID-19:** Ashley M. Price, MPH; Samantha M. Olson, MPH; Manish M. Patel, MD, MPH; Mark W. Tenforde, MD, PhD; Laura D. Zambrano, PhD, MPH; Angela P. Campbell, MD, MPH.

## SUPPLEMENTARY METHODS & RESULTS

### *Logistic regression models*

VE was calculated by estimating the odds of COVID-19 vaccination among case-patients vs controls using multivariable logistic regression, where COVID-19 was the outcome and vaccination status was the exposure variable, with  $VE = (1 - \text{adjusted odds ratio}) \times 100\%$ .

In the primary analysis, we stratified the sample by age group (5-11 years and 12-18 years) and by delta (admitted from July 1, 2021 – December 18, 2021) vs omicron period (admitted from December 19, 2021 – February 17, 2022). We estimated VE within each stratum as:

$$\text{logit} (covid = 1) = \beta_0 + \beta_1(vacc) \dots + \beta_Z Z$$

where

*covid* = 1 if laboratory confirmed Covid-19 case (0 otherwise)

*vacc* = 1 if received 2 doses of mRNA vaccine  $\geq 14$  days prior to symptom onset; (0 otherwise)

*Z* = vector of adjustment variables including U.S. Census region as an indicator variable (4 regions), calendar time of admission as an indicator variable (bi-week periods), continuous age, sex (female vs male), race/ethnicity as an indicator variable (non-Hispanic White, non-Hispanic Black, non-Hispanic other race, Hispanic of any race, unknown), with VE defined as

$$\widehat{VE} = [1 - \exp(\beta_1)] * 100\%$$

To assess VE against a gradient of disease severity, subgroup analyses were conducted among patients with and without receipt of life-supporting interventions, or in-hospital deaths. We estimated VE within each severity stratum as:

For  $i = 1$  to  $2$  strata of with and without life – supporting interventions/death,

$$\text{logit} (\text{covid} = 1) = \beta_0 + \beta_1 (\text{vacc}) \dots + \beta_Z Z$$

where variables are defined as above plus life-supporting interventions was defined as receipt of non-invasive mechanical ventilation (BiPAP or CPAP), invasive mechanical ventilation, vasoactive infusions, or extracorporeal membrane oxygenation during admission

$Z$  = vector of adjustment variables including U.S. Census region as an indicator variable (4 regions), calendar time of admission as an indicator variable (bi-week periods), continuous age, sex (female vs male), race/ethnicity as an indicator variable (non-Hispanic White, non-Hispanic Black, non-Hispanic other race, Hispanic of any race, unknown), with VE defined as

$$\widehat{VE} = [1 - \exp(\beta_1)] * 100\%$$

Potential confounding variables ( $Z$ ) listed above were selected *a priori* based on past vaccine effectiveness studies. Other potential confounding factors in the analytic dataset were considered. These included presence of underlying health conditions ( $\geq 1$  vs 0), specific underlying conditions (respiratory, cardiovascular, neurologic/ neuromuscular, immunosuppression or autoimmune, endocrine, diabetes, or other chronic conditions), and continuous score on the Centers for Disease Control and Prevention / Agency for Toxic Substances and Disease Registry (CDC/ATSDR) Social Vulnerability Index. Using a change-in-estimate approach, we assessed confounding from these additional available factors. To derive a parsimonious fully adjusted model, we sequentially added these variables individually to the model to assess if they changed the relative odds ratio for vaccination by  $>5\%$ . If a variable changed the odds ratio by  $>5\%$ , we added that variable to the model, and reassessed if adding an additional variable changed our revised estimate by  $>5\%$ . If another variable was added to the

model and reverted the model to the same point estimate as the *a priori*, the *a priori* model was chosen as the final model. Each model, including the primary models and the subgroups (i.e. 12-18 Overall, 12-18 Delta, 12-18 Omicron, and 5-11 Omicron) were adjusted separately. All fully adjusted models thus only included *a priori* variables because additional factors did not change the odds ratio for vaccination by more than 5% (Table S1). To account for clustering of patients by hospital, alternative models were considered using the proc surveylogistic function in SAS with site specified as a cluster variable, which yielded similar point estimates and confidence bounds as the primary model (Table S2). Measures of model fit are presented in Table S3.

