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Abstract

Cost-effectiveness analyses (CEAS) are often prepared to quantify the expected economic value
of potential vaccination strategies. Estimated outcomes and costs of vaccination strategies depend
on numerous data inputs or assumptions, including estimates of vaccine efficacy and disease
incidence in the absence of vaccination. Limitations in epidemiologic data can meaningfully affect
both CEA estimates and the interpretation of those results by groups involved in vaccination
policy decisions. Developers of CEAs should be transparent with regard to the ambiguity and
uncertainty associated with epidemiologic information that is incorporated into their models. We
describe selected data-related challenges to conducting CEAs for vaccination strategies, including
generalizability of estimates of vaccine effectiveness, duration and functional form of vaccine
protection that can change over time, indirect (herd) protection, and serotype replacement. We
illustrate how CEA estimates can be sensitive to variations in specific epidemiologic assumptions,
with examples from CEAs conducted for the United States that assessed vaccinations against
human papillomavirus and pneumococcal disease. These challenges are certainly not limited to
these two case studies and may be relevant to other vaccines.
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Introduction

Vaccines have resulted in dramatic decreases in the incidence of vaccine preventable
diseases and corresponding declines in morbidity and mortality worldwide. Each year in
the United States, vaccinations save thousands of lives and avert billions of dollars in health
care costs [1, 2]. Many vaccinations, particularly the common childhood vaccinations, have
been estimated in economic assessments to be cost-saving when compared to the previous
standard-of-care [3, 4]. Health technology assessors typically prepare modeling studies

to quantify the expected health-related impacts and economic values to inform advisory
committees considering new vaccination policies [5, 6].

Economic value is estimated in a cost-effectiveness analysis (CEA) by comparing estimated
changes in costs and health for two or more strategies. For comparisons where a strategy
(e.g., a vaccine product with a specified schedule of doses targeted to a specific population)
is associated with increases in health and total costs relative to a comparator strategy, the
incremental cost-effectiveness ratio (ICER) will be an estimated cost per health outcome
gained, e.g., cost per quality-adjusted life year (QALY) gained. Estimated outcomes and
costs of vaccination strategies depend on economic and epidemiologic assumptions, e.g.,
vaccine efficacy and disease incidence in the absence of vaccination, and limitations in
epidemiologic data and understanding can affect the estimates and their interpretation.

CEAs incorporate epidemiological models of disease transmission and host-pathogen
characteristics to yield estimates of health outcomes, or effectiveness, that are combined
with cost estimates to calculate economic value of potential vaccination strategies.
Epidemiological models and economic models are based on inputs and assumptions.
Limitations in data and evolving scientific knowledge create uncertainty, which can

be addressed through sensitivity and scenario analyses. Conclusions of CEAs should
acknowledge the dependence of findings on methodological choices and assumptions and
discuss challenges to generalizability.

In this paper we describe selected challenges to conducting CEASs for vaccination strategies,
with a focus on issues related to epidemiological inputs and assumptions. The overarching
purpose of this review is to call attention to the importance of appropriate interpretation

of the uncertainty of epidemiologic data, either from lack of data or true uncertainty of

the future impact, in the formation and interpretation of CEAs for vaccination strategies.
The reliability of cost-effectiveness results may be more dependent on data inputs than

on the methodological sophistication of the modeling techniques. The “quality” of a CEA
as assessed using standard checklists may provide little indication of the reliability of the
findings.

Researchers should be mindful of these issues as both consumers and producers of CEAs.
The following section provides an overview of previous discussions of these methodological
challenges. That section is followed by discussion of US case studies from two recent
Advisory Committee for Immunization Practices (ACIP) vaccination policy considerations
of vaccinations against human papillomavirus (HPV) and pneumococcal disease. These
methodological challenges are not limited to our two case studies and may be relevant to
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other vaccines. All values referenced have been inflated to 2020 US dollars using the overall
US Consumer Price Index [7].

