Supplemental Material for “Using social contact data to
improve the overall effect estimate of a cluster-randomized
influenza vaccination program in Senegal”

Gail E. Potter

National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the
Emmes Company, Rockville Maryland, USA

Nicole Bohme Carnegie
Montana State University, Bozeman Montana, USA
Jonathan D. Sugimoto

Epidemiologic Research and Information Center, Veterans Affairs Puget Sound Health
Care System and Fred Hutchinson Cancer Research Center, Seattle Washington, USA

Aldiouma Diallo

Institut de Recherche pour le Développement, Niakhar Senegal
John C. Victor

PATH, Seattle Washington, USA

Kathleen M. Neuazil

University of Maryland School of Medicine, Baltimore Maryland, USA
M. Elizabeth Halloran

University of Washington Department of Biostatistics and Fred Hutchinson Cancer Re-
search Center, Seattle Washington, USA



[T 17T T 1= AL -ON 19ma1ni83u)

:19M3IAIBYUL BY]) JO ainjeubig

ispeyea |~ |T | :eBelnA "oN [JoN ¢sKep 2 3se| ay Buunp
:Apoadg <-- [:soA ‘anoqe payioads jou ‘uonyedo| Jayjoue JIsiA 3oalgns ay3 pia
:Ayoadg :Ayoadg :Aj1oadg
— | | — | :ooe|d — 1|~ | | :ooe|d 11 1| :aoe|d
i T P e e e L L ][ o ) ][] ]
auoz T 1 auoz T 1 auoz
L O] O] O | Aprus ows OO O O] Apms e OO O] | Apms sw
:Ajoadg| jJo apiIsino :Aj1oadg| jo apisinQ 1 Ajoadg| jo mv_wu:OQ
aoeld aoed EEL
—1—1| —1— onand —1—1| —1—1 anqnd —1—1| —1—1 anand
O L o | N e T oo oo I Ploy T oo o|o 1 PIaY
suods suodg suodg
T T T ool o0 eows T T T ool o 0] eouss T T T ooiolol ews
_______H__H_D_H_ pioy _______H__H__H__H_ plaid _______H__H_D_H_ plaiy
yainyd yaunyo 0 T yaunyo
L L _H_ _H_ _H_ _H_ | @nbsopy I L D _H_ _H_ _H_ | @anbsop _H_ _H_ _H_ _H_ | @anbsop
L oo olo 1onem L OOl O Jon1em | L Ololiolo Jonen
___________H__H__H__H_ G ___________H__H__H__H_ c ___________H__H__H__H_ G
___________H__H__H__H_ v ___________H__H__H__H_ v ___________H__H__H__H_ v
___________H__H__H__H_ e ___________H__H__H__H_ e ___________H__H__H__H_ e
___________H__H__H__H_ z ___________H__H_D_H_ z ___________H__H__H__H_ z
___________H__H__U_H_ L ___________H__H__H__H_ L ___________H__H__H__H_ L
punodwo? Jayjouy punodwo) Jayjouy punodwo) Jayjouy
yum | Wd[Wv] oN[ sex qum | Wd[WY| oN[ seA qum  |Wd]Wv[ oN[seA
axmn_m e ayods ¢ ayods w:o_mmuo_
suoneso| f !
U::MVQEOO Q@M:_> MQM_MMM SUSIA wc.._moo_w_muww_ uojjed0] _u::ﬂuzr:oo wm.M_v_._> MMM_M_MM SUSIA | asayy jo | Uoled0T] ﬂ::“ﬂh._oo QMM_’__; M“M.M_“w. SUSIA | asayy jo | Uoned0]
N N .M_>_-_E_ aow..—a.:m Aue ysiA -piaipu; |399fans| Aue yisia -piaipu; |3093fans| Aue yisia
100N |oUlPIP| 309fans jooN |2 PIp | 103fans 100N |2UIPIP| 300[qns
USYMm | @y pia usym | 2uipia U3ym | 8y pia
I 1 I:Wwd | | |:WNv|punodwosisysiyuiymaodsl| | |:Nd | | |:NV| punodwoosisysiyurymayodsj| | |:Nd | | |:WV | punodwod tay/siy ur yum ayods
3oalgns ayj} sjenpiaipul jo ‘oN| 3oafqns ay} sienpiaipul Jo "oN| 303fqns ayj} s|enpiaipul o oNj|
BpJa)Sai ai0jaq Aeq BpPIS)SOA epoL
AA / WNWN / aa :wojdwAs ezuanjui 3siy .
IR VAN A 3y} jo ajep JPsuo [JWd [] WV 2wl malaiaul I I I~ I [~ I~ || :4equnN ssq sioefang
siejebauas sjuejua s9|
LA ql wiog pouad snonosjul J1sy) m:_‘_sn\n.,wmwmu JO uoneoso| ay | zoys JaIUUOSIES Jusjeat [eddubnue
_(C._OH_ ”_.ONH_.COO ”_._CDEEOO UIDJBA UN,P 9}19B31Y)9,| 9P uonenjeA

