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Background: Previous research on the depression scale of the Patient Health Questionnaire 

(PHQ-9) has found that different latent factor models have maximized empirical measures of 

goodness-of-fit. The clinical relevance of these differences is unclear. We aimed to investigate 

whether depression screening accuracy may be improved by employing latent factor model-based 

scoring rather than sum scores.

Methods: We used an individual participant data meta-analysis (IPDMA) database compiled to 

assess the screening accuracy of the PHQ-9. We included studies that used the Structured Clinical 

Interview for DSM (SCID) as reference standard and split those into calibration and validation 

datasets. In the calibration dataset, we estimated unidimensional, two-dimensional (separating 

cognitive/affective and somatic symptoms of depression), and bi-factor models, and the respective 

cut-offs to maximize combined sensitivity and specificity. In the validation dataset, we assessed 

the differences in (combined) sensitivity and specificity between the latent variable approaches 

and the optimal sum score (≥10), using bootstrapping to estimate 95% confidence intervals for the 

differences.

Results: The calibration dataset included 24 studies (4378 participants, 652 major depression 

cases); the validation dataset 17 studies (4252 participants, 568 cases). In the validation 

dataset, optimal cut-offs of the unidimensional, two-dimensional and bi-factor models had higher 

sensitivity (by 0.036, 0.050, 0.049 points, respectively) but lower specificity (0.017, 0.026, 0.019, 

respectively) compared to the sum score cut-off of ≥10.

Conclusions: In a comprehensive dataset of diagnostic studies, scoring using complex latent 

variable models do not improve screening accuracy of the PHQ-9 meaningfully as compared to the 

simple sum score approach.

Keywords

Depression; Screening; Latent variable modeling; Confirmatory Factor Analysis

Background

The Patient Health Questionnaire (PHQ) was developed to screen and assess for the 

presence and severity of eight mental and behavioral disorders (Spitzer et al. 1999). The 

depression scale constitutes the short-form PHQ-9 and consists of nine items derived from 

the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) diagnostic criteria for 

major depressive disorder (Kroenke et al. 2001). Respondents are asked how often they were 

bothered by each of the nine symptoms of depression in the past two weeks, and items 

are rated using four response categories (not at all, several days, more than half the days, 

nearly every day). Total scores range from 0 to 27, with higher scores indicating more severe 

symptoms of depression. The PHQ-9 was developed for screening for major depression 

as well as for dimensional assessment of depression severity (Kroenke et al. 2001). It is 

considered a valid instrument for the evaluation of depressive symptoms in medical care 

(Löwe et al. 2004a, 2004b, 2004c) and is available in many languages.

The PHQ-9 sum score is typically used as a measure of depression symptom severity and 

for depression screening. A recent individual participant data meta-analysis (IPDMA), with 

data from 17,357 participants from 58 primary studies, evaluated screening accuracy of 
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the PHQ-9 to detect major depression. This study found that a cut-off sum score of ≥10 

maximized combined sensitivity and specificity, but had less than ideal positive and negative 

predictive values when depression prevalence was low (Levis et al. 2019a). Diagnostic 

accuracy could not be improved by the use of the diagnostic algorithm of the PHQ-9 (He et 
al. 2020) nor by omitting the potentially problematic item operationalizing suicidal ideation 

(Wu et al. 2019).

Although a latent variable approach has been utilized to shorten the scale to 4 items 

(Ishihara et al. 2019), no studies have investigated whether utilizing latent variable-based 

scoring may improve the screening accuracy of the PHQ-9. In latent variable approaches 

such as confirmatory factor analysis (CFA), one or more unobservable (latent) variables 

are modelled to describe the variation of the observed item responses. In contrast to the 

sum score, a factor score empirically weights item responses to maximize the likelihood of 

the observed data and might therefore rank individuals differently based on their specific 

response pattern compared to the sum score.

