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Abstract

Variations in chondrocyte density and organization in cartilage histology sections are associated
with OA progression. Rapid, accurate quantification of these two features can facilitate the
evaluation of cartilage health and advance the understanding of their significance. The goal of this
work was to adapt deep-learning-based methods to detect articular chondrocytes and chondrocyte
clones from safranin-O-stained cartilage to evaluate chondrocyte cellularity and organization.

The U-net and “you-only-look-once” (YOLO) models were trained and validated for identifying
chondrocytes and chondrocyte clones, respectively. Validated models were then used to quantify
chondrocyte and clone density in talar cartilage from Yucatan minipigs sacrificed one week, 3
months, 6 months, and 12 months after fixation of an intra-articular fracture of the hock joint.
There was excellent/good agreement between expert researchers and the developed models in
identifying chondrocytes/clones (U-net: R2=0.93, y=0.90x-0.69; median F1 score: 0.87 / YOLO:
R2=0.79, y=0.95x; median F1 score: 0.67). Average chondrocyte density increased one week after
fracture (from 774 to 856 cellssmm?), decreased substantially 3 months after fracture (610 cells/
mm?2), and slowly increased 6 and 12 months after fracture (638 and 683 cells/mm?, respectively).
Average detected clone density 3, 6, and 12 months after fracture (11, 11, 9 clones/mm?) was
higher than the 4-5 clones/mm? detected in normal tissue or one week after fracture and show
local increases in clone density that varied across the joint surface with time. The accurate
evaluation of cartilage cellularity and organization provided by this deep learning approach will
increase objectivity of cartilage injury and regeneration assessments.
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INTRODUCTION

In research settings, histological analysis is a commonly used technique for evaluation

of cartilage health, determining severity of osteoarthritis (OA), and evaluating efficacy

of therapeutic approaches. It is common practice with this approach to evaluate cartilage
cellularity and chondrocyte organization. Chondrocyte density estimated from histologic
sections has been accepted as a measure of articular cartilage health. Previous work indicates
that optimal chondrocyte density is necessary to maintain cartilage tissue, while declining
chondrocyte density is associated with degeneration of articular cartilage in OA and with
aging.! In contrast, chondrocyte cloning - formation of non-linear clusters of chondrocytes

- is considered one of the markers of osteoarthritis,! although the significance and events
responsible for cloning are not well understood. Semi-quantitative, subjective, categorical
evaluations of cartilage cellularity, such as those performed during application of Mankin!
and OARSI? scoring, have limitations including uncertain accuracy and reproducibility.3 For
these reasons, the ability to rapidly quantitate chondrocyte density and cloning could help
advance understanding of these phenomena in the pathophysiology of osteoarthritis and in
articular cartilage regeneration, repair, and aging.

One previously reported approach uses image analysis algorithms to automatically identify
chondrocyte density and red intensity values of pixels within the segmented cartilage

and assigns cellularity and PG depletion Mankin sub-scores based on deviation of those
quantitative values from pre-defined normative values.* > While that program achieved
good agreement with human experts for the Mankin structural sub-score (linear regression;
R2: 0.87, slope: 0.84) and the PG depletion sub-score (R2: 0.63, slope: 0.70), there

was poor agreement with human experts on the cellularity sub-score (R2: 0.07, slope:
0.21).# This poor agreement may result from the simple thresholding segmentation and
edge detection used to identify chondrocytes,* two image analysis techniques which

are far from being robust to the huge variation in tissue appearance during cartilage
degeneration. Erroneous chondrocyte density calculations could artificially elevate the
assigned cellularity sub-score by classifying it as either hypercellular or hypocellular.t
Furthermore, difficulty in accurately segmenting chondrocytes substantially reduces the
ability to automatically identify chondrocyte cloning. To accurately quantify cartilage
cellularity and/or accurately assign cellularity scores, more sophisticated image analysis
algorithms that can accommodate the wide variety of chondrocyte appearances and
organization in degenerating cartilage are required.