wioj AdAIns joejU0)H

}



Table 1. Fraction and percent of contacts reported by respondents while located in treated
villages by village of residence and time of day.

Village Treatment AM Fraction AM Percent PM Fraction PM Percent
Darou Vaccine 149/149 100 123/123 100
Kalome Ndofane  Vaccine 1221/1244 98 959/959 100
Poudaye Vaccine 53/65 82 47/47 100
Mokane Ngouye Vaccine 1478/1513 98 1307/1312 100
Ngayokheme Vaccine 6414/6489 99 5638/5682 99
Ndokh Vaccine 135/137 99 101/103 98
Nghonine Vaccine 303/306 99 222/231 96
Ngangarlame Vaccine 859/953 90 533/586 91
Diohine Vaccine 1195/1377 87 1104/1230 90
Logdir Vaccine 158/185 85 53/80 66
Ngalagne Kop Control 0/1052 0 0/873 0
Bary Ndondol Control 0/545 0 0/512 0
Mboyene Control 1/634 0 1/522 0
Toucar Control 6/2870 0 0/2006 0
Godel Control 0/456 0 0/449 0
Khassous Control 0/151 0 0/96 0
Kothio Control 3/643 0 0/440 0
Meme Control 0/78 0 0/97 0
Poultok Diohine Control 0/1717 0 0/1240 0
Gadiak Control 10/466 2 10/310 3

2. Cross-village exposure summaries

This section displays analyses that informed our calculation of cross-village exposure
rates. The cross-village exposure rate for a village is defined to be the percentage of
contacts to people in clusters of the opposite treatment assignment. The tables in this
section summarize these rates based on contacts made while the respondent was visiting
other villages and do not incorporate contacts made to visitors from other villages in
the respondent’s own home. The tables summarize rates of contacts to treated villages
by village of residence; these represent the cross-village exposure rate for control villages
and one minus the cross-village exposure rate for treated villages.

Table 1 compares fractions and percentages of contacts to treated villages between
morning and afternoon/evening time intervals. Cross-cluster exposure rates are sim-
ilar for the two time intervals, with the main differences being Poudaye and Logdir,
whose higher variability than others is likely due to the small number of overall contacts
reported in those villages.

Table 2 compares fractions and percentages of contacts reported by respondents dur-
ing visits to treated villages during the morning by village number and symptom sta-
tus. Since numbers of asymptomatic reports are low and cross-village exposure is low,
cross-village exposure is lower for asymptomatic than symptomatic participants in most
villages. Table 3 shows the analogous percentages calculated based on the imputed data
and shows higher levels of cross-cluster exposure for symptomatic than asymptomatic
people.



Table 2. Fraction and percent of contacts reported by respondents while located in treated villages by
village of residence and symptom status.