The appropriate structure of latent variable models underlying the PHQ-9 is contested. Some 

studies suggest that the PHQ-9 is a unidimensional measure, i.e. all item responses can be 

best explained by a single latent variable (Merz et al. 2011; Kocalevent et al. 2013; Choi 

et al. 2014; Wahl et al. 2014; Arrieta et al. 2017; Harry & Waring 2019), whereas others 

suggest that it is necessary to differentiate between a cognitive/affective and somatic factor 

to appropriately represent the observed data (Elhai et al. 2012; Chilcot et al. 2013; Forkmann 

et al. 2013; Beard et al. 2016; Miranda & Scoppetta 2018; Patel et al. 2019). More recently, 

bi-factor modeling has been increasingly used to establish “sufficient” unidimensionality of 

the PHQ-9 (Chilcot et al. 2018; Doi et al. 2018; Arnold et al. 2020), acknowledging that 

minor deviations from a unidimensional model may be clinically irrelevant.

These studies investigating the factorial structure of the PHQ-9 have commonly relied on 

assessment of approximate fit indices using rules of thumb (e.g., CFI > 0.95, RMSEA < 

0.08) to determine the most appropriate model in their respective samples. They have not 

investigated whether the use of latent variable models to weight item responses and account 

for possible violations of unidimensionality had a clinically relevant advantage compared to 

the use of simple sum scores. However, such an assessment would be needed to distinguish 

whether such models pick up real and relevant deviations from model assumptions such as 

unidimensionality or are a result of overfitting, as more complex models can fit the observed 

data more precisely.

We know of only one study that has compared depression screening accuracy as a measure 

of predictive validity between different latent variable models of the PHQ-9 and the sum 

score (Xiong et al. 2014). That study found that unidimensional, two-dimensional, and 

bi-factor modeling yielded only small and potentially negligible increases in screening 

accuracy compared to the use of sum scores. The generalizability of this finding, however, is 

unclear as the study included only 491 participants (116 major depression cases), using the 

Chinese version of the PHQ-9 and we therefore replicate this analysis in a comprehensive 

data set.
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Severity scores from latent variable models may more accurately identify cases of major 

depression than a sum score approach. Therefore, this study aimed to investigate the 

degree to which diagnostic accuracy may be improved by employing latent variable models 

in depression screening compared to sum scores. To answer this question, we estimated 

unidimensional, two-dimensional, and bi-factor models for the PHQ-9 using data collected 

for an IPDMA on the diagnostic accuracy of the PHQ-9 (Levis et al. 2019a). We then 

identified optimal cut-offs that maximized combined sensitivity and specificity in each of 

the latent models and compared their accuracy to the standard sum score approach (cut-off 

of ≥10) to determine whether gains achieved by using complex latent factor methods were 

clinically relevant.

Methods

This study is a secondary analysis of data accrued for an IPDMA of the diagnostic accuracy 

of the PHQ-9 for screening to detect major depression (Thombs et al. 2014; Levis et al. 
2019a, 2020). We divided the IPDMA database into calibration and validation samples to 

first calibrate models, and, second, test model accuracy against the sum score approach.

The main IPDMA was registered in PROSPERO (CRD42014010673), and a protocol was 

published (Thombs et al. 2014). The present analysis was not part of the original IPDMA 

protocol, but a protocol was prespecified and published on Open Science Framework 

(https://osf.io/ytpez/). Results of the study are reported following PRISMA-DTA (McInnes 

et al. 2018) and PRISMA-IPD (Stewart et al. 2015) reporting guidelines.

Identification of eligible studies

In the main IPDMA, datasets from articles in any language were eligible for inclusion if (1) 

they included PHQ-9 item data; (2) they included diagnostic classification for current Major 

Depressive Disorder (MDD) or Major Depressive Episode (MDE) using DSM (American 

Psychiatric Association 1987, 1994, 2000) or International Classification of Diseases (ICD) 

(World Health Organization 1992) criteria based on a validated semi-structured or fully 

structured interview; (3) the diagnostic interview and PHQ-9 were administered within two 

weeks of each other, because DSM (American Psychiatric Association 1987, 1994, 2000) 

and ICD (World Health Organization 1992) criteria specify that symptoms must have been 

present in the last two weeks; (4) participants were ≥ 18 years and not recruited from 

youth or college settings; and (5) participants were not recruited from psychiatric settings 

or because they were identified as having symptoms of depression, since screening is 

done to identify previously unrecognized cases (Thombs et al. 2011). Datasets where not 

all participants were eligible were included if primary data allowed selection of eligible 

participants.