Conveniently, modern deep-learning-based approaches have been reported to have achieved
great success in a variety of computer vision tasks.61% A convolutional neural network
(CNN) is one common deep learning method in which the model is trained to analyze

a given image type by using pairs of similar input images and the corresponding correct
output data (ground truth) — a technique called supervised learning. With this technique, a
CNN model is able to learn inter-related hierarchical features from the image, which allows
it to accurately classify, detect, and segment objects with variable appearances.®  CNN-
based approaches have previously been applied very successfully in orthopedic research to
perform tasks such as grading/classifying radiographic knee images!: 12 and segmenting
bone and soft tissues from MR images.13-15> CNN-based approaches have also achieved
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tremendous success in a variety of digital pathology applications. For example, Bejnordi

et al have assessed different CNN models for detecting lymph node metastases in women
with breast cancer, and achieved a model that outperforms expert pathologists.18 Similarly,
Nagpal et al/ developed and validated a CNN model to stage prostate cancer, which resulted
in higher accuracy than a group of pathologists.1” There are also CNN-based studies
ranging from detecting sub-cellular (nuclei) components8: 19 to segmentations of glandular
structures?®: 21 jn histology images.

However, applications to cartilage analysis have been more limited. Recent work by Powel
et al %2 describes using a CNN-based image classifier to automatically assign a Bern score
to evaluate chondrogenicity of engineered cartilage,?® and Rytky et a/ has developed a
CNN model to automatically segment calcified cartilage to study its modification during
OA progression.24 Based on this previous success, our goal in this work was to develop
and implement methods to accurately map chondrocyte density and chondrocyte cloning
across the entire articular cartilage surface using a combination of CNN models and spatial
information. We aimed to adapt our previously trained U-net model?> and a “you only look
once” (YOLO)® model to segment individual chondrocytes and identify chondrocyte clones
in cartilage. We hypothesized that fully automated chondrocyte density and clone detection
achieved with CNN models would have excellent agreement with gold-standard human
expert cell/clone identification. Further, we hypothesized that application of the trained
models would be able to identify subtle progressive changes in chondrocyte cellularity and
organization associated with development of post-traumatic osteoarthritis after a joint injury.

METHODS
CNN Models — U-net and “you only look once” (YOLO)

To accurately identify individual chondrocytes through the full depth of articular cartilage,
we retrained our previously reported U-net model from scratch.2> The previous model had
been developed by adding one batch normalization layer2® between each convolutional
layer and its following ReL.U activation function?’ in the original U-net architecture.® Zero-
padding was used for all the convolutional layers, allowing the output segmentation image to
share the same size as the input image. The sigmoid activation function?” was used after the
last convolutional layer to output values between 0 and 1 at each pixel. Under this adaption,
the model takes the input image of size 512 x 512 x 3 (pixel x pixel x RGB) and outputs

a single channel probability image (512 x 512), with each output pixel representing the
probability of it being a chondrocyte. Pixels with predicted probability values higher than
0.5 were labeled as cell pixels. To emphasize segmentation accuracy for smaller and more
closely packed cells, such as would be found in the superficial zone or in a clone, additional
images of superficial zone cartilage were included in the training set. The previous U-net
model?® was then retrained to optimize a modified binary cross entropy loss function that
was weighted to emphasize smaller superficial zone chondrocytes and chondrocytes that
were closely adjacent (Figure 1).

To identify chondrocyte clones, the YOLO object detection model® was used. YOLO
predicts a set of bounding boxes to localize objects, with a label for each box representing
the “class” of the detected object. To build our YOLO model, the contracting path of our
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retrained U-net was copied, which allowed the YOLO model to utilize previously learned
chondrocyte features (a method termed transfer learning). Additional convolutional layers
and max pooling layers were stacked after the copied path to allow the YOLO model

to learn local image context for the existence of a clone. To detect multiple clones that

can appear within a single image, our YOLO model was implemented to predict one
bounding box in each cell of an 8x8 grid defined over the 512x512 pixel input image
(Figure 2). The bounding box information predicted in each grid cell included bounding box
size, centroid coordinates, and a probability value (between 0 and 1) of detecting a clone
centered within the grid cell (Figure 2). Bounding boxes with a probability value >0.5 were
considered clones. Training the YOLO was achieved by optimizing a previously described
loss function8 which forces clone detection with high-probability, closely fitting bounding
boxes.