Il. Epidemiologic challenges in vaccination cost-effectiveness analyses:

overview

Health economists and other researchers have developed checklists for assessing the quality
of reporting of economic evaluations. These checklists typically focus on technical aspects
of decision-analytic methods and the extent of documentation provided regarding data
sources, model inputs, and methodological choices [8]. The ACIP provides guidance

for economic evaluations to assure that they meet minimum technical standards and are
transparent and understandable [9], and separately assesses the strength and quality of
epidemiologic evidence using the Grading of Recommendations Assessment, Development
and Evaluation approach [10]. The accuracy of CEA study findings may also depend
crucially on the availability and quality of the underlying data, sources, and assumptions

for epidemiologic model parameters. Economic evaluation checklists do not address those
issues, although the International Society for Pharmacoeconomics and Outcomes Research
(ISPOR) Quality Assurance for Modeling Studies Task Force designed a questionnaire for
use in assessing the credibility of CEA models, including consideration of factors such as
the validation of data sources, assumptions, and model results [11]. However, a single CEA
may involve multiple model parameters and parameter values that are derived from more
than one study or based on expert opinion. It can be challenging to fully assess the rigor or
validity of how epidemiologic information is incorporated into a CEA model, especially key
features such as the model structure, parameter values and assumptions applied in the model,
and the data sources used to inform the model.

Efforts to model the cost-effectiveness of vaccine products can encounter a range of data-
related challenges of which researchers should be cognizant [5, 6]. Some challenges are
especially salient for diseases for which no vaccines currently exist. Those include limited
population-based data on the incidence of infection, clinical outcomes, and associated
healthcare use. Modelers should be aware of potential biases in sources of observational
data and avoid assumptions that might overstate disease burden [12].

We focus here on four issues that add complexity to the health economic analysis of
vaccinations where randomized control trial (RCT) data exist. First, trial data on vaccine
efficacy may not generalize to real-world health outcomes because of differences in behavior
or physiology between trial subjects and target populations or because trials may not yield
data on important clinical outcomes, including adverse effects. A second issue involves
generalizing to outcomes beyond the trial follow-up period; in particular, vaccine-conferred
immunity can wane over time. A third issue is the extent to which the proportion of strains,
serotypes, or types of a vaccine preventable infection that circulates in the environment

will remain constant or will be affected by serotype replacement, where non-vaccine type
disease may become more dominant in the environment following the introduction of a
vaccine. Fourth, the magnitude of disease prevented by a vaccine may depend on the extent
to which the vaccine modifies disease transmission in the community, i.e., indirect effects of
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vaccination. Indirect effects can either reduce disease burden, e.g., reduction of community
transmission, or potentially raise it, such as by shifting the age distribution of infections to
groups with greater risk of complications [13].

Efficacy vs. effectiveness and generalizability

In the development of a new vaccine product, one or more RCTSs are typically conducted

to assess vaccine efficacy. While RCTs can produce high quality estimates of efficacy
under controlled conditions, results do not necessarily translate into effectiveness in real-
world settings because of behavioral or physiological differences between trial subjects

and demographic groups being considered by policy makers [14]. RCT participants may
have higher levels of access and utilization of health care than the general population.

One common example of this comes from trials of multi-dose vaccines. RCT participants
generally have high levels of vaccine dose series completion, or adherence. For example,

in trials of the recombinant zoster vaccine (RZV), series completion rates were 96% [15]
and 94% [16]. In contrast, real-world completion rates for the two-dose RZV vaccine have
been reported to be 86% [17] and 80% [18]. Imperfect adherence to multidose vaccines

can introduce a number of complicating factors to a modeling effort, such as identifying

the appropriate level of vaccine effectiveness for individuals who do not complete a vaccine
series and the most likely level of series completion in the real-world setting. These kinds
of differences are not trivial for economic assessments of multi-dose vaccines, particularly
when alternative vaccines are available or when those alternative vaccines require a different
number of doses.

If a vaccine is less effective in some population groups than in the RCT population, a CEA
that does not account for patient heterogeneity and differential effectiveness may generate
overly favorable cost-effectiveness estimates of the vaccine compared to no vaccine.

In particular, vaccine efficacy may be reduced for immunocompromised and/or older
individuals. Further, efficacy may vary among different groups of immunocompromised
individuals. For example, people who have received organ transplants may generate a lower
immune response to the vaccine than those with well-controlled HIV [19, 20]. The relative
sizes of the populations which have a muted vaccine response can influence the overall
ICER.