Database searches and study selection

A medical librarian searched Medline, Medline In-Process & Other Non-Indexed Citations 

via Ovid, PsycINFO, and Web of Science (January 1, 2000 – February 7, 2015), using a 

peer-reviewed (McGowan et al. 2016) search strategy (see supplementary material 1). We 

limited our search to these databases based on research showing that adding other databases 
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when the Medline search is highly sensitive does not identify additional eligible studies 

(Sampson et al. 2003; Rice et al. 2016).

The search was initially conducted from January 1, 2000 to February 7, 2015, then updated 

to May 9, 2018. We limited the search to the year 2000 forward because the PHQ-9 was 

published in 2001 (Kroenke et al. 2001). We also reviewed reference lists of relevant reviews 

and queried contributing authors about non-published studies. Search results were uploaded 

into RefWorks (RefWorks-COS, Bethesda, MD, USA). After de-duplication, remaining 

citations were uploaded into DistillerSR (Evidence Partners, Ottawa, Canada) for processing 

review results. Two investigators independently reviewed titles and abstracts for eligibility. 

If either deemed a study potentially eligible, full-text review was done by two investigators, 

independently, with disagreements resolved by consensus, consulting a third investigator 

when necessary. Translators were consulted for languages other than those for which team 

members were fluent.

Data extraction, contribution and synthesis

Authors of eligible datasets were invited to contribute de-identified primary data, including 

PHQ-9 item data and major depression status. We emailed corresponding authors of eligible 

primary studies at least three times, as necessary, with at least two weeks between each 

email. If there was no response, we emailed co-authors and attempted phone contact. 

Individual participant data were converted to a standard format and synthesized into a 

single dataset with study-level data. We compared published participant characteristics and 

diagnostic accuracy results with results from raw datasets and resolved any discrepancies in 

consultation with the original investigators.

For defining major depression, we considered MDD or MDE based on the DSM. If more 

than one was reported, we prioritized MDE over MDD, since screening would attempt to 

detect depressive episodes and further interview would determine if the depressive episode is 

related to MDD, bipolar disorder, or persistent depressive disorder (dysthymia).

When datasets included statistical weights to reflect sampling procedures, we used the 

provided weights for latent variable model estimation and assessment of diagnostic 

accuracy. For studies where sampling procedures merited weighting, but the original study 

did not weight, we constructed weights using inverse selection probabilities. Weighting 

occurred, for instance, when all participants with positive screens and a random subset of 

participants with negative screens were administered a diagnostic interview.

Data used in this study

For the present study, we only included primary studies that classified major depression 

using the Structured Clinical Interview for DSM Disorders (SCID) (First 1995). The SCID 

is a semi-structured diagnostic interview intended to be conducted by an experienced 

diagnostician; it requires clinical judgment and allows rephrasing questions and probes 

to follow up responses. The reason for including only studies that administered the SCID 

is that in recent analyses using three large IPDMA databases (Levis et al. 2018, 2019b; 

Wu et al. 2020) we found that fully structured interviews identify more patients with 

low-level symptoms as depressed but fewer patients with high-level symptoms compared to 
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semi-structured interviews. These results are consistent with the idea that semi-structured 

interviews most closely replicate clinical interviews done by trained professionals, whereas 

fully structured interviews are less rigorous reference standards. They are less resource-

intensive options that can be administered by research staff without diagnostic skills but 

hence may misclassify major depression in substantial numbers of patients (Brugha et al. 
1999, 2001; Kurdyak & Gnam 2005; Nosen & Woody 2008).