**TABLE S1.** Model selection using change in estimate approach to evaluate for potential confounding.

| <b>Model Selection - 5-11 Omicron</b>                                                              | <b>OR</b> | <b>VE</b> |
|----------------------------------------------------------------------------------------------------|-----------|-----------|
| <b>A priori - sex, age, race, region, calendar time</b>                                            | 0.32      | 68        |
| Plus Social Vulnerability Index                                                                    | 0.33      | 66        |
| Plus underlying conditions                                                                         | 0.31      | 69        |
| Plus respiratory                                                                                   | 0.30      | 70        |
| Plus cardiovascular                                                                                | 0.31      | 69        |
| Plus neurologic/neuromuscular                                                                      | 0.34      | 66        |
| Plus immunosuppression or autoimmune                                                               | 0.31      | 69        |
| Plus endocrine                                                                                     | 0.31      | 69        |
| Plus diabetes                                                                                      | 0.31      | 69        |
| Plus other chronic conditions                                                                      | 0.29      | 71        |
| <b>A priori - sex, age, race, region, calendar time + other chronic conditions</b>                 | 0.29      | 71        |
| Plus Social Vulnerability Index                                                                    | 0.30      | 70        |
| Plus underlying conditions                                                                         | 0.30      | 71        |
| Plus respiratory                                                                                   | 0.29      | 71        |
| Plus cardiovascular                                                                                | 0.30      | 70        |
| Plus neurologic/neuromuscular                                                                      | 0.32      | 68        |
| Plus immunosuppression or autoimmune                                                               | 0.30      | 70        |
| Plus endocrine                                                                                     | 0.31      | 69        |
| Plus diabetes                                                                                      | 0.29      | 71        |
| <b>A priori - sex, age, race, region, calendar time + other chronic conditions + neuromuscular</b> | 0.32      | 68        |
| Plus Social Vulnerability Index                                                                    | 0.33      | 67        |
| Plus underlying conditions                                                                         | 0.32      | 68        |
| Plus respiratory                                                                                   | 0.32      | 68        |
| Plus cardiovascular                                                                                | 0.32      | 68        |
| Plus immunosuppression or autoimmune                                                               | 0.33      | 67        |
| Plus endocrine                                                                                     | 0.33      | 68        |
| Plus diabetes                                                                                      | 0.32      | 68        |
| <b>Model Selection - 12-18 Overall</b>                                                             | <b>OR</b> | <b>VE</b> |
| <b>A priori - sex, age, race, region, calendar time</b>                                            | 0.18      | 82        |
| Plus Social Vulnerability Index                                                                    | 0.18      | 82        |
| Plus underlying conditions                                                                         | 0.17      | 83        |
| Plus respiratory                                                                                   | 0.17      | 83        |
| Plus cardiovascular                                                                                | 0.17      | 83        |
| Plus neurologic/neuromuscular                                                                      | 0.17      | 83        |
| Plus immunosuppression or autoimmune                                                               | 0.17      | 83        |
| Plus endocrine                                                                                     | 0.17      | 83        |
| Plus diabetes                                                                                      | 0.17      | 83        |
| Plus other chronic conditions                                                                      | 0.17      | 83        |

