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Abstract

Estimating the overall floor stability in a coal mine using deterministic methods which require
complex engineering properties of floor strata is desirable, but generally it is impractical due

to the difficulty of gathering essential input data. However, applying a quantitative methodology
to describe floor quality with a single number provides a practical estimate for preliminary
assessment of floor stability. The coal mine floor rating (CMFR) system, developed by the
University of New South Wales (UNSW), is a rock-mass classification system that provides an
indicator for the competence of floor strata. The most significant components of the CMFR

are uniaxial compressive strength and discontinuity intensity of floor strata. In addition to the
competence of the floor, depth of cover and stress notch angle are input parameters used to

assess the preliminary floor stability. In this study, CMFR methodology was applied to a Central
Appalachian Coal Mine that intermittently experienced floor heave. Exploratory drill core data,
overburden maps, and mine plans were utilized for the study. Additionally, qualitative data
(failure/non-failure) on floor conditions of the mine entries near the core holes was collected

and analyzed so that the floor quality and its relation to entry stability could be estimated by
statistical methods. It was found that the current CMFR classification system is not directly
applicable in assessing the floor stability of the Central Appalachian Coal Mine. In order to extend
the applicability of the CMFR classification system, the methodology was modified. A calculation
procedure of one of the CMFR classification system’s components, the horizontal stress rating
(HSR), was changed and new parameters were added to the HSR.
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1. Introduction

2.

Sears et al. stated that an increasing problem in deep cover coal mines is that floor heave is
usually observed when there is a presence of weak and moisture-sensitive immediate floor

strata (typically clay) and the load-bearing capacity of floor strata is exceeded due to a high
vertical or horizontal stress state [1].

The excessive amounts of floor heave cause narrowing of the mine entries and has the
potential to lead to the closure of entries. The unplanned closure of mine entries disrupts the
production and ventilation of the mine and increases the difficulty for personnel traveling
escapeways, causing trip hazards in certain cases of local instability [2]. For a robust ground
stability design, estimating the rock-mass behavior is imperative. The coal mine floor rating
(CMFR) classification system was developed to assess practically the potential behavior

of floor strata in Australian coal mines [3]. The CMFR system was composed of two
components: coal mine floor rating (CMFR) and horizontal stress rating (HSR). CMFR is
created to quantify the competence of floor, and HSR was created to include the effect of
overburden stress and alignment of maximum principal horizontal stress with respect to the
entries. In order to assess the stability of the floor in comparison with other failure and
non-failure cases in the database, the floor heave index (FHI) was also created by Mo, which
incorporates the CMFR and HSR into a graphical tool [3]. FHI is employed to depict the
correlation between failure and non-failure cases from actual floor failure cases based on
statistical methods. In this study, the CMFR system developed for Australian floor failure
cases is applied to a Central Appalachian Mine that intermittently experiences floor stability
problems. It is observed that the estimation of floor stability of the case study mine using
the FHI as defined by Mo is not as accurate as it is for the Australian mines [3]. Due to
these inaccuracies, a modification to the HSR calculations, including additional factors and
different constants, are proposed in this study.

Floor heave mechanism

There are different mechanisms of floor heave based upon the floor geology and operational
conditions with different driving factors. Nemcik states that the mechanisms of floor heave
at the longwall gate roads can be classified into three categories: bearing capacity failure
(Fig. 1a), swelling (Fig. 1b), and buckling (Fig. 1c) [4]. These three mechanisms of floor
heave are also illustrated in Fig. 2.

Bearing capacity failure of floor strata happens when the load transmitted from pillars

to floor exceeds the load-bearing capacity of immediate floor strata. If the floor cannot
provide a foundation for the pillar any longer, the pillar starts moving downward into the
floor and gradual pillar punching leads to failure of the floor. The punching of the pillar
into the floor results in movement of floor material beneath the coal pillar outward and
upward towards the ground surface [9]. Speck stated that the load carried by a coal pillar
before pillar punching is transferred upon floor failure to surrounding immediate roof/floor
strata and adjacent pillars [9]. The additional load exerted on the floor contributes to the
bearing capacity failure and increases the severity of the failure. The successive occurrence
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of floor failure and continuous load transfer to the adjacent pillars causes propagation of
floor-bearing capacity failure throughout the mine.