In our main PHQ-9 IPDMA database, most (44 of 47, 94%) primary studies that used semi-

structured interviews to classify major depression status used the SCID, thus we limited our 

analysis on these to ensure comparability of the outcome as much as possible. Furthermore, 

we excluded an additional 3 studies which did not provide PHQ-9 item-level data necessary 

for this analysis and were able to include 41 studies (87%) in the analysis.

We split available data into two datasets used for calibration of models and validation. 

Eligible studies from the search conducted in February 2015 were used as the calibration 

dataset, whereas additional eligible studies from the May 2018 search were used as the 

validation dataset. This mimics the necessity to establish a scoring algorithm prior to its use 

in screening. We replicated the analysis based on a random-split of the data as a sensitivity 

analysis.

Statistical analyses

Estimation of latent factor models—In the calibration sample, a unidimensional (all 

items load on a single factor), two-dimensional (two correlated factors for cognitive/affective 

[items 1, 2, 6, 7, 8, 9] and somatic [items 3, 4, 5] symptoms of depression), and bi-factor 

model (a general factor and specific factors accounting for cognitive/affective and somatic 

symptoms of depression) were fitted using all available PHQ-9 item scores from study 

participants. For each study, factor means, and covariances were modelled separately, 

whereas we assumed invariance of measurement parameters across studies to calibrate latent 

scores on the same scale. Each of the models was identified by constraining the latent factor 

means and variances of one group to 0 and 1, respectively.

We fitted each of the three models in the calibration sample and descriptively assessed 

the measurement parameters such as item loadings and factor covariances as well as exact 

(chi-square) and approximate (comparative fit index CFI <0.95, root mean squared error 

of approximation RMSEA <0.08, standardized root mean residual SRMR <0.06) measures 

of fit (Hu & Bentler 1999; Brown 2006). As the models are nested, we compared fit of 

the models using scaled likelihood ratio tests (Satorra & Bentler 2010). Furthermore, we 

reported the correlation between latent factor scores and the sum scores.

We then estimated individual factor scores for all participants in the calibration dataset from 

each of the three models using the Empirical Bayes Modal approach. We used the following 

estimates of depression severity from each model in subsequent analyses:

1. Factor scores from the unidimensional model

2. Cognitive/affective factor scores from the two-dimensional model (since the 

main diagnostic criteria of MDD are cognitive-affective symptoms
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General factor scores from the bi-factor modelFor all confirmatory factor analyses, we 

treated the observed item responses as 4 level ordinally scaled variable and therefore used 

a diagonally weighted least squares estimator with a mean- and variance-adjusted test 

statistic. This approach estimates a model equivalent to that of a graded response model 

from the item-response theory framework (Forero & Maydeu-Olivares 2009). The analysis 

was conducted in R (R Development Core Team 3.0.1. 2013) with the lavaan package 

(Rosseel 2012).

Identification of optimal cut-offs for scores from latent factor models in the 
calibration sample—For each of the three latent score estimates, we calculated overall 

screening accuracy for a range of potential cut-offs in the calibration dataset. Given that 

the continuous scale of the latent variables has a substantially larger number of potential 

thresholds compared to the sum score, we imposed a grid with step width = 0.01 over 

the observed range of the scale as potential cut-offs. For each potential cut-off, we used a 

bivariate model fitted via Gauss-Hermite adaptive quadrature (Riley et al. 2008) to estimate 

sensitivity and specificity, accounting for the clustered nature of the data in the IPDMA. 

This 2-stage meta-analytic approach models sensitivity and specificity simultaneously, 

accounting for the inherent correlation between them and for precision of estimates 

within studies. For each analysis, this model provides estimates of pooled sensitivity and 

specificity. Bivariate models were fitted using glmer in lme4 (Bates et al. 2014). For each of 

the three latent scores, we then chose the cut-off that maximized combined sensitivity and 

specificity as the optimal cut-off. For the sum score, we used the standard optimal cut-off of 

≥10 (Levis et al. 2019a), which was also optimal in the calibration dataset.