Treatment Asymptomatic Symptomatic
Village Assignment  Fraction  Percent  Fraction  Percent
Darou Vaccine 61/61 100 88/88 100
Ndokh Vaccine 28/30 93 107/107 100
Ngayokheme Vaccine 1468/1490 99 4946,/4999 99
Nghonine Vaccine 32/32 100 271/274 99
Kalome Ndofane Vaccine 352/359 98 869/885 98
Mokane Ngouye Vaccine 178/183 97 1300/1330 98
Ngangarlame Vaccine 171/174 98 688/779 88
Diohine Vaccine 555/610 91 640/767 83
Poudaye Vaccine 6/6 100 47/59 80
Logdir Vaccine 58/58 100 100/127 79
Ngalagne Kop Control 0/258 0 0/794 0
Bary Ndondol Control 0/4 0 0/541 0
Mboyene Control 0/86 0 1/548 0
Toucar Control 0/839 0 6/2031 0
Godel Control 0/316 0 0/140 0
Khassous Control 0/19 0 0/132 0
Meme Control 0/30 0 0/48 0
Poultok Diohine Control 0/559 0 0/1158 0
Kothiok Control 0/157 0 3/486 1
Gadiak Control 0/137 0 10/329 3

Table 3. Percent of contacts reported by respondents while located in treated villages by
village of residence and symptom status based on multiply imputed data.

Treatment

Village Assignment All  Asymptomatic Symptomatic
Kalome Ndofane Vaccine 100 100 100
Ngangarlame Vaccine 99 100 99
Diohine Vaccine 99 100 98
Mokane Ngouye Vaccine 99 100 99
Ngayokheme Vaccine 99 99 99
Ndokh Vaccine 99 99 99
Nghonine Vaccine 98 99 98
Logdir Vaccine 95 94 96
Darou Vaccine 96 90 100
Poudaye Vaccine 93 84 95
Ngalagne Kop Control 0 0 0
Bary Ndondol Control 0 0 0
Mboyene Control 0 0 0
Poultok Diohine Control 0 1 0
Toucar Control 1 1 0
Gadiak Control 2 3 2
Godel Control 2 1 3
Khassous Control 3 0 3
Kothiok Control 3 2 4
Meme Control 14 0 20




3. Calculation of time-to-event

We restrict our analysis to the twenty villages enrolled in the cluster-randomized trial as
these villages received both active and passive surveillance while the other ten received
only passive surveillance. The surveillance period for Year 1 was July 15, 2009 to May
31, 2010. These dates determined the start and end of follow-up participants with the
following exceptions:

e Start of follow-up was the date participants moved to the study area if the move
took place after surveillance began.

e If participants moved out of the study area or to a cluster of the opposite treatment
assignment during surveillance, their end of follow-up was the move date.

Time-to-infection was calculated by subtracting the start of follow-up from the sample
collection date for infected people; censoring times were calculated based on start and
end of follow-up for uninfected people.

Thirteen participants were excluded from analysis because of inconsistencies in their
recorded residence data. In addition, those who moved to the study area after the
end of Year 1, and those who were infected before moving to the study area or before
follow-up began were excluded. Because the primary analysis did not censor or exclude
participants based on their residence data, our counts of participants and cases differ
slightly from that paper (Diallo et al., 2019).

Time to event for Year 2 (for which surveillance covered July 15, 2010 to May 31,
2011) was calculated analogously. However, during Year 2 of the study, household-based
surveillance did not occur from January 1, 2011 to February 18, 2011 due to a strike
of employees performing this surveillance, so only infections reported in health posts
were recorded during that time period. This could cause bias if the proportions of
infections observed at home compared to in health posts different between treatment
arms. During the non-strike period of Year 2, proportions of lab-confirmed symptomatic
influenza infections reported during household visits were 83.07% in the control group
and 87.50% in the vaccine group, respectively (Table 4). Since infections for control arm
participants were reported more frequently in health posts than those for vaccine arm
participants, the differential reporting could create bias in the efficacy estimate, making
the vaccine appear more effective than it actually is. Inverse probability weighting was
considered to correct this bias (Seaman and White, 2013). Such an approach would entail
up-weighting the observed infections during the strike by ﬁ = 5.91 in the control
arm and m = 8.00 in the vaccine arm, and down-weighting the people classified as
uninfected throughout the study period (since some of these would have had infections
that would have been detected during household surveillance during the strike). This
approach would assume that health post visiting behavior was the same during the
strike and outside of the strike. However, the data indicate that that assumption does
not hold. Outside of the strike, 66% of infections reported in health posts were in the
control group, but during the strike, 78% were. The larger proportion of up-weighted
control group infections resulted in a weighted overall effect estimate that was higher,
rather than lower, than the unweighted one. As the assumption required by inverse