An additional limitation of RCT estimates used as CEA inputs is that RCTs primarily assess
short-term outcomes, which can limit generalizability. That is particularly the case when
biomarkers are used as proxies or predictors of the health outcomes of interest. For example,
HPV RCTs assessed histological changes such as cervical intraepithelial neoplasia, which
can progress to cervical cancer [21], to predict health gains. Until long-term studies are
available, modeling is required to estimate the magnitude of reduction in the incidence of
cervical cancer that can be attributed to HPV vaccination.

Uncertainty in the vaccine efficacy estimates from RCTs in combination with uncertainty

in disease burden can lead to very wide ranges of estimates of outcomes, whether numbers
of avoided cases of disease or antibody levels, and of cost-effectiveness. If differential
vaccine effectiveness is a concern, cost-effectiveness modelers would ideally report scenario
analyses that utilize alternative assumptions of vaccine efficacy for population groups that
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may not have been included in the RCT to calculate an ICER reflective of the overall
population.

Duration of protection

At the time a new vaccine is introduced there is uncertainty as to what the long-term effects
are going to be both for persons vaccinated as well as the total population. The lack of
long-term follow-up data from vaccine RCTSs can be a problem for economic vaccine models
which project vaccine effectiveness over an individual’s lifetime. Some clinical trials have a
long-term case ascertainment component beyond the primary trial end, but long-term follow-
up is uncommon. A review of 46 publications reporting on 13 RCTs found most clinical
trials had a maximum follow-up period of 4 years, with two reporting follow-up of 6-8
years [22]. Even if long-term outcomes are tracked the findings are not available to inform
CEAs until long after a vaccine is approved. Because of substantial uncertainty regarding
the duration of vaccine protection or waning immunity beyond a vaccine’s clinical trial, a
range of plausible assumptions could be used. CEA modelers may extrapolate effectiveness
over longer periods of time based on available clinical trial data, data from similar vaccines,
expert opinion, or a combination.

Varying assumptions regarding the duration and degree of protection (vaccination
effectiveness) have been shown to influence CEA results. For example, in a study of RZV
among 60- to 69-year-old U.S. adults, a sensitivity analysis that varied initial vaccine
efficacy from 0.95 to 1.0 and waning duration (modeled as the number of years of gradually
decreasing protection until no protection remains) from 10 to 30 years found the estimated
cost per QALY gained to range from $8,500 to $89,100 [23]. In a CEA assessing the use

of PCV13, the base case yielded a value of $593,100/QALY, but a scenario that assumed a
slower reduction in the degree of protection yielded an ICER of $235,700/QALY [24].

Serotype or genotype replacement

Many vaccines, such as the influenza, HPV, and pneumococcal conjugate vaccines, protect
individuals from specific variants or types which are a subset of all the disease-causing
agents that are known to cause a particular disease. Changes to the mixture of disease types
circulating in the environment following the implementation of a vaccination program may
influence the economic value of vaccinations but, like decreases over time in the degree of
protection, is generally not known with much certainty for new vaccines. Depending on the
disease under consideration, this phenomenon is generically referred to as replacement but
is commonly referred to as serotype replacement in the context of pneumococcal disease
[25, 26], or genotype replacement, which has been used in the context of HPV disease [27].
Serotype or genotype replacement is the process by which the absolute occurrence of non-
vaccine-type disease in the population change over time following vaccine implementation.
If there is a high rate of hon-vaccine type replacement, non-vaccine type disease could
become the most common form of a given disease, which would render a vaccine less
effective overall and hence less cost-effective. New information on serotype replacement and
serotype-specific vaccine efficacy can lead to substantially different ICER estimates. The
issue of replacement is relevant primarily to the pneumococcal vaccine and is discussed in
the case studies section. Substantial amounts of replacement disease were observed after
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introduction of PCV7 in 2000 [28], although evidence of replacement disease after the
introduction of PCV13 has been mixed [29]. The HPV vaccine currently used in the United
States, Gardasil 9, protects against 9 HPV types that cause most of the disease due to HPV
[30]. The non-vaccine types of HPV and pneumococcal infection could plausibly lead to
types replacement and attenuation of the benefits of vaccination over time, but so far there is
no evidence of notable HPV type replacement [25-27].