To investigate heterogeneity, we assessed forest plots of sensitivities and specificities for 

each included study at the optimal cut-offs from each of the 3 models and the sum score. 

We reported estimated variances of the random effects for sensitivity and specificity (τ2) 

and R, the ratio of the estimated standard deviation of the pooled sensitivity or specificity 

from the random-effects model to that from the corresponding fixed-effects model (Higgins 

& Thompson 2002). We also compared the heterogeneity in diagnostic accuracy between 

the latent variable models and the sum score to investigate whether the more complex latent 

variable models show stronger heterogeneity.

Comparison of accuracy of latent models and sum score in the validation 
sample—The respective factor scores in the validation sample were calculated using the 

model parameters obtained in the calibration sample and a standard normal prior. We 

estimated pooled sensitivity and specificity using the bivariate model for the latent scores 

along the grid of potential thresholds and for each sum score in the validation sample to 

construct empirical receiver operator characteristic (ROC) plots in the validation sample. We 

compared overall diagnostic accuracy of each method by estimating the difference and the 

respective 95% confidence intervals of the area under the curve (AUC) to the sum score 

ROC plot.

We furthermore estimated the differences (along with their respective 95% confidence 

intervals) of sensitivity and specificity between the PHQ-9 sum score cut-off of ≥10 and 

the optimal cut-off identified for each method in the calibration sample. Following previous 
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studies (Ishihara et al. 2019; Wu et al. 2019), a difference of 5% in sensitivity or specificity 

was set as the criterion for clinical relevance. Percentile based confidence intervals were 

sampled using the cluster bootstrap approach (Leeden et al. 2008), resampling at study and 

subject levels. For each comparison, we used 1000 bootstrap iterations.

Results

Data

A flowchart of the search and inclusion process can be found as supplementary material 

2. From the 41 studies included, 24 studies with 4378 participants (652 depression cases) 

were used as the calibration set, and 17 studies with 4252 participants (568 depression cases) 

as the validation set. The calibration and validation set differed in multiple characteristics 

(see Table 1). Participants in the calibration set were, on average, older and more likely to 

be male. Study characteristics including country, language, and general setting, as well as 

method of administration of diagnostic interview and PHQ-9 questionnaire also differed. 

The mean PHQ-9 score did not differ significantly between calibration and validation sets, 

whereas participants in the validation set were slightly less likely to be classified with major 

depressive disorder according to the SCID.

Estimation of latent factor models—Table 2 shows the loadings of the three latent 

factor models as well as their fit indices and the correlations of factor scores with the PHQ-9 

sum score. Overall, in each model, we observed high loadings of the main factors, indicating 

that the variance within items can be well explained by the imposed latent variables. 

Loadings of the specific factors in the bi-factor model were low, indicating that most of 

the observed variance can be explained by the general factor. Likelihood ratio tests indicated 

that compared to the bi-factor model, the two-dimensional model had significantly worse fit 

to the data (robust delta chi-square = 238.2, df = 27, p<0.001). The unidimensional model 

fitted the data as well as the two-dimensional model (robust delta chi-square = 0.843, df = 1, 

p=0.36). Fit indices also suggest that the bi-factor model fitted the data best, with RMSEA 

(<0.08) and CFI (>0.95) meeting rule of thumb thresholds. The correlations between latent 

factor scores from all models and the PHQ-9 sum score were all >0.97, except for the 

specific factors in the bi-factor model.

A graphical representation and the full specification of the models including thresholds and 

scaling factors, which we used for scoring, can be found in the supplementary material 3.

Identification of optimal cut-offs and comparison of diagnostic accuracy—
Figure 1 shows the ROC plots for the different scoring methods in the calibration and 

validation samples. In the calibration sample, the curves almost perfectly overlap, suggesting 

no meaningful difference between the scoring methods in terms of diagnostic accuracy. 