Swelling is another mechanism of floor heave. Faria Santos and Bieniawski stated that
swelling is observed as a result of exposure of clay-rich materials, such as fireclays,
mudstone, claystone, and shale, to moisture [10]. Exposure to water or moisture is one of
the major components of all types of floor heave mechanisms; however, the role of water is
crucial as a swelling mechanism. Swelling is defined as the expansion of floor material due
to the interaction between moisture and floor material, such as the Smectite group of clay
which tends to shrink and swell. Clay mineral/water interaction causes a dramatic decrease
in the mechanical properties of the material and ultimately results in floor failure, which
endangers the functionality of mine entries.

The aforementioned floor heave mechanisms, bearing capacity and swelling, are associated
with the existence of weak immediate floor stratum. However, buckling, the third type of
floor heave, occurs where the immediate floor layer is stronger than the layers underneath.
Buckling is typically observed where the strong immediate floor behaves as hardpan, a hard
and compacted layer. The presence of sufficiently high horizontal stress initiates buckling
of the immediate floor layer and causes floor heave [11]. An example of buckling failure

is seen in the Beckley Coalbed in West Virginia, where the competent and relatively strong
floor has failed in a buckling manner due to the existence of a high horizontal stress field
[12].

3. Coal mine floor rating (CMFR)

Brady and Brown stated that understanding the complex nature of rock mass and making
future predictions for rock-mass response in advance is not simple [13]. They support
applying the previous experiences of mining operations for the future decisions of similar
conditions. Towards this endeavor, rock-mass classification systems based on empirical
approaches are developed in order to apply the gained experience to the similar conditions in
other mines based on a standardized procedure.

There are numerous rock-mass classification systems that incorporate sub-ratings of
different parameters with varying weighting factors into an overall rock-mass rating. These
systems became a reliable methodology to follow in the pre-design stage of many areas,
such as tunneling, slopes, and foundations because of their ease of applicability. The
pioneering studies on rock-mass classification systems were performed by Deere et al. [14—
17]. The most well-known and commonly practiced classification in U.S. coal mines is the
coal mine roof rating (CMRR) system [18]. And recently, the coal mine floor rating (CMFR)
system was proposed for Australian coalfields [3]. Application of the CMFR to assess the
stability of floor strata follows calculating the CMFR, horizontal stress rating (HSR), and
plotting floor heave index (FHI).

3.1. Components of the CMFR

The CMFR is designed to represent the competency of floor strata based on geomechanical
and lithological properties of immediate floor rocks. First, the CMFR divides the floor
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strata into different floor units based on the geological differences and calculates unit

rating for each division. Uniaxial compressive strength of intact rock and discontinuity
characteristics, more specifically the average discontinuity spacing of beddings and other
discontinuities, are the main parameters used in the computation of unit ratings. Then,

the thickness-weighted average of unit ratings is calculated. Since the configuration of the
strong unit in floor strata also affects the overall behavior of the floor, the effect of the strong
unit is integrated into the CMFR value using the strong unit adjustment (SUA) calculation.

3.1.1. Uniaxial compressive strength—Uniaxial compressive strength (UCS) is
widely used by a large percentage of rock mechanics engineers to represent the strength of
rock for surface and underground designs. UCS can be obtained through indirect tests, such
as the point load test, Schmidt hammer test, sonic logging, and so on. Sliwa et al. states that
sonic logging has become an increasingly widespread method for rock strength estimation
in Australia [19]. Analogously, the UCS scale for the CMFR system was developed for the
UCS values obtained by sonic logging (Table 1). It is believed that the competence of floor
stratum with less than 10 MPa is governed only by UCS, i.e., not influenced by the average
discontinuity spacing any longer.