The U-net and YOLO models were trained using previously generated Safranin-O and
fast green-stained histological sections of rabbit articular cartilage with varying degrees
of arthritic changes induced by ACL transection?® and medial meniscus destabilization.2°
Sections were digitized using a stage scanner microscope (Olympus VS110, Olympus
America Inc., Center Valley, PA, USA) at a resolution of 322.25 nm per pixel. 512 x
512-pixel images encompassing chondrocytes/clones of varying size, shape, appearance,
and zonal origin were cropped from the digitized histology sections. 325 training images,
consisting of our previous 235 training images?® and additional 90 images of superficial
zone cartilage, and a separate set of 24 validation images were used for retraining the U-net.
A different set of 300 training images and 25 validation images was used for training the
YOLO model.

Training images were cropped using ImageJ (NIH, https://imagej.nih.gov/ij/) software. All
training and validation images for the U-net were manually segmented using MATLAB
R2020a (The MathWorks, Natick, MA) by a single individual with >3 years’ experience
identifying chondrocytes in histological sections of cartilage. Clones in the training images
were annotated (enclosed in a bounding box) in MATLAB by the same individual, with a
clone defined as a cluster that includes at least three different chondrocytes encapsulated by
the same lacuna. Cloning validation images were developed from the consensus annotation
by three expert cartilage researchers. To replicate in-practice variability of histology images,
data augmentation including image rotation, mirroring, and brightness adjustment was
applied to the training images for both models using the Python scikit-image library.30

The U-net and YOLO were implemented using the open-source deep learning framework
Keras (https://keras.io/) with the TensorFlow backend. We would be available to share
elements of our codes to the interested researchers. Models were trained using an NVIDIA
Tesla K80 GPU. The U-net was trained for 100 epochs (requiring 120 minutes), while the
YOLO was trained using 120 epochs (requiring 150 minutes). Inference time to analyze

a 512 x 512 image was 0.1 s and 0.12 s for the U-net and YOLO, respectively. An F1
score,2! which evaluates the ratio of true positive cell detections among all cell detections
by the model, was calculated for each validation image at each epoch. The final U-net

and YOLO models were selected based on achieving the highest average F1 score on

the validation images in each training set. A secondary validation of the selected U-net
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and YOLO models was then conducted using 30 different expert-annotated testing images
unseen by the algorithm during training. Agreement between the trained CNN models and
experts was evaluated using F1 scores and linear regression to evaluate chondrocyte and
clone identification and intersection over union (I0OU) to evaluate accuracy of chondrocyte
segmentation. These non-normally distributed data (Shapiro-Wilk test; Prism 9, GraphPad
Software LLC, San Diego, CA) are reported as medians with 95% confidence intervals
(Cls).

Cellularity Changes after Joint Injury

The validated CNN models were then applied to existing sets of histological sections of
articular cartilage in order to document the natural history of changes in chondrocyte density
and organization after an intra-articular fracture (IAF) in a Yucatan minipig PTOA model.3!
In this model, impact-induced IAFs in the hock joint (ankle analog) of skeletally mature
minipigs (average 24 months of age at fracture) are surgically fixed using open reduction
internal fixation (ORIF). From previous3!: 32 and ongoing studies, 5 pm-thick Safranin-O/
fast green/Wiegert’s hematoxylin-stained sagittal histological sections of the medial talus
were available from animals sacrificed one week, 3 months, 6 months, and 12 months after
fracture fixation. Histological tissue sections from joints of breed and age-matched healthy,
unfractured pigs were also available. All sections had been prepared according to the same
histological processing protocol? and digitized as described above.

A continuous, 15-mm cartilage span centered within the weightbearing area was selected

for analysis and segmented using a previously developed semi-automated segmentation
algorithm? (Figure 3). A sliding-window approach was then used to automatically divide

the entire 15-mm cartilage span into 512 x 512-pixel image tiles (Figure 3-B), each of
which was analyzed using the validated U-Net and YOLO models to segment individual
chondrocytes and detect chondrocyte clones, respectively. Given that a chondrocyte or a
clone may be split into adjacent image tiles by sliding-window locations and hence missed
by the U-Net or YOLO, the process was repeated on additional image tiles of the same

size acquired after shifting the sliding window by an offset of half the window size in the
horizontal and then again in the vertical direction (Figure 3-B). Cell segmentations and clone
bounding boxes in each image tile were projected back to the associated window location
within the full cartilage geometry (Figure 3-C). Chondrocyte segmentations from all the
regular tiles were projected first, then segmentations from the center span of the horizontally
offset tiles were added, and finally segmentations from the center span of the vertically
offset tiles were added. This method preserved the more accurate cell segmentations from
the center of each tile and covered the seams between regular tiles (Figure 3-B). In contrast,
all chondrocyte clone bounding boxes from both the regular and additional tiles were
projected back to the cartilage segmentation, and subjected to non-maximal suppression33 to
remove any redundant, less accurate bounding boxes.