Given that there are substantially more potential thresholds in the latent variable models, 

these showed an irrelevant increase in AUC (0.927 for the sum score, 0.931 for the 

unidimensional, 0.932 for the two-dimensional and 0.933 for the bi-factor model). In the 

validation sample, overall screening accuracy was lower for all scoring methods than in the 

calibration sample (AUC = 0.890, 0.896, 0.897 and 0.898, respectively).
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Table 3 shows the results of the meta-analysis and the optimal cut-offs identified in the 

calibration sample. The optimal cut-offs for the two-dimensional and the bi-factor model 

yielded a 0.01 larger combined sensitivity and specificity compared to the sum score and 

the unidimensional model in the calibration sample (see Table 3). Across scoring methods, 

estimates of heterogeneity (τ2, R, see Table 3) were similar. Examination of forest plots 

(Supplementary Material 4) indicated that there was no apparent difference in heterogeneity 

of sensitivity and specificity between studies under the different scoring approaches.

Bootstrapping indicated that observed differences in the area under the curve were 

very small (ΔAUConedimensional – sum score = 0.006 [95%-CI: 0.000 – 0.013, p = 0.044], 

ΔAUCtwo-dimensional – sum score = 0.007 [0.000 – 0.015, p = 0.050], ΔAUCbi-factor – sum score 

= 0.007 [0.000 – 0.015, p = 0.054]). Bootstrapping the differences of sensitivity, specificity 

and combined sensitivity and specificity in the validation sample showed that the optimal 

cut-off of the two-dimensional model had a 0.0503 [0.0000 – 0.1048] point higher 

sensitivity when compared to the sum score’s optimal cut-off (Table 4). This gain in 

sensitivity was achieved at the expense of a 0.0257 [0.0059 – 0.0506] point loss in 

specificity. The bootstrapped confidence intervals indicated that these differences were not 

statistically significant as the confidence intervals covered 0. However, despite the very large 

dataset, the CI does not allow us to exclude the possibility of a 5% advantage as well.

Discussion

We compared the screening accuracy of scores predicted with commonly used confirmatory 

factor analysis models of the PHQ-9 to the sum score. Overall, there was no clinically 

meaningful gain in screening accuracy from employing such scoring methods in screening 

for major depression. Most of the observed increase in sensitivity when using the two-

dimensional or bi-factor model was obtained at the expense of a decrease in specificity and 

combined sensitivity and specificity did not significantly differ between scoring methods. 

Therefore, use of latent variable modeling does not improve the less than ideal positive and 

negative predictive values of the PHQ-9 sum score (Levis et al. 2019a).

We fitted three different factor models, all of which have been previously found to fit 

observed PHQ-9 data reasonably well in various samples (Merz et al. 2011; Elhai et al. 
2012; Kocalevent et al. 2013; Chilcot et al. 2013, 2018; Forkmann et al. 2013; Wahl et al. 
2014; Choi et al. 2014; Beard et al. 2016; Arrieta et al. 2017; Miranda & Scoppetta 2018; 

Doi et al. 2018; Patel et al. 2019; Harry & Waring 2019; Arnold et al. 2020). Overall, 

we found that the bifactor model fitted the data best and that neither the one- nor the 

two-dimensional model met common thresholds for approximate model fit. However, the 

observed differences in model fit came with trivial model changes – e.g. the correlation 

between cognitive/affective and somatic factors in the two-dimensional is .89, suggesting 

that these factors are hardly different. Also, the high correlation with the sum score indicates 

very modest differences between the models. Importantly, the observed differences in model 

fit did not reflect a meaningful difference in diagnostic accuracy.

Across samples we constrained the measurement parameters to be the same, essentially 

imposing measurement invariance. Despite the large number of equality constraints imposed 
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across studies, fit indices of the models were above or close to commonly used cut-offs 

indicating appropriate goodness of fit. Hence, the assumption of complete measurement 

invariance across studies seems justifiable and is in line with earlier research on the PHQ-9, 

which showed only small deviations from measurement invariance in various samples (Baas 

et al. 2011; Cook et al. 2017; Keum et al. 2018; Tibubos et al. 2018; Harry & Waring 2019; 

Patel et al. 2019). In principle, violations of measurement invariance between samples could 

be responsible for less than ideal diagnostic accuracy of factor scores. The assumption of 

measurement invariance was, however, considered necessary, as in any screening setting, 

there would be no way to concurrently estimate sample-specific measurement parameters for 

the specific sample and use a predetermined cut-off at the same time.