Table 4. Reporting rates of lab-confirmed symptomatic infection by location within each treat-
ment arm during Year 2, excluding the strike period

Control  Vaccine
Percent reported in compounds 83.07 87.50
Percent reported in health posts 16.93 12.50

probability weighting did not hold, we instead censored the Year 2 data at the last day
before the strike. A secondary analysis includes all of the Year 2 data.

Ties were handled by adding a random draw from a uniform distribution to tied event
times (but not censoring times) as per Aalen (1989). When tied event times occurred
on the last day of follow-up (along with approximately 30,000 censoring times), this
approach led to non-estimable standard errors. Adding random noise to event times but
not censoring times resulted in two events with times later than all of the censored times,
which created a noninvertible covariance matrix. This is also unrealistic, since censored
times generally mean that an entire day passed without an event, but events occur before
the day is over. This computational problem was fixed by adding 1 to all censored times
on the last day of follow-up, which led to very stable estimates, varying only in the 6th
decimal place with different draws from the uniform. We also explored the alternate
approach of adding random noise to all event times and to all censored times on the
last day of follow-up. That approach produced similar effect estimates to those in this
paper, but the estimates were less stable, varying in the fourth and sometimes third
decimal place. The approach that we took in this paper gives the same estimates that
are produced when we censor the two problematic cases on the day before they became
infected.

4. Correspondence to compartmental model for infectious disease transmis-
sion

The additive hazards model applied in this paper has a natural correspondence to an
SIR (Susceptible-Infected-Removed) compartmental model for disease transmission. To
see this, recall that the contamination-adjusted estimator for an individual in cluster j
is obtained from the following additive hazards model:

Ai(t[M) = Bo(t) + Bar(t)my,

where m; is the total percentage of contacts of susceptibles in cluster j that are with
treated clusters.
Next, we define the following notation:

a) Yj(t) = the number of infected people in cluster k at time ¢

=3

k = the overall average contact rate

(c
d

(e

(a)
(b)
) nr = the per-contact transmission probability of infectives in cluster k
(d) mj, = the percentage of contacts from people in cluster j with those in cluster k
)

o, = the rate of new infections among susceptibles in cluster j from infectives in
cluster k



(f) Nj = the population size of cluster k. For simplicity, we assume a fixed population
size in each cluster.

The SIR compartmental model assumes that the rate of transmission from infectives
in cluster k to susceptibles in cluster j is the product of the overall contact rate, the
percentage of contacts from cluster j that are to people in cluster k, and the per-contact
transmission probability: a;, = kmjing. The hazard function of a susceptible in cluster
j is found by summing these cluster-specific transmission rates, weighted by their cluster-
specific proportions of infectives, across all clusters:

7 = 3 a0
k=1

(1)

To simplify notation, we define v;(t) = kn; Y;ét)

J

LOUNES o T @)

2
N
k k=1

, SO

Aj(t) = Z Qjk
k=1

The estimand of interest, which we will denote (), is the population-averaged dif-
ference in hazard of infection associated with a change from 0% to 100% exposure to
treatment. That is, 3(t) = v7(t) — v°(t), where 77 (t) is the average of v(t) in treated
clusters and 7C(t) is the average of v(t) in control clusters. While 3z (t) is a consistent
estimator for (t) in the absence of contamination, Carnegie, Rui, and Wang proved
that Ba/(t) is a consistent estimator for () in the presence of measured contamina-
tion. (Carnegie et al., 2016)