Three different metrics were calculated to evaluate cartilage cellularity: chondrocyte density,
clone density, and percentage of chondrocytes that reside in a clone. To calculate densities,
the number of chondrocytes or clones whose centroid was within the segmented cartilage
were divided by the cartilage area. Clone chondrocytes were defined as those whose
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centroids were located within the bounding box of a clone (Figure 3-C). The number

of clone chondrocytes was divided by the total number of chondrocytes identified in the
cartilage. These three metrics were calculated for the entire joint, as well as mapped in

1.5 mm increments across the weightbearing cartilage. The 30-40% positions articulated
with the healing fracture line. These data were normally distributed (Shapiro-Wilk test); and
therefore, one-way ANOVA with post-hoc Tukey’s tests was used to compare cellularity
values between post-operative timepoints (normal, one week, 3 months, 6 months, and

12 months; n = 5 for all). Repeated measures two-way ANOVA with post-hoc Tukey’s

tests was used to evaluate differences between joint locations and post-operative timepoints
(GraphPad Prism 9).

The optimal U-net was selected at the 82nd epoch with a median F1 score of 0.89 (95% CI:
0.88 to 0.93) on the training validation images, and the optimal YOLO was selected at the
105! epoch with a median F1 score of 0.80 (95% CI: 0.67 to 1.00) on the training validation
images. Those F1 score values indicated good detection accuracy (good = 0.70-0.90)21

by each model. In the secondary validation, the U-net achieved an excellent agreement
with the average counts by the experts (Figure 4; R? = 0.93, y = 0.90x — 0.69) and a
close-to-excellent median F1 score (median: 0.87; 95% CI: 0.84 to 0.89). The average

IOU between the U-net segmentation and manual segmentation of each chondrocyte was
0.849, indicating high accuracy of U-net chondrocyte segmentations.3* The three expert
researchers’ agreement identifying clones was good (ICC = 0.76).3° Despite relatively a
lower median F1 score (median: 0.67; 95% CI: 0.57 to 0.89) for clone detection, the YOLO
still achieved good agreement with the average counts by the experts (Figure 4; RZ = 0.79,
y = 0.95x). Both models were found to be able to identify chondrocytes/clones of variable
size, shape, and appearance (Figure 4).

Differences in cellularity were found between the normal and the different post-operative
timepoints (Table 1). Average chondrocyte density one week after fracture (mean: 856 cells/
mm?; 95% Cl: 748-963 cells/mm?2) was slightly higher than normal chondrocyte density
(mean: 774 cells/mm?; 95% CI: 742-806 cells/mm?2; p=0.573) and significantly higher than
at 3 months (mean: 610 cells/mm?; 95% Cl: 491-729 cells/mm?; p=0.006), 6 months (mean:
638 cells/mm?; 95% Cl: 470-806 cells/mm?2; p=0.016), and 12 months (mean: 683 cells/
mm?; 95% Cl: 556-810 cells/mm?2; p=0.077) after fracture (Figure 5-A). Clone density and
percentage of chondrocytes in clones 3, 6, and 12 months after fracture was higher than

in normal cartilage or at one week postoperatively, however these differences did not reach
statistical significance (Figure 5-B, C; p>0.1 for all pair-wise comparisons).