Indirect effects

Community protection is a potential indirect benefit of vaccination against infectious
disease. For most vaccine preventable diseases, unvaccinated individuals experience a
reduced risk of infection due to vaccinated individuals being less likely to be infectious. For
some diseases, the indirect effect from a vaccine can provide almost complete protection
against disease transmission in the community, referred to as “herd immunity.” The
threshold proportion of the population that needs to be vaccinated to reach herd immunity
may be difficult to assess for a given disease and vaccine [31], but any level of vaccination
in the community confers some indirect protection even if herd immunity in the classic sense
is not attained. Varying assumptions on indirect effects can have important implications for
the results of an economic assessment. For example, Ultsch et al. [32] cited an analysis of
seasonal influenza vaccination in Spain that used both a static model without indirect effects
and a dynamic model approach that incorporated indirect effects and found that the former
greatly underestimated the cost savings from vaccination [33]. A systematic review of CEAs
of immunizations in low- and middle-income countries found that among 16 studies that
calculated ICERs with and without indirect effects using static models, all ICERs were
lower (more favorable) when indirect effects were modeled [34].

The treatment of indirect effects differs between static and dynamic models of disease
transmission. Dynamic models of disease transmission incorporate indirect effects by
modeling how the infection risk to a susceptible individual varies with the levels of
immunity and exposure among their contacts [35]. In contrast, static models typically
assume a constant risk of acquiring infection. However, analyses that use static models

can incorporate adjustments to approximate indirect effects, such as by applying a higher
estimate of vaccine effectiveness or by assuming that reduced incidence can occur as a
function of vaccination coverage rates [34, 36]. For example, a recent CEA of pneumococcal
vaccines that used static models assumed a lower incidence of disease in older adults

as a result of vaccinations in children [24, 37]. Static models that do not in some way
account for indirect effects may substantially underestimate the number of cases of infection
prevented by a vaccine relative to models with dynamic disease transmission. Dynamic
models therefore generally provide a higher (and more accurate) estimate of the number

of infections averted by vaccination, typically resulting in more favorable cost-effectiveness
estimates of vaccination [38-40]. Experts typically recommend that CEAs of immunization
programs incorporate dynamic models whenever feasible [5]. While dynamic models are not
always feasible, especially when the data supporting the dynamic transmission assumptions
are limited, the impact of potential indirect effects on economic models can be explored
using scenario analyses that modify vaccine effectiveness and incidence assumptions.
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Epidemiologic challenges in vaccine cost-effectiveness analyses: case

Recent HPV and pneumococcal vaccine developments

Three vaccines that protect against HPV infection and disease have been approved in

the United States, but since 2017, only the 9-valent HPV is available. A range of
cost-effectiveness data have been presented to ACIP over time to inform HPV vaccine
recommendations, including vaccinating adolescent females and young adult women vs.

no vaccination, adding adolescent and young adult males to a female-only vaccination
program, 9-valent HPV vaccination vs. quadrivalent vaccination, and adding mid-adult HPV
vaccination (ages 27 to 45 years) to an existing program for adolescents and young adults
[41-44].

The first pneumococcal conjugate vaccine, PCV7, which protected against seven types of
pneumococcal virus, was recommended for children in 2000, and in 2010, PCV13, which
protects against six additional types, was recommended by ACIP in place of PCV7. In 2014,
the recommended age range for PCV13 was expanded to include adults 65 years of age and
older in conjunction with the 23-valent polysaccharide vaccine (PPSV23), recommended
since 1984 [43, 45]. The recommendation for routine use of PCV13 for all 65+ year-olds
was replaced in 2019 with a recommendation of shared clinical decision-making after
evaluating evidence that PCV13 use in children had substantially reduced the vaccine-type
disease burden among 65+ year-old adults through reduced carriage and transmission from
vaccinated children (i.e., indirect effects from the childhood vaccination programs) [46].

Challenges in assessing HPV vaccines

Assumptions regarding duration of vaccine protection can have a notable effect on estimates
of the health impact and cost-effectiveness of HPV vaccination. A 2010 study that compared
several approaches to modeling a 12-year-old female-only HPV vaccination program
identified the potential waning of vaccine protection as an important assumption [47].
Available empirical data suggest that the duration of protection is at least 10 years for the
bivalent and quadrivalent HPV vaccines, with no evidence of decreasing effectiveness within
that period [48-51]. Evidence for the duration of protection for the 9-valent vaccine is
qualitatively similar [48, 52, 53]. Extrapolating or projecting vaccine protection beyond

the horizon of available data remains an important challenge for modelers, although
assumptions regarding duration of protection are more evidence-based now than in the
earlier years of HPV vaccine modeling.