3.1.2. Discontinuity spacing—In rock engineering, two main classification terms exist
to define rocks: intact rock and rock mass [20]. Intact rock refers to the rock material

in an ideal state where there is not any discontinuity or fracture (massive) in the rock

matrix, whereas rock mass refers to rock material in the in-situ condition with a possible
discontinuity/fracture network. For simplicity, rock masses are sometimes assumed to be
intact rock. However, in real-world application, discontinuities always exist within the rock
matrix.

Discontinuities in rock mechanics serves as an inclusive term for all fractures, such as faults,
joints, shears, weak bedding planes, and contacts [13]. The intensity of weakness planes
within the rock governs the mechanical behavior of rock mass in the sense that densely
packed planes of discontinuities adversely affect the strength of rock mass [21]. Therefore,
discontinuity properties, more specifically discontinuity spacing, are commonly used as a
measure of rock-mass quality and employed in many rock-mass classification systems.

The CMFR system, discontinuity spacing is applied to implicate frequency of weakness
planes, including bedding, lamination, joints, fractures, and any other kind of planes that
result in weakness in a rock-mass. Discontinuity spacing, the average distance between each
discontinuity plane per unit length along a drill core, can be calculated by dividing unit
thickness of layer with the number of discontinuities + 1. The CMFR system scale for
discontinuity spacing is shown in Table 2.

3.2. Strong unit adjustment

In the stratified depositional nature of coal roof and floor geology, it is likely to find several
different units with varying geomechanical properties. Mark and Molinda state that the
strongest layer within the bolted area in the roof heavily influences the roof performance
[22]. Similarly, the presence of a strong unit in the floor strata is considered by the CMFR
system while predicting the competence of floor strata. Since the application of bolts in
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floor strata is very rare, the existence of a bolted area concept that is used in CMRR for
floor strata is not applicable. Instead, the first 3-m interval of floor strata is taken into
consideration in order to investigate the effect of a strong unit on the floor performance.
Including the adjustment for a strong unit depends on the stratigraphic sequence of strong
units within 1 m of floor strata. In order to apply the strong unit adjustment (SUA)
calculation, the strongest layer within the 1 m of floor interval must have a minimum
thickness of 0.7 m.

CMRR considers how much stronger the strong unit is than the others in the strata [22].
Analogously, the CMFR distinguishes the strongest layer with the highest unit rating. Then,
the strong unit difference (SUD) calculation is established to understand the relative strength
of layers. The SUD is calculated by subtracting the unit rating of the strong layer from the
thickness-weighted average unit rating within 3 m of floor strata. If the SUD is greater than
20, 5 is added to the thickness-weighted average unit rating as the SUA.

3.3. Calculation of the CMFR

The CMFR calculation starts with the evaluation of unit ratings, which consist of a UCS
rating (Table 1) and a discontinuity spacing rating (Table 2). A minimum unit rating of 25 is
applied to all floor units. Upon the calculation of unit ratings for each floor stratum, a strong
unit adjustment can be added to the corresponding strong unit. Then, the thickness-weighted
average of unit ratings is calculated within 3 m of floor strata in order to achieve an

overall CMFR number based on a 0-100 scale, which represents the competence of the
floor strata within 3 m. Table 3 shows the calculation of the unit rating of each stratum and
thickness-weighted averaged CMFR value for an available drill core from the case study
mine. It should be noted that the last 0.27 m of the bottom unit with a thickness of 0.55 m is
excluded from the CMFR calculation as it is not within the 3 m of floor strata.

3.3.1. Horizontal stress rating (HSR)—The stress state of the floor strata is as
important as the floor material quality to assess the floor stability in a coal mine. In order to
include the stress state of floor into the FHI system, the horizontal stress rating (HSR) was
established. The HSR is composed of depth rating and angle rating.