The expected instantaneous rate of change of the number of infected individuals in
cluster ¢ at time ¢ is found by summing the individual hazards of all susceptibles in
cluster i. Letting S;(¢) denote the number of susceptibles in cluster i at time ¢ and
substituting from (2) yields:

dY;(t Yt Y8t
C;t() Si<t)zaij ]() :Zaij ](])ij()’
Jj=1 J=1
which corresponds to an SIR model with no birth and or death. A similar expression
for the rate of change of susceptibles is analogously derived, and generalizations such
as birth, death, and the addition of an exposed state for an SEIR model are addressed
in Carnegie et al. (2016).



5. Rationale for adjustment in estimated contamination estimates based on re-
ports from visitors to the respondent’s compound

We define the following notation as described in the main text:
e n; = number of people living in cluster j
e D; = number of contacts reported by person ¢
e T; = number of contacts person 7 made in a location in a treated cluster.

e p; = the proportion of contacts from cluster j to treated clusters.

Vr ; = the total number of contacts reported by people in any treated cluster during
their visits to compounds in cluster j.

We initially estimated p; with
i = >l T
] — -
Z?él D;

The numerator does not include contacts occurring within the respondent’s own com-
pound to visitors from other clusters, since these occurred within the respondent’s as-
signed cluster. We can use estimates reported by visitors from clusters of the opposite
assignment, rather than by respondents in cluster j, to obtain this information. When
j is a control cluster, our estimator is appropriately updated by adding the percent of
contacts from treated clusters to compounds in cluster j to the contamination estimate:

= zim Lt Vry ST Vi
XD XL D YD

To understand this, we will walk the reader through a toy example of a network depicted
in Figure 1, a diagram similar to that in Potter et al. (2019).

Here, A is a control village and B is a treated village, and the red arrow indicates that
Oumar contacted Amadou while visiting Amadou’s home in village A. For simplicity,
assume all network members are surveyed. The true cross-cluster exposure value for A
is 1/7 (noting that each within-village contact is reported twice); it is 1/3 for B. Also
for simplicity, our example omits contacts occurring in non-home locations (e.g. market,
mosque, etc.), as the proposed adjustment to our estimator does not change how these
contribute to the estimates.

The depicted network is not completely observed since respondents did not report
the identity of their contacts. We will define adjacency matrices to illustrate how the
completely observed network relates to the recorded data. Define S to be an adjacency
matrix indicating contacts to members of one’s own village, so S;; = 1 if 7 and j made
contact and belong to the same village. S is symmetric, since if ¢ contacted j, then j
contacted 7 as well. Let V denote contacts reported while a member of one cluster was
visiting a member of a cluster in the opposite treatment arm in the latter’s compound.
V' is asymmetric to distinguish the host from the visitor and to align with the way these
contacts were reported, and V3¢ = 1 since person 6 visited person 3 in the home of
person 3. The recorded counts of contacts occurring in the respondent’s own compound

+



Fig. 1. Toy example of a social network with corresponding adjacency matrices.
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are the row sums of H = S + V. The recorded counts of contacts while the respondent
was visiting compounds in villages of the opposite treatment assignment are the column
sums of V. Our preliminary approach to estimating interference (without the proposed
adjustment) would calculate as follows:

e For village A, the denominator (total number of contacts) is the sum of the row
sums of rows 1, 2, 3 of H (total number of contacts reported in the respondent’s
home) plus the column sums of columns 1, 2, and 3 of V' (total number of contacts
while the respondent visited a home in a cluster of the opposite assignment), so
the denominator is 7. The numerator is the sum of column sums of columns 1, 2,
3 of V, so the numerator is zero. Our cross-cluster exposure estimate is 0/7.

e An analogous approach for village B yields a cross-cluster exposure estimate of 1/3.

Our cross-cluster exposure estimate for A is incorrect since it does not account for the
contamination while Oumar was visiting Amadou since it occurred in Amadou’s home.