Local cellularity differences were noted among the different post-injury timepoints. At the
anterior positions, chondrocyte densities were lower 3, 6, and 12 months after fracture than
after one week or in normal tissue. Cell density was the lowest 3 months after fracture and
was significantly lower than densities in normal tissue or one week after fracture at the 10%
(p=0.032/0.012), 20% (p=0.107/0.024), and 30% (p=0.006/0.039) positions (Figure 6-A).
One week after fracture, chondrocyte densities in the posterior locations were higher than
in normal tissue and significantly higher than at 3, 6 and 12 months: 60% (p=0.137, 0.049,
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0.649 for 3, 6, 12 months, respectively), 70% (p=0.164, 0.096, 0.556), 80% (p=0.108, 0.010,
0.428), 90% (p=0.023, <0.0001, 0.046), and 100% (p=0.002, < 0.0001, 0.067). Chondrocyte
densities 3, 6, and 12 months after fracture were also lower than the normal group at the
posterior positions, although these differences did not reach statistical significance.

Locally, significantly higher clone density/percentage of chondrocytes in clones was found
3, 6, and 12 months after fracture (Figure 6-B, C; Table 2). Local clone density at 3 months
was significantly higher than the normal group at the 70% position (p=0.013) which is
moving into weightbearing tissue that was not directly affected by the fracture. By 6 and
12 months after fracture, significantly higher clone densities than in the normal and/or
one-week groups were found more peripherally in the joint (the 20% and 80% positions).
Clone density at 6 months was significantly higher than in normal or one week at the 20%
position (p=0.026, 0.021) and at 12 months clone density was higher than in the normal
(p=0.057) and one-week (p=0.047) groups at the 80% position. Variations in the percentage
of chondrocytes in a clone were very similar to the local variations of clone density (Figure
6-C).

DISCUSSION

Histological analysis remains among the most commonly used research techniques to
evaluate the health of cartilage. In this work, we trained, validated, and implemented two
different CNN models to quantify the progressive chondrocyte cellularity changes after
joint/cartilage injury. The trained U-net and YOLO models developed for this purpose

were validated to be accurate for identifying chondrocytes and clones by achieving good
agreement with manual assessment by expert researchers. These algorithms proved to be
extensible for use identifying chondrocytes and chondrocyte clones in degenerating minipig
cartilage, and they were able to identify progressive cellularity changes with time after joint
injury.

While there are several CNN models that could be suitable for chondrocyte

identification,”: 10 the U-net was selected for chondrocyte detection because it has
demonstrated state-of-art performance on a similar cell detection task,? and it provides
boundary information from chondrocyte segmentation that can be useful for future studies
related to co-localization of functional cellular stains and specific morphological structures.
In contrast, as relatively little is known about the importance of the morphology of clones,

a simple bounding-box-based detection method was used for clone detection in this work.
The YOLO was selected over other bounding-box-based methods for its developmental and
implementation simplicity. Specifically, it is a single CNN model that can be developed

and trained end-to-end to predict bounding box probability and coordinates simultaneously.®
Similar methods have two stages, requiring independent development of a bounding box
generator and an image classifier,”- 36 which can be more laborious and slower. If clone
morphology, rather than simple detection, becomes more important in future work, adapting
the U-net trained to segment chondrocytes using transfer learning would likely be successful
for that purpose.
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The U-net model reported here is a retrained version of our previously reported model
which had been selected based on providing the lowest average loss value during training.2®
However, that model, chosen to minimize weighted loss at each pixel, did not correspond

to the highest detection accuracy at the cell level. Therefore, in addition to modifications
made to emphasize detection of small, closely packed chondrocytes, the retrained model
was selected based on providing the highest F1 score, which reflected the best cell
detection accuracy as compared with the gold-standard manual segmentations. To maximize
functional accuracy, a similar process was followed during the training of the YOLO. This
approach of selecting a model based on performance was used to avoid choosing an overfit
model, while the secondary validation of the selected model (on different testing images)
was intended to assess generalizability to unseen image data.