Depth rating is simply the division of depth of cover in meters by 10. Angle refers to the
angle between the entry and major horizontal stress. The angle rating scale for the HSR is
shown in Table 4.

3.3.2. Floor heave index (FHI)—FHI is an empirical method developed from statistical
methods. FHI is employed in order to combine the CMFR value and HSR into one output.
Incorporating CMFR and HSR of failure and non-failure cases into FHI provides a visual
comparison of binary outcomes of failure and non-failure cases using the logistic line.

FHI was developed for the case study mines in Australia, shown in Fig. 3 [3]. The addition
of new case studies using FHI by calculating CMFR and HSR can assist in the estimation of
floor stability conditions of other mines for future geotechnical investigations.
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4. Case study mine

4.1. General and geological information on case study mine

In the case study mine, metallurgical coal is extracted by utilizing the longwall mining
method. The longwall mine is located in Central Appalachia. The mine extracts from the
Pocahontas #3 coal seam, which belongs to the western part of the Valley and Ridge
physiographic province; this province is characterized by folded and faulted thrust belts that
cause steep-sided mountain ridges and valleys that follow a northeast trend.

The operating depth of the mine exceeds 600 m. The overburden thicknesses range from
426.7 to 670.5 m. The width and length of the entry are 6.1 and 24.4 m, respectively. The
coal seam thickness ranges from 1.5 to 1.8 m. The longwall panels are approximately 220 m
wide by 3660 m long. In the studied part of the mine, the depth of cover ranges from 457
and 731 m, and the coal seam thickness varies from 1.7 to 3.2 m.

Van Dyke et al. stated that geology in the studied area of the mine significantly alters from
mains adjacent to pillar 25 through pillar 28; they constructed generalized vertical geological
columns (Fig. 4) in the interest area based on nearby drill cores [7]. From the analysis of
drill cores, it is observed that the floor strata is composed of 0.15 m of shale and 0.7-1.8

m of fireclay, which is overlaid by bedded sandstones. The roof in the studied area is
qualified as competent. The immediate roof consists of 2.74 m of massive sandstone with an
underlying 0-3 m of silty shale.

This study focuses on the southeastern mains of the mine along both entries and crosscuts,
which experience floor heave problems. The mine layout part of the case study mine where
floor heave is observed is shown in Fig. 5, along with yield-abutment-yield gate road design.
The longwall panels are extracted from bottom to top, and extraction advances from left to
right through the mine. Due to the split in the top of the seam, which led to a very weak clay
roof, the direction of mine advance was changed and oriented 45° towards the south starting
from Panel 25.

According to the published paper about the floor heave in the area of interest in the case
study mine by Van Dyke et al., an initial unexpected occurrence of floor heave, of an inch

or less, was observed in the recovery area of Panel 25, which is overlaid by thick overburden
strata with the thickness ranging from 610 to 730 m [7]. It was noted that floor heave in

the vicinity of Panel 25 remained the same during the extraction of Panel 26. After the
extraction of Panel 26, a significant increase in the amount of floor heave (up to 1.2 m) was
observed. As the mining resumed down to Panel 29, it was recorded that the floor heave
progressed through Panel 29. Fig. 5 shows the area that intermittently experienced floor
heave.

Available drill cores close to the floor heave areas and discussions with the geologist of
the mine were utilized in order to characterize the floor geology in failure cases. Fig. 6
shows the location of the drill cores which were used to characterize three failure and eight
non-failure cases used in the analysis.
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4.2. Application of the CMFR methodology to the U.S. case study mine

4.3.

The CMFR methodology, described in the preceding sections, was applied to the Central
Appalachian Coal Mine. The CMFR and horizontal stress rating (HSR) were calculated for
eleven drill core samples in the case study and is summarized in Table 5.

