Supplemental Table 1. Variant filtering criteria ${ }^{a}$
Primary criteria for - Not in GATK tranche, AD >10, GQ >50
autosomal dominant - AF ≤ 0.0001 in public databases
inheritance models

- Genes with ≥ 2 loss-of-function variants or ≥ 3 loss-of-function or missense variants
- GDI <50th percentile

Secondary criteria for autosomal dominant inheritance models	- Not in GATK tranche, AD >10, GQ >50 - $\mathrm{AF} \leq 0.001$ in public databases - Genes with ≥ 2 loss-of-function variants or ≥ 3 loss-of-function or missense variants - GDI <75 th percentile
Criteria for compound heterozygotes	- Not in GATK tranche, AD >10, GQ >50 - $\mathrm{AF} \leq 0.01$ in public databases - Genes with ≥ 2 loss-of-function or missense variants in the same sample that were inherited from different parents. - GDI <75 th percentile
Criteria for previously reported genes	- ≥ 1 loss-of-function or missense variants in gene with prior evidence for association with sacral agenesis - $\mathrm{AF} \leq 0.001$ in public databases - No quality filters
Criteria for de novo screen	- Each member of trio with variant $\mathrm{GQ}>40$ and $\mathrm{AD}>8$; Alternate $\mathrm{AD} \geq 5$ in child - $\mathrm{AF} \leq 0.001$ in public databases - Focused on loss-of-function or missense variants
Criteria for autosomal recessive inheritance models	- Not in GATK tranche, AD $>10, G Q>50$ - $\mathrm{AF} \leq 0.01$ in public databases - Homozygous for loss-of-function or missense variants - GDI <75 th percentile
Criteria for X-linked recessive inheritance models	- Not in GATK tranche, AD $>10, \mathrm{GQ}>50$ - $\mathrm{AF} \leq 0.0001$ in public databases - Homozygous (female) or hemizygous (male) loss-of-function or missense variants on chromosome X - GDI <75 th percentile

$A D$ allelic depth, $A F$ allele frequency, GDI gene damage index, GQ genotype quality, WGS whole genome sequencing, ESP Exome Sequencing Project.
${ }^{\text {a }}$ The quality of all variants was reviewed using the Integrated Genomics Viewer.
When filtering by AF, the maximum AF was used from the following populations/public databases, as annotated by ANNOVAR v2018Apr16: October 2014 and August 2015 releases of 1000 genomes - (all + AFR/EUR/EAS), ESP (all + AFR/EUR, ExAC-non-TGCA (all + AFR/AMR/EAS/FIN/NFE/OTHER/SAS), gnomAD Whole genome sequencing (all + AFR/AMR/ASJ/EAS/FIN/NFE/OTHER), gnomAD Whole exome sequencing (all + AFR/AMR/ASJ/EAS/FIN/NFE/OTHER/SAS)), plus AF from approximately 50,000 internal WGS controls (all + AFR/AMR/EUR/EAS/SAS).

615 Supplemental Table 2. Known candidate genes meeting filtering criteria ${ }^{\text {a }}$, ordered by gene damage
616 index. National Birth Defects Prevention Study, 1997-2011.
617

Child	Gene	Variant	Locus	[Allele1, Allele2]	GQ	AD	AF $^{\text {b }}$	CADD	GDI
$\mathbf{1 9}$	CYP26A1	p.R65S	$10: 93074313$	[G, C]	99	$[17,16]$	0	12.6	44.9%
$\mathbf{2 0}$	BOC	p.H151P $^{\text {c }}$	$3: 113250909$	[A, C]	99	$[57,56]$	0.0010	0.8	68.8%
$\mathbf{2 1}$	SIDT1	p.H24D $^{\text {c }}$	$3: 113533091$	[C, G]	99	$[24,19]$	0	9.0	83.2%
$\mathbf{2 2}$	PDZD2	p.P1033R	$5: 32074204$	[C, G]	99	$[24,28]$	0.00010	23.8	84.9%
$\mathbf{1 9}$	USF3	p.N607S							
$\mathbf{2 3}$	SPTBN5	p.R2992Q	$15: 113659862$	$[T, C]$	99	$[68,61]$	0.00020	0.8	85.0%
$\mathbf{2}$	SPTBN5	p.S583L	$15: 41883140$	[G, A]	99	$[26,14]$	0.00040	8.7	99.7%

$618 A D$ allelic depth for the [Allele1, Allele2], AF allele frequency, CADD combined annotation dependent depletion score, $G D I$ gene damage index, $G Q$ genotype quality.
$620{ }^{\mathrm{a}} \mathrm{AF} \leq 0.001$, No quality filters.
$621{ }^{\text {b }}$ Maximum allele frequency observed in any public database for any subpopulation.
622 'Variants not found in ClinVar.
623 The following 34 genes previously reported to be associated with sacral agenesis were evaluated: ACD, ATP6V1A, 624 BOC, CCDC191, CDX2, CDX4, CFAP44, CLTCL1, CYP26A1, DRD3, GRAMD1C, HOXA13, HOXB13, HOXC13, HOXD13, 625 MNX1, MORN1, NAA50, NOP53, PCSK5, PDZD2, PTEN, PTF1A, QTRT2, SIDT1, SPTBN5, TBX4, TBXT, USF3, VANGL1, 626 WNT3A, ZDHHC23, ZNF330, ZNF8O.