| <b>Model Selection - 12-18 Delta</b>                    | <b>OR</b> | <b>VE</b> |
|---------------------------------------------------------|-----------|-----------|
| <b>A priori - sex, age, race, region, calendar time</b> | 0.08      | 92        |
| Plus Social Vulnerability Index                         | 0.08      | 92        |
| Plus underlying conditions                              | 0.08      | 92        |
| Plus respiratory                                        | 0.08      | 92        |
| Plus cardiovascular                                     | 0.08      | 92        |
| Plus neurologic/neuromuscular                           | 0.08      | 92        |
| Plus immunosuppression or autoimmune                    | 0.08      | 92        |
| Plus endocrine                                          | 0.08      | 92        |
| Plus diabetes                                           | 0.08      | 92        |
| Plus other chronic conditions                           | 0.08      | 92        |
| <b>Model Selection - 12-18 Omicron</b>                  | <b>OR</b> | <b>VE</b> |
| <b>A priori - sex, age, race, region, calendar time</b> | 0.60      | 40        |
| Plus Social Vulnerability Index                         | 0.62      | 38        |
| Plus underlying conditions                              | 0.60      | 40        |
| Plus respiratory                                        | 0.59      | 41        |
| Plus cardiovascular                                     | 0.59      | 41        |
| Plus neurologic/neuromuscular                           | 0.62      | 38        |
| Plus immunosuppression or autoimmune                    | 0.60      | 40        |
| Plus endocrine                                          | 0.61      | 39        |
| Plus diabetes                                           | 0.61      | 39        |
| Plus other chronic conditions                           | 0.60      | 40        |

VE denotes vaccine effectiveness; OR denotes odds ratio

**TABLE S2.** Comparison of vaccine effectiveness using the fully adjusted logistic regression model with census region and with clustering standard errors by hospital

| Age group                           | VE | 95% LL | 95% UL | OR   | 95% LL | 95% UL |
|-------------------------------------|----|--------|--------|------|--------|--------|
| <b>5-11 years</b>                   |    |        |        |      |        |        |
| Logistic Regression                 | 68 | 42     | 82     | 0.68 | 0.42   | 0.822  |
| Cluster by hospital                 | 66 | 44     | 80     | 0.66 | 0.44   | 0.80   |
|                                     |    |        |        |      |        |        |
| <b>12-18 years – delta period</b>   |    |        |        |      |        |        |
| Logistic Regression                 | 92 | 89     | 95     | 0.92 | 0.89   | 0.95   |
| Cluster by hospital                 | 92 | 88     | 95     | 0.92 | 0.88   | 0.95   |
| <b>12-18 years – omicron period</b> |    |        |        |      |        |        |
| Logistic Regression                 | 40 | 9      | 60     | 0.40 | 0.09   | 0.60   |
| Cluster by hospital                 | 39 | 4      | 61     | 0.39 | 0.04   | 0.61   |

VE denotes vaccine effectiveness; LL denotes lower confidence limits; UL denotes upper confidence limits; OR denotes odds ratio

**TABLE S3.** Measure of fit for the logistic regression models

| Model Fit Statistics                             | 5-11 years<br>(omicron) | 12-18 years<br>(delta) | 12-18 years<br>(omicron) |
|--------------------------------------------------|-------------------------|------------------------|--------------------------|
| AIC: Intercept Only                              | 746.423                 | 2434.052               | 594.744                  |
| AIC: Intercept and covariates                    | 729.481                 | 2107.206               | 574.485                  |
| SC: Intercept Only                               | 750.709                 | 2439.572               | 598.808                  |
| SC: Intercept and covariates                     | 793.771                 | 2234.159               | 635.441                  |
| -2 Log L: Intercept Only                         | 744.423                 | 2432.052               | 592.744                  |
| -2 Log L: Intercept and covariates               | 699.481                 | 2061.206               | 544.485                  |
| Hosmer and Lemeshow Goodness-of-fit test P-value | 0.2957                  | 0.5593                 | 0.7261                   |
| Deviance Goodness-of-Fit P-value                 | <.0001                  | <.0001                 | <.0001                   |
| Pearson Goodness-of-Fit P-value                  | 0.3404                  | 0.4447                 | 0.3229                   |