Estimated chondrocyte densities in pig cartilage were close in magnitude to previously
reported values in a large animal (~1000 cells/mm?).37 Reduced chondrocyte density and
more active cloning was found beginning 3 months after intra-articular fracture, which
corroborates the elevated histological scoring of PTOA previously reported in this animal
model at the same time point.31 Chondrocyte density began to progressively, though not
significantly, rebound by 6 months (increased 28 cells/smm?; p=0.716) and 12 months
(increased 73 cellssmm?2; p=0.5734) after the fracture. Despite greater clone densities at

6 and 12 months, the progressive increases in chondrocyte density were found to be mainly
from increases in chondrocytes not associated with clones (non-clone related chondrocyte
density: 580, 596, 642 cells/mm? for 3, 6, and 12 months after fracture, respectively). At 6
and 12 month postoperative timepoints, the combination of lower than normal chondrocyte
density, increased number of chondrocyte clones, and increasing chondrocyte cellularity
outside clones indicate progressive arthritic changes, but not necessarily a linear progression
through the stages of cellularity outlined in the Mankin scoring system.! Local increases

in clone density at 3 months were found close to the region that articulates with the

healing fracture line, and then more anteriorly and posteriorly relative to that location by 6
months and 12 months after fracture. These findings would indicate spatial progression of
cartilage abnormalities through the joint that are associated with time after injury, however
determining the mechanism responsible for this would require a separate study.

There are several limitations in this work that need to be considered. The first is that we
have trained the YOLO model to identify a chondrocyte clone based on our empirical
definition of >3 non-linearly organized chondrocytes in a single lacuna. These criteria were
chosen to provide a standardized morphological description of the appearance of a specific
feature of osteoarthritic cartilage identified in the Mankin scoring scheme as “cloning”.1
This term “clone” has been used interchangeably with the term “cluster” or “proliferation”
in other scoring schemes.2 A true clone would imply that all the chondrocytes present in

any given instance of this feature were derived from a single cell, and such an assessment
would require a detailed analysis of cell proliferation markers that is not feasible in Safranin-
O sections. While determining the true clonal/proliferative nature of the cells in these
features is outside the scope of this work, a future study combining this automated feature
detection approach with specific stages of chondrocyte proliferation/activity could provide
important information about the time course of chondrocyte function throughout the course
of osteoarthritic cartilage degeneration after joint injury. It would also be interesting to relate
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such findings to local collagen disruption or proteoglycan concentrations as such covariates
would presumably be closely related to cellular response. However, our model is presently
trained to identify clones independent of surrounding tissue appearance, and as such it
cannot provide any mechanistic or associative information relating chondrocyte proliferation
to tissue structure/composition.

Secondly, the inter-observer agreement on clone identification using this definition was
relatively lower (ICC = 0.76) than expert agreement achieved for identification of individual
chondrocytes (ICC = 0.87).25 However, given the much smaller number of clones in an
image compared to the total number of chondrocytes, this reduction in ICC value is a
function of disagreement on a very small number of clones in the full data set. Another
limitation was that the YOLO detected some false positive clones among sparsely distributed
chondrocytes and some false detections of small clone sizes (Figure 4). A possible reason
for the false positives is that the training images included mostly clustered chondrocytes,
leaving the model without sufficient training to recognize sparser chondrocyte patterns. A
possible reason for identifying artificially small clones was that the YOLO was trained using
rabbit cartilage and clones from rabbit cartilage are smaller than those that can develop

in much thicker pig cartilage. Retraining using additional images of sparse chondrocytes,
larger clones, and multiple species could potentially further improve performance over the
good agreement with experts that was achieved with this version of the YOLO. Finally,
there were few statistically significant differences in clone density associated with time
after fracture in the minipig model of PTOA, which is attributed both to the presence of
some clones in normal minipig talar cartilage, and to the small number of animals available
for each study group (n = 5) in this secondary analysis of existing histological sections.

As hypothesized, progressive chondrocyte/clone density changes were identified, although
adequately powered future studies will be needed to fully document the natural history of
chondrocyte activity in joints sustaining intra-articular fractures.

In conclusion, two CNN models were developed, validated, and implemented to document
progressive changes in chondrocyte density & cloning in a minipig model of intra-articular
fracture, which is known develop post-traumatic OA. The accuracy of the resulting
chondrocyte segmentation and clone identification was very similar to the gold-standard

of human expert chondrocyte/clone identification. This fully objectively obtained cellularity
data could be incorporated into an automated image-analysis based histological scoring
system for OA progression, or used as a stand-alone technique to quantify changes in
cellularity and chondrocyte organization in articular cartilage. This deep-learning-powered
approach provides objective and accurate cartilage health information and can thus better
facilitate studies of cartilage injury and regeneration.
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Figure 1:
This figure illustrates the U-Net model to developed to identify individual chondrocytes. The