Supplemental Table 3. De novo missense and loss-of-function variants meeting filtering criteria ${ }^{a}$, ordered by gene damage index. National Birth Defects Prevention Study, 1997-2011.

Child	Gene	Variant	Locus	[Allele1, Allele2]	GQ	AD	AF ${ }^{\text {b }}$	CADD	GDI
4	METTL1	p.R137X	12:57769384	[G, A]	99	[30, 47]	0.00080	9.7	7.4\%
5	EIF3E	p.1196V	8:108229081	[T, C]	99	[39, 30]	0.000020	21.0	10.6\%
6	EXOSC1	p.N141S	10:97437250	[T, C]	99	[19, 32]	0.0000090	12.3	10.9\%
30	KHDRBS1	p.Y397H	1:32039528	[T, C]	99	[46, 29]	0	31.0	11.4\%
7	BRI3BP	p.S169A	12:125025179	[T, G]	99	[41, 37]	0	20.8	16.5\%
8	RBPJ	p.1419L	4:26430804	[A, C]	99	[31, 37]	0	12.8	20.8\%
9	FAM175B	p.F132L	10:124826723	[C, A]	99	[34, 28]	0	24.0	25.8\%
3	OTUD6B	p.R50H	8:91070443	[G, A]	99	[22, 19]	0	33.0	48.7\%
10	PRKG1	p.P100L	10:51074889	[C, T]	99	[178, 39]	0	23.5	58.1\%
11	REST	p.1644M	4:56930790	[A, G]	99	[39, 40]	0	0.0	69.4\%
10	DYNC1H1	p.L525V ${ }^{\text {c }}$	14:101985798	[C, G]	99	[57, 42]	0	16.1	74.5\%
12	ADRB2	p.M171V	5:148827342	[A, G]	99	[35, 41]	0	21.0	88.4\%

$A D$ allelic depth for the [Allele1, Allele2], AF allele frequency, CADD combined annotation dependent depletion score, $G D I$ gene damage index, $G Q$ genotype quality.
${ }^{\mathrm{a}} \mathrm{AD}>8, \mathrm{GQ}>40, \mathrm{Max} \mathrm{AF} \leq 0.001$ in public databases.
${ }^{\mathrm{b}}$ Maximum allele frequency observed in any public database for any subpopulation.
${ }^{c}$ Variant confirmed in proband via Sanger sequencing. Variant not detected in either parent. None of the variants were found in ClinVar.

638 Supplemental Table 4. Variants that met secondary inclusion criteria ${ }^{\text {a }}$, ordered by gene damage index. National Birth Defects Prevention Study, 1997-2011.