The CMFR and HSR values are summarized in Table 5 used to plot floor heave index for the
U.S. case study mine shown in Fig. 6.

Modifications on floor heave index (FHI)

Fig. 6 shows that FHI could not accurately separate failure and non-failure cases from each
other for the Central Appalachian case study mine. It is hypothesized that the inaccurate
classification of failure and non-failure cases for the Central Appalachian Mine results from
the angle rating calculations used in the horizontal stress rating. In the Central Appalachian
case, the angle between mine entry and maximum horizontal stress is 90° and 45° for failure
and non-failure cases, respectively. The angle rating developed for the Australian mines
assigns a rating of 5 for any angles larger than 30°. Therefore, the same angle rating of 5

is assigned to all cases in the Central Appalachian Mine regardless of different maximum
horizontal stress alignments. In order to examine the hypothesis, a modified horizontal stress
rating with the more detailed scale of angle is derived for the Central Appalachian Mine.

In the case study mine, maximum and minimum principal stresses (o1 and o3) are the
horizontal stresses, while intermediate principal stress (o) is the vertical stress. For more
realistic in-situ vertical stress calculations, including the effect of topographic relief in
stress conditions, a large-scale model is constructed through a collaborative use of boundary
element software, LaModel, and stability mapping [23]. In-situ vertical stress distribution,

a result of the effect of topographic stress on the mine floor, for the case study mine is
shown in Fig. 7. The area shown in Fig. 7 is meshed with 1400 x 1400 3-m elements in the
LaModel software.

The total horizontal stress applied to the floor strata is the summation of the tectonic stress
and the stress resulting from the Poisson’s effect and can be calculated using Egs. (1) and

).

U
Oh, Poisson's effect = 02, total X m 1)

Oh, tectonic stress — Etectonic strain X E )

where o is the Poisson’s ratio of rock mass; e the tectonic strain; and £ the elastic modulus
of rock mass.

Sears et al. state the elastic modulus of shale in the case study area as 14.01 GPa [1]. For
the case study mine, the tectonic strain is calculated as 1070 microstrain and verified with
the high tectonic strain of 1040 microstrain, which is specified for the Central Appalachian
mines by Dolinar [24]. The input parameters for the total horizontal stress calculation are:
elastic modulus of 14.01 GPa for shale, the tectonic strain of 1.07 x 1073, and Poisson’s
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ratio of 0.2. The calculated total horizontal stress is considered as the maximum total
horizontal stress (o1, o1). The maximum horizontal stress to the minimum horizontal stress
ratio is stated as 1.5 by Sears et al. [1]. The same ratio is used for the stress calculations

in the case study mine, and the maximum principal stress (o1, o) is set to be 1.5 of the
minimum principal stress (o3, o/3).

The horizontal stress rating is modified by changing the calculation procedure of angle
rating. The counterclockwise 2D stress transformation formula from continuum mechanics
is implemented to the angle rating calculation procedure, which makes it possible to
calculate the rating for every single angle value from 0° to 90°, shown in Egs. (3) and

(4).

, 1 1 .
Oxx = E(axx + O'yy) + E(axx - ayy)cos(ZH) + oxysin(20) (3)

, 1 1 .
Oy = E(Gxx + O'yy) - E(axx - O'yy)cos(29) — 0xy8in(20) (4)

Through Egs. (3) and (4), maximum principal stress (g1, o41) and minimum principal stress
(o3, o) are rotated for angles of 45° and 90°. In addition to rotating the principal stresses,
the horizontal stresses are normalized by dividing the minimum principal stress (o3, o/g)
by the maximum principal stress (o1, o41). The coefficient calculated upon normalization
provides a value between 0 and 1 which enables an easy comparison between minimum
and maximum principal stresses. By rotating and normalizing the principal stresses, the
effect of horizontal stress orientation is calculated. The ratio of average maximum horizontal
stress (o1, o) to average in-situ vertical stress (o9, o)) is calculated as 1.23, which
includes the effect of horizontal stress magnitude to the modified horizontal stress rating. It
should be noted that this ratio is specific to the case study mine and has to be calculated
individually for other mine sites. To integrate the effects of orientation and magnitude of
horizontal stress into the modified horizontal stress rating, previously calculated normalized
coefficients corresponding to horizontal stress orientation are multiplied by the ratio of
average maximum horizontal stress and average in-situ vertical stress, and new horizontal
stress coefficients are obtained for corresponding angles.