U-Net was trained to predict the segmentation image given an input histological section (top
left). The difference between the predicted and ground truth segmentation image at each
pixel is quantified using the binary cross entropy loss function and weighted using the pre-
computed weight map (top right). Pixels of smaller cells in the ground truth segmentation
image were assigned higher weight values (warmer color), forcing the U-Net to identify
smaller chondrocytes. Pixels between closely adjacent chondrocytes (distance less than 1.5
microns) in the ground truth segmentation image are also assigned with higher weight value,
which forced the U-Net to learn to separate adjacent chondrocytes.
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Figure 2:
This figure illustrates the YOLO model developed to identify chondrocyte clones. The

YOLO implementation predicted a total of 64 bounding boxes, one at each cell of an

8x8 grid spanning the entire input image. This allowed the detection of multiple clones

in a single image. If the center of an annotated clone lies within a grid cell, only the
associated bounding box (e.g., two thicker boxes in the prediction) in that grid cell should
be predicted by the model to match the coordinates of the ground truth box of that clone,
and the predicted probability value should approach 1; if a grid cell does not contain a
clone’s center, the associated box from that grid cell should be simply predicted with a
probability value of 0, and its coordinates do not matter. In practice, the probability value
is a continuous number ranging between 0 and 1 and a predicted bounding box with
probability value larger than 0.5 is considered a clone.
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Figure 3:
This figure illustrates the method to analyze the weightbearing area of the minipig talus

cartilage. A) For a given digitized histological section, the center of the weight bearing

area was determined (vertical dash line), and 15-mm horizontal span of cartilage (7.5 mm
for both the anterior and posterior) was segmented (blue boundaries) to be analyzed. B)
Illustration of the sliding window approach to cover the segmented cartilage in an example
cartilage segmentation (white region). A window slides from top to bottom in a column-
by-column-basis with the stride of the window side length to cover the whole segmented
cartilage. These regular windows are offset by half of window side length in vertical and
horizontal direction to cover the seams between regular windows. Image tiles are cropped
from all the window locations and analyzed by the U-net and YOLO models. C) Resulting
cell segmentations and clone detections on cartilage by the U-net and YOLO projected back
to the cartilage. Individual chondrocytes segmentations from the U-net were compared to the
clones (green bounding boxes) detected by the YOLO in order to divide chondrocytes into
clone chondrocytes (yellow segmentations) and regular chondrocytes (cyan segmentations).
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Figure 4:
(Upper) The trained U-net was able to accurately detect chondrocyte of different size, shape,

appearance and zonal origin. It has achieved an excellent agreement with expert researchers
on counting chondrocytes. (Lower) The trained YOLO model was able to accurately detect
clones of different sizes and geometry, with few false positive (red box) or false negative
(blue boxes). The trained YOLO model achieved good agreement with expert researchers on
identifying clones on 30 images not used to train the model.
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This figure shows the plots of chondrocytes density, clone density, and percentage of
chondrocytes in clones at different post-operative timepoints from the entire cartilage region.
A) Chondrocyte densities in the entire cartilage span demonstrated a slight increase one
week after fracture and then decreased after 3 months. The asterisk (*) indicates level

of significance: * for p < 0.05 and ** for p < 0.01. B, C) Clone densities/percentages

of chondrocyte in clone were low in the normal and early (one week) after fracture and

increased after 3 months, although this increase was not significant.
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Figure 6:
Maps of chondrocyte density, clone density, and percentage of chondrocytes in clones

plotted in 1.5 mm increments along the weightbearing cartilage surface. The gray bar
indicates the part of the talus in direct contact with the fracture line during the fracture-
inducing impact. The curve for each timepoint represents the mean cellularity metric value
among the 5 different animals at that timepoint. Color-filled circles represent pair-wise
comparisons with p < 0.05. A) Chondrocyte densities in normal and one-week post-fracture
tissue were higher than at later post-fracture time points, particularly the 3-month time point
and along the anterior portion of the weightbearing cartilage. B, C) Significantly higher
values of clone density and the percentage of chondrocytes in clones were found 3, 6, and
12 months after fracture. Compared to the relative uniformity of clone distribution over the
weightbearing cartilage in the normal and 1-week post-fracture groups, the local increases in
clone density adjacent to the tissue damaged by the fracture indicate the pathological nature
of the clones detected by our model.
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Table 1:

This table summarizes chondrocyte density values (cells/mm?) at different post-operative timepoints. Values
are mapped in 10% increments across the weightbearing articular cartilage surface and shown as a mean
with lower and upper 95% confidence interval bounds. The articular surface between 30% to 40% (shaded
columns) was the portion of the talus that articulated with the fracture line in the tibia.