If HPV vaccine protection is not lifelong, the shape of the function that characterizes vaccine
protection over time can have a notable effect on effectiveness estimates [47]. For example,
if the average duration of protection is assumed to be 20 years, vastly different results

can be obtained in a scenario in which all vaccine recipients are protected for exactly

20 years versus a scenario in which duration of protection is uniformly distributed from

1 to 39 years across vaccine recipients. An alternative assumption is that the degree of
protection gradually wanes over time. Regardless of the functional forms used to represent
waning of vaccine protection, assumptions regarding the duration of protection are often
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based on expert opinion in addition to available empirical data, especially for new vaccines.
Sensitivity analyses can illustrate the impact that these duration assumptions have on the
estimated cost-effectiveness of vaccination.

As with many modeling studies of infectious disease, modeling assumptions that affect
HPV transmission dynamics have important implications for the economic assessment of
HPV vaccines. The issue of transmission dynamics is particularly notable for HPV vaccines,
given that female vaccination was licensed several years before male vaccination. When
HPV vaccines were licensed for use in males, assessments of the cost-effectiveness of male
vaccination needed to account for transmission dynamics, including the indirect benefits

of the status-quo female-only vaccination program in preventing adverse HPV-attributable
health outcomes in males. In an early study of the use of the bivalent HPV vaccine

among adolescents, vaccination of 12-year-old females was predicted to reduce cumulative
HPV-16/18 prevalence among unvaccinated males by 86% at 30 years post-intervention
[47]. More recently, a systematic review and meta-analysis of HPV models suggested that
measurable indirect protection is possible even with fairly low vaccination coverage rates
of 20% among females, which may reduce the incremental benefit of vaccinating males
[54]. This review also found that the HPV models assessed were generally consistent in
their predictions of the direct and indirect effects of females-only vaccination, even though
models differed in structure, settings, and data used for calibration. Recently, economic
models used to investigate the use of HPV vaccination among the mid-adult (age 27 to

45 years) US population models found that historical and ongoing adolescent vaccination
programs are expected to confer both direct protection for those in the mid-adult population
who were vaccinated at younger ages and some indirect protection on the unvaccinated
mid-adult population by reducing the prevalence of HPV in their sex partners [55-57].

In addition to duration of protection assumptions and transmission dynamics, HPV modelers
face other challenges, such as limited data regarding sexual behavior over the life course,
duration of naturally acquired immunity, rates of progression from HPV infection to cancer,
and the uptake and frequency of screening for cervical cancer. For example, among women
with cervical cancer, the median age at which women acquired their “causal” HPV infection
cannot be determined with available epidemiologic data, and mathematical models can
differ substantially in their estimates of this median age. Often the only way to address

such challenges is to ensure that the sensitivity analyses adequately represent the degree of
uncertainty in the model inputs. For example, HPV vaccination of adults ages 27 to 45 years
had ICERs ranging from $400,000 to $1,000,000 per QALY in one study[55], with an even
wider range suggested in another study, depending on factors such as those related to the
median age of causal HPV infection [58].

Challenges in assessing pneumococcal vaccines

Certain challenges in pneumococcal disease modeling overlap with challenges encountered
when modeling HPV disease. Some challenges, such as selecting the shape of the function
that characterizes vaccine protection over time, may be encountered when assessing almost
any new vaccine product. As with HPV modeling, the assumed duration of protection

from vaccination can play an important role in economic assessments of pneumococcal
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vaccinations. In a 2016 study, Belgian researchers examined multiple scenarios for adults
ages >50 years: constant vaccine efficacy for at least 10-11 years and constant vaccine
efficacy for 5 years followed by an exponential decay [59]. They found that PCV
vaccination in this population was not economically attractive unless vaccine efficacy was
either constant or had a relatively slow rate of decay. The researchers also noted that
previous analyses that projected that PCVV13 would be cost-effective in adults assumed high
rates of vaccine effectiveness that were not empirically supported.