Lastly, the new horizontal stress coefficient that corresponds to the angle between maximum
horizontal stress and the gate road is multiplied by the in-situ vertical stress, provided by
LaModel, for each drill core, which gives the modified horizontal stress rating. Table 6
summarizes the modified horizontal stress rating calculation steps for each drill core sample.

Floor heave index for the U.S. mine study case is plotted using the modified horizontal stress
rating in Fig. 8. The dashed line is established to separate failure and non-failure cases from
each other. However, it should be noted that the line is not established for design purposes
and can be modified in the future if new case studies are included to the database.
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5. Conclusions

The coal mine floor rating (CMFR) classification methodology was developed for
preliminary assessment of the floor stability. Application of the CMFR to assess the
stability of floor strata follows calculating the CMFR, horizontal stress rating (HSR), and
plotting floor heave index (FHI). The CMFR value represents the competence of floor
strata based on uniaxial compressive strength and intensity of discontinuities in the floor
strata. The horizontal stress rating (HSR) brings the effect of mining depth and horizontal
stress alignment with respect to the entries into the analysis. The floor heave index (FHI)
incorporates the CMFR number and HSR into a plot, which depicts the correlation to
each other. Also, the logistic regression line in FHI is derived with statistical methods to
sufficiently separate the failure and non-failure cases from each other.

In this study, the CMFR system is applied to a Central Appalachian Coal Mine to examine
the applicability of CMFR, purely developed based on Australian case studies for a U.S.
mine. It was found that the logistic regression line in FHI developed for the Australian
database is not adequate to separate failure and non-failure cases from each other for the
U.S. case. It is believed that the insufficient separation results from the angle rating in

the horizontal stress rating. For this reason, HSR is modified and an elaborative way of
calculation for angle rating is implemented into the HSR where angle rating is calculated for
each angle separately. A better separation of failure and non-failure cases from each other
is observed with FHI using the modified horizontal stress rating. Future studies will aim at
expanding the database with case studies from the U.S. mines in order to suggest a design
line for future floor stability assessments. Further, the effect of moisture to the competency
of the floor unit will be investigated in order to integrate moisture sensitivity to the CMFR
system.
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(a) Bearing capacity failure (b) Swelling failure (c) Buckling failure

Fig. 1.
Floor heave examples for three main mechanisms [5-7].
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Fig. 2.

Three main floor heave mechanisms [3] (After [8]).
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Floor heave index for Australian mines [3].
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Fig. 4.
Generalized stratigraphic column of the Pocahontas Number 3 Seam for floor heave in the

case study mine [7].
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Fig. 5.
Mine layout and drill core locations for failure and non-failure cases in the U. S. case study
mine.
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Floor heave index for the U.S. case study mine.
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Fig. 7.
LaModel mesh for overburden stress.
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Table 1

CMPFR unit ratings for UCS tests.

UCS (MPa) Rating

<10 10

12-20 2 x UCS-10
20-30 UCS + 10

30-80 0.3xUCS+31
80-160 0.125 x UCS + 45
>160 65
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Table 2

CMFR unit rating for discontinuity spacing.

Discontinuity spacing (mm)  Discontinuity Spacing rating

<20 (lamination)
20-60

60-200
200-600

>600

0
5
15
25
35
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Table 4

CMFR horizontal stress rating.

Stress notch angle (°)  Angle rating

>30 5
20-30 3
10-20 1
<10 0
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