Our findings also suggests that, over a large number of studies, neither accounting for 

potential violations of unidimensionality of the PHQ-9 nor weighting of item responses 

leads to a substantial increase in predictive validity of the PHQ-9. The above-mentioned 

studies investigating latent factor models of the PHQ-9 relied heavily on approximate 

goodness of fit measures and did not incorporate external measures of validity. It 

remains unclear whether in these single studies there was indeed meaningfully different 

measurement parameters or if better fit of more complex models was due to overfitting. 

It seems advisable to investigate whether use of complex latent factor models leads to an 

improved validity in view of some external criterion.

We found that the calibration and validation sets differed significantly in terms of participant 

and study characteristics, except for the mean PHQ-9 scores. The size of the observed 

sample differences was clinically meaningful; e.g., the percentage of male participants 

was about 10% higher in the calibration sample. Also, age and language of PHQ-9 

administration showed substantial differences between both samples. It is possible that these 

differences might be responsible for the overall lower diagnostic accuracy in the validation 

sample, although a simple alternative explanation is that accuracy in the calibration sample 

was explicitly maximized, and the same model parameters were then used in the validation 

sample. The differences between calibration and validation samples can be explained due 

to the fact that we did not randomly split the data, but used data accrued at different 

times. Given that screening tools are commonly developed in a calibration sample and then 

subsequently applied in different populations, our approach resembles common research 

practice and adds to the external validity of our findings. Analysis based on a random 

split replicates that use of latent variable scores instead of the sum score does not improve 

diagnostic accuracy (see supplementary material 6).

A major strength of this study is the large number of studies and participants included. 

The collected data covers a wide variety of potential settings for depression screening. 

Furthermore, data collection (Thombs et al. 2014) and this specific analysis (https://osf.io/

ytpez/) were prespecified. We deviated from the prespecified analysis plan only in two 

respects. First, we imposed a narrower grid of potential thresholds for the latent factor 

models than originally planned. Second, to account for the fact that higher sensitivity may 

come at the expense of lower specificity, we also bootstrapped combined sensitivity and 

specificity as an overall measure of diagnostic accuracy for a given cut-off.
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Although not observed in this study, there are cases where the performance of sum scores 

and factor scores may differ more considerably. It is often noted that sum scores and factor 

scores have a very strong correspondence, often correlating above 0.95 (Embretson & Reise 

2000) and diverging mostly in the case of extreme scores. If given a unidimensional model, 

these two scoring approaches would tend to diverge more if loadings (and thresholds) are 

very heterogeneous across items. With 9 items, the PHQ-9 also represents a relatively 

short assessment tool. If typical assumptions underlying latent variable models were to 

hold, it is possible that a larger item pool coupled with appropriate test assembly (a short-

form or computer adaptive test) could provide better measurement precision for individual 

respondents or around a potential cut score on the latent variable. Thus, improvement 

of screening accuracy beyond the PHQ-9, with potentially fewer or a similar number of 

administered items, is still theoretically possible.

A limitation of this study is that we did not investigate whether scores from latent 

variable models have better screening accuracy in specific subgroups. For example, it is 

reasonable to assume that symptoms of depression manifest differently across the lifespan, 

cultural background or health status. Separating cognitive/affective and somatic symptoms 

of depression might in particular warranted in participants with severe somatic illnesses. 

However, it was not possible to explore this question due to variation between included 

studies in whether, and how such information was collected. Overall, the literature search 

might not be exhaustive, since it did not cover all potentially relevant databases. However, 

earlier research has shown that the large majority of eligible studies can be identified 

through a specific medline search. A further potential limitation is that not all potentially 

eligible studies could be included in the IPDMA database and that we included only 

the subset of studies which used the SCID as reference standards given the different 

performance of interview reference standards (Levis et al. 2018, 2019b; Wu et al. 2020)), 

and provided item-level data.