Anterior Posterior
Entire Surface
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mean 868 848 903 814 708 701 673 729 719 730 774

Normal Lower 1035 987 1149 914 797 886 789 798 824 876 742
Upper 701 709 656 715 618 517 557 660 615 584 806

Mean 899 903 846 795 810 837 816 864 923 918 856

One Week  Lower 1027 979 942 936 966 997 933 959 1015 977 748
Upper 772 826 750 654 654 678 698 768 830 859 963

Mean 583 609 568 600 626 609 595 625 627 545 610

3Months  Lower 661 694 715 716 772 891 822 823 807 958 491
Upper 506 524 421 483 479 327 368 426 447 131 729

Mean 782 795 769 669 731 568 572 540 505 470 638

6 Months  Lower 862 975 1135 947 1151 730 774 776 701 818 470
Upper 701 615 402 391 311 405 369 304 310 121 806

Mean 759 745 739 685 643 704 668 696 650 660 683

12 Months  Lower 1048 991 888 821 803 1122 861 832 815 818 556
Upper 470 498 590 548 483 285 475 560 486 502 810
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Table 2:

Page 19

This table summarizes clone density (clone count), with values expressed as clones/mm? (number clones) at
different post-operative timepoints. Values are mapped in 10% increments across the weightbearing articular
cartilage surface and shown as a mean with lower and upper 95% confidence interval bounds. The articular

surface between 30% to 40% (shaded columns) was the portion of the talus that articulated with the fracture

line in the tibia.
Anterior Posterior Entire
0%  20%  30%  40%  50%  60%  70%  80%  90%  100% urface

Mean  5(2) 4(1) 4 4 5(2) 6(2) 2(1) 2(1) 3(1) 5(2) 5 (14)

Normal ~ Lower  0(0) 0 (0) 0 (0) 00) 0(0) 0 (0) 0 (0) 0(0) 0 (0) 2(1) 1(5)
Upper 12(4) 12(3) 10(5) 15(7) 11(4) 15() 5(2) 5(2) 6 (3) 8(3) 8 (23)

Mean  2(1) 4(1) 2 (1) 3(1) 2(1) 4(1) 6 (2) 1(0) 3(1) 7(3) 4(11)

One Week Lower  0(0) 0 (0) 0 (0) 0(0) 0(0) 0 (0) 0 (0) 0 (0) 000) 0(0) 2(4)
Upper 8(3) 12(4) 8() 10B) 5(2 73 143 4() 93 16(6) 5 (19)

Mean  10(6) 8(5) 9(5) 5(3) 2(1) 21(9) 20(12) 10(5)  11(6) 8(5) 11(58)

3Months  Lower  0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(3)
Upper 21(12) 21(13) 20(11) 18(11) 6(3) 44(19) 51(30) 21(11) 27(14) 18(10) 21 (113)

Mean 12(7) 21(12) 13(7) 7(5) 9(6) 11(7) 9(5) 9 (6) 6 (5) 8(7) 11 (68)

6 Months  Lower  0(0) 0(0) 0(0) 0(0) 0(0) 2(3) 2(2) 0(0) 0(0) 0(0) 5 (44)
Upper 31(17) 42(26) 28(18) 18(13) 20(15) 19(11) 16(9) 18(12) 17(14) 18(15) 16 (92)

Mean 9 (4) 9(3) 8 (3) 8 (4) 7(4) 6(4) 11(7) 17(13) 8(5) 11(8) 9 (58)

12 Months  Lower 0 (0) 0(0) 2(1) 0(0) 3(3) 2(0) 0(0) 0(0) 2(1) 1(0) 3(12)
Upper 18(7) 21(4) 13(8) 16(5) 11(8) 11(8) =22(16) 36(29) 14(9) 20(17) 15 (98)
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