Another important issue for PCV is the degree of serotype replacement, which can be an
influential assumption for estimates of cost-effectiveness. Following introduction of PCV7,
the significant reduction in invasive pneumococcal disease caused by vaccine serotypes

in immunized children was largely offset by a larger than expected increase in disease
caused by non-vaccine pneumococcal serotypes [60]. Subsequently, the PCV13 vaccine
added six more serotypes. Van Hoek et al examined the cost effectiveness of replacing PCV7
with PCV13 versus discontinuing PCV7 vaccination; in a conservative scenario assuming
complete serotype replacement and not including non-invasive disease endpoints, they found
PCV13 borderline cost effective (with 53% of the simulations below the £30,000 per

QALY threshold commonly applied in the United Kingdom) [61]. If replacement serotypes
were assumed to be less invasive or virulent, cost-effectiveness estimates would be more
favorable.

In 2016, Stoecker et al projected that indirect protection for older adults resulting from
pediatric PCV13 use would over time greatly reduce the incidence of pneumococcal disease,
which in turn would make the cost-effectiveness of routine PCV13 vaccination in adults at
age 65 less favorable [37]. In 2019, the ACIP conducted a reassessment of the vaccination
recommendation for the age 65 group, and a modified CEA by Stoecker et al. reported

a less favorable cost-effectiveness ratio attributable in part to the observed magnitude of
indirect protection from childhood vaccination being twice as large as expected, resulting

in half as much benefit from adult vaccination, and in part new data showing no vaccine
effectiveness for the newly dominant serotype 3 [24]. The updates in the 2019 model present
an example of how modeling of economic value can be updated to reflect evolving scientific
understanding and epidemiologic information. The historical modeling of pneumococcal
vaccines demonstrates the importance of not only modeling various scenarios to capture
uncertainty in duration of protection, indirect effects, and serotype replacement, but the
necessity of updating the CEA model as new information becomes available.

IV. Conclusion

Epidemiological models and economic models are based on inputs and assumptions which
are intended to provide the best practical representation of the health effects and costs

of vaccination in the real world. These inputs and assumptions are based on scientific
knowledge that will be incomplete, evolving over time, or both. When research findings
that pertain to a given model input are mixed, choosing the most appropriate assumption
is a challenge for modelers. Developers of CEAs should be transparent regarding the
sensitivity of their estimates to variability in epidemiologic data. We have provided
illustrative examples of how ICER estimates for vaccines can be sensitive to variations
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in specific epidemiologic assumptions. In the absence of robust data, CEA modelers can
make assumptions and use sensitivity analyses to understand how variability in specific
model assumptions might alter estimates of economic value and conclusions, with particular
focus on those assumptions that appear most influential, e.g., indirect effects. For example,
analysts using static models could make simple adjustments to their model to approximate
transmission dynamics (such as assuming lower incidence of disease in unvaccinated
persons in the vaccination scenario than in the no vaccination scenario) in order to assess
the degree to which the inclusion of indirect effects might affect their results. Contrary to

a recent article in this journal [34], we do not consider it feasible or desirable for CEAs
using dynamic models to attempt to separately estimate direct and indirect effects. Changes
in the distribution of PCV serotypes have been found to be an important source of variation
in CEA estimates in some cases. That illustrates the importance of updating CEAs of
vaccines as warranted by the appearance of new epidemiologic data and improved scientific
understanding.

It can be challenging to interpret the epidemiologic literature and consider which
assumptions to apply in an economic model. In particular, in cases where vaccines are
newly developed or being considered for new populations, the epidemiologic literature
may be without a clear consensus on several potentially important aspects of the vaccine-
disease system being modeled. We have discussed duration of protection, generalizability
of vaccine effectiveness estimates, indirect effects (i.e., transmission dynamics), and
serotype replacement as four examples of potentially influential epidemiologic parameters
or modeling choices, each of which is associated with uncertainty. We focused on

these because of evidence of their influence on CEA results in some settings. Other
epidemiological assumptions may also warrant consideration.
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Key points for Decision Makers:

. We describe selected data-related challenges to conducting cost effectiveness
analyses (CEA) of vaccination strategies.

. We illustrate how CEA estimates can be sensitive to variations in specific
epidemiologic assumptions, with examples from CEAs conducted for the
United States that assessed vaccinations against human papillomavirus and
pneumococcal disease.

. Developers of CEAs are encouraged to acknowledge epidemiologic
variability in model inputs and present a range of estimates along with caution
in interpreting results regarding cost-effectiveness.
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