In conclusion, the choice between different measurement models did not affect diagnostic 

accuracy of the PHQ-9 and scoring based on latent factor models of the PHQ-9 did not 

improve diagnostic accuracy clinically meaningful when screening for depression. Although 

the underlying factorial structure of the PHQ-9 has been contested and given simplicity of 

calculation, the PHQ-9 sum score is preferable in applied setting, although its measurement 

model might be considered unrealistic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
ROC Curves comparing diagnostic accuracy of the sum score and the latent variable models 

in the calibration and validation sample
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Table 1:

Characteristics of the included participants stratified by sample.

Calibration sample Validation sample p-value

N 4378 4252

Age (mean (SD)) 50.44 (19.21) 46.69 (16.17) <0.001

Male sex (N (%)) 1805 (41.2) 1324 (31.2) <0.001

Country (%) <0.001

 Canada 372 (8.5) 889 (20.9)

 USA 1675 (38.3) 518 (12.2)

 UK 126 (2.9) 135 (3.2)

 Germany 804 (18.4) 160 (3.8)

 Netherlands 260 (5.9) 0 (0.0)

 Australia 270 (6.2) 0 (0.0)

 Brazil 347 (7.9) 0 (0.0)

 Israel 151 (3.4) 0 (0.0)

 Singapore 113 (2.6) 0 (0.0)

 Iran 122 (2.8) 0 (0.0)

 Italy 138 (3.2) 0 (0.0)

 South Africa 0 (0.0) 679 (16.0)

 Mexico 0 (0.0) 280 (6.6)

 Kenya 0 (0.0) 192 (4.5)

 Zimbabwe 0 (0.0) 264 (6.2)

 Spain 0 (0.0) 1003 (23.6)

 Myanmar 0 (0.0) 132 (3.1)

Language (N (%)) <0.001

 English 2443 (55.8) 1542 (36.3)

 German 804 (18.4) 160 (3.8)

 Dutch 260 (5.9) 0 (0.0)

 Portuguese 347 (7.9) 0 (0.0)

 Hebrew 151 (3.4) 0 (0.0)

 Italian 138 (3.2) 0 (0.0)

 Farsi 122 (2.8) 0 (0.0)

 South African languages 0 (0.0) 679 (16.0)

 Spanish 0 (0.0) 1283 (30.2)

 Malay, Chinese or Tamil 113 (2.6) 0 (0.0)

 Kiswahili 0 (0.0) 192 (4.5)

 Shona 0 (0.0) 264 (6.2)

 Burmese 0 (0.0) 132 (3.1)

Method of PHQ-9 administration (N (%)) <0.001

 Face to face 1462 (33.4) 1693 (39.8)
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Calibration sample Validation sample p-value

 Internet 198 (4.5) 176 (4.1)

 Self-administered (mail) 873 (19.9) 164 (3.9)

 Self-administered (in research setting) 1845 (42.1) 2219 (52.2)

Method of SCID administration (N (%)) <0.001

 Face to face 3180 (72.6) 3477 (81.8)

 Computerized (no interviewer) 147 (3.4) 0 (0.0)

 Phone 1051 (24.0) 775 (18.2)

Participant recruitment setting (N (%)) <0.001

 Primary Care 1085 (24.8) 1399 (32.9)

 Outpatient care 2093 (47.8) 1591 (37.4)

 Inpatient care 633 (14.5) 1262 (29.7)

 Non-medical setting 567 (13.0) 0 (0.0)

SCID major Depression = yes (N (%)) 652 (14.9) 568 (13.4) 0.044

PHQ-9 total score (mean (SD)) 6.81 (5.93) 6.84 (5.96) 0.801

For categorical variables, chi-square tests were performed, for continuous variables independent t-tests. M = mean, SD = standard deviation, N = 
sample size
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