Child	Gene	Variant	Locus	[Allele1, Allele2]	GQ	AD	AF ${ }^{\text {b }}$	CADD	GDI
3	SLC35F3	p.K260R	1:234318782	[A, G]	99	[31, 31]	0.000045	24.1	33.7\%
27	SLC35F3	p.N355S	1:234323041	[A, G]	99	[23, 29]	0.0010	22.7	33.7\%
20	SLC35F3	p.R413K	1:234323215	[G, A]	99	[50, 48]	0.00011	18.5	33.7\%
11	SLIT2	p.K561E	4:20533588	[A, G]	99	[15, 30]	0.000030	23.1	45.0\%
29	SLIT2	p.D1042N	4:20589703	[G, A]	99	[25, 23]	0.00070	25.8	45.0\%
9	SLIT2	p.P1316L	4:20617033	$[\mathrm{C}, \mathrm{T}]$	99	[24, 29]	0.0010	18.0	45.0\%
17	COLGALT1	p.R102W	19:17559354	[C, T]	99	[24, 21]	0.00041	34.0	52.9\%
30	COLGALT1	p.R221H	19:17568546	[G, A]	99	[28, 27]	0.00080	28.9	52.9\%
26	COLGALT1	p.T2371	19:17568594	$[\mathrm{C}, \mathrm{T}]$	99	[27, 16]	0.0000097	24.7	52.9\%
7	SH3BP4	p.R234W	2:235041469	[C, T]	99	[43, 38]	0.0010	24.7	56.4\%
20	SH3BP4	p.P612L	2:235042604	$[\mathrm{C}, \mathrm{T}]$	99	[86,60]	0	17.2	56.4\%
12	SH3BP4	p.V801।	2:235043170	[G, A]	99	[24, 20]	0.0010	22.1	56.4\%
20	ENTPD8	p.R249W	9:137436562	[G, A]	99	[23, 16]	0.00010	28.0	61.2\%
17	ENTPD8	p.A124fs	9:137437183	[GC, G]	99	[11, 8]	0.00020	.	61.2\%
13	ENTPD8	p. M1	9:137438284	[A, C]	99	[16, 10]	0.00080	23.6	61.2\%
1	SLC12A4	p.L842V	16:67946254	[G, C]	99	[33, 30]	0.00010	14.0	61.9\%
2	SLC12A4	p.L594F	16:67948128	[G, A]	99	$[22,8]$	0.00030	25.7	61.9\%
10	SLC12A4	p.L594F	16:67948128	[G, A]	99	[17, 17]	0.00030	25.7	61.9\%
1	SLC12A4	p.M587T	16:67948148	[A, G]	99	[14, 11]	0.000018	26.7	61.9\%
29	MYO6	p.V781D	6:75881744	[T, A]	99	[21, 16]	0.0010	25.2	62.7\%
23	MYO6	p.Q999R	6:75892579	[A, G]	99	[22, 20]	0	7.3	62.7\%
6	MYO6	p.N1144D ${ }^{\text {c }}$	6:75911689	[A, G]	99	[20, 37]	0	17.8	62.7\%
2	BPTF	p.S1005C	17:67910898	[C, G]	99	[25, 24]	0.000036	10.5	64.5\%
21	BPTF	p.P1925L	17:67928377	$[\mathrm{C}, \mathrm{T}]$	99	[47, 37]	0.00020	24.8	64.5\%
4	BPTF	p.Q2402E	17:67945912	[C, G]	99	[83, 77]	0	12.0	64.5\%
24	MEGF8	p.R26W	19:42326319	[C, T]	99	[19, 15]	0.000018	20.2	65.5\%
29	MEGF8	p.R808C	19:42350271	$[\mathrm{C}, \mathrm{T}]$	99	[5,14$]$	0.00010	35.0	65.5\%
12	MEGF8	p.R1511H	19:42356884	[G, A]	99	[10, 12]	0.00050	23.2	65.5\%
5	MEGF8	p.E2662K	19:42376422	[G, A]	99	[14, 6]	0	24.0	65.5\%
6	CHD7	p.A1953v ${ }^{\text {c }}$	8:60852211	[C, T]	99	[46, 41]	0.00020	23.3	66.6\%
4	CHD7	p.D2038E	8:60852839	[C, A]	99	[35, 37]	0.000009	24.1	66.6\%
7	CHD7	p.M2482V	8:60856724	[A, G]	99	[45, 39]	0.00030	14.3	66.6\%
10	CHD7	p.A684T	8:60865136	[G, A]	99	[30, 38]	0.00030	26.5	66.6\%
4	NCAN	p.T468R	19:19226816	[C, G]	99	[27, 22]	0.000019	4.1	69.2\%
7	NCAN	p.A703S	19:19227727	[G, T]	99	[41, 26]	0	0.0	69.2\%

19	NCAN	p.E855K	19:19228183	[G, A]	99	[51, 43]	0.0010	0.8	69.2\%
13	NCAN	p.V1007G	19:19233789	[T, G]	99	[28, 17]	0	0.0	69.2\%
13	PCK2	p.T109M	14:24098253	[C, T]	99	[37, 23]	0.00040	33.0	72.6\%
8	PCK2	p.T483A ${ }^{\text {c }}$	14:24103234	[A, G]	99	[23, 21]	0.00010	28.0	72.6\%
19	PCK2	p.R537H	14:24103651	[G, A]	99	[43, 34]	0.00050	33.0	72.6\%
26	SGSM1	p.V531	22:24847651	[G, A]	99	[5, 6]	0.0010	20.7	73.2\%
19	SGSM1	p.R58Q	22:24847667	[G, A]	99	[11, 7]	0.000045	24.6	73.2\%
10	SGSM1	p.1224V	22:24855549	[A, G]	99	[46, 40]	0.0010	13.8	73.2\%
$\begin{aligned} & 640 \\ & 641 \\ & 642 \\ & 643 \\ & 644 \\ & 645 \\ & 646 \end{aligned}$	$A D$ all score, ${ }^{a}$ AD>1 varian ${ }^{\mathrm{b}}$ Maxi ${ }^{c}$ Varian agenes	h for the damaging , AF ≤ 0.001 le frequenc resent in Cl ot one of th	1, Allele2], $A F$, GQ genotype $<75^{\text {th }}$ percentil served in any p but predicted notypes repo	frequ ity. oss-of- databa benign	ADD va ny s y be	bined an or ≥ 3 los ulation. r of unce	tion depen function or significan	deple nse cral	