Our proposed adjustment is to subtract from the numerator of A contacts reported
by members of B and occurring in compounds within cluster A. These comprise the
upper right quadrant of matrix V, shown in black, whose sum is 1. Thus our adjusted
estimate for cross-cluster contamination for cluster A is 1/7, the correct value. A similar
adjustment for B involves the lower left quadrant of V; whose sum is zero, so the estimate
for B (which was already accurate) remains the same.

We have demonstrated the reasoning for our update to the estimator assuming that
all network members were surveyed. When network members are randomly sampled, the
rows of S and columns of V' are sampled randomly. We performed two simulation stud-
ies indicating that our proposed estimator is unbiased under random sampling. First,
we randomly sampled four people (two from A and two from B) from the toy example
and calculated our estimator of cross-cluster contamination for village A for one million
samples. The true value is 1/7 = 0.14, and the mean of the estimators was 0.14 and was
within 0.002 of the true value. Next, we created a new, larger example, by simulating
two villages, each of size 100, with 0.2 density of within-village contacts and 0.1 density
of between-village contacts. The estimand of this example was calculated on the com-
plete network (as we did for the toy example) to be 0.34. We then repeatedly sampled
20 people (10 from each village). The mean of estimators for one million samples was
0.34 and was within 0.002 of the estimand. Therefore, we believe our estimator is un-
biased under random sampling. Respondents in this study were not randomly sampled,
however. Our sampling process favored symptomatic people, who could be less likely to
travel, but the data show no evidence for difference in travel patterns based on symp-
tom status, as evidenced by Figure 2. This figure displays the location distribution of
contacts by symptom status and time of day based on the multiply imputed data set.
Standard errors were calculated by generating 500 nonparametric bootstrap resamples
of each imputed data set, pooling across the imputed data sets, and then calculating
the 2.5% and 97.5% quantiles for each location proportion (Schomaker and Heumann,
2018).
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Fig. 2. Location distribution of contacts by symptom status and time interval.

Note: This figure has been published in (Potter et al., 2019) and is reproduced with permission

of the authors.
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6. R code

library(dplyr)
library(xtable)

#Function to compute change in cumulative incidence
#due to treatment over some number of years
cumulInc <- function(Y, inf.time, years, cens){

Xt = solve(t (V) %xAY, t(Y))

if (length(unique(time)) < length(time)) time[cens==0] <- timel[cens==0] +
runif (length(time [cens==0]),0,1)

Xt = Xt[,inf.time<(years*365) & cens == 0]

At = matrix(apply(Xt, 1, sum), nrow = 1)

vcovmat = matrix(0, ncol = dim(Xt) [1], nrow = dim(Xt)[1])

for(v in 1:dim(Xt) [2]){

if (sum(is.na(Xt[,v]))==0)
vcovmat = vcovmat + Xt[,v]%x%t(Xt[,v])

}

return(list(coefs = At, vcovmat = vcovmat))

}

#Function to update model formula with covariate terms
#including const() wrapper for time-invariance
update_form_const <- function(X, formula){
if(is.null(dim(X))){
return(update.formula(formula, .~. + const(X)))
Yelse{
if (is.null (names(X))){
dimnames (X) [[2]] = pasteO("X", 1:dim(X)[2])
X = data.frame(X)
}
formTerms = terms(formula)
modelTerms <- c(attr(formTerms, "term.labels"), pasteO("const(", names(X), ")"))
return(reformulate(modelTerms, response = attr(formTerms, "variables")[[2]]))
}
}

## Function to fit additive hazards model
## returns results for randomized treatment effect
## and overall treatment effect.
fit_addHaz <- function(time, #time of event or censoring
cens, #indicator for censoring (1 = censored, 0 = event)
trt, #randomized treatment assignment
X = NULL, #matrix of additional covariates.
mix.pct, #percent of contacts to treated clusters
clust, #cluster membership

12



years, #follow-up time (in years)
max.time=NULL, # end of follow-up for analysis
plot.trt = TRUE){ #Boolean: plot time-varying coefs for treatment?

require(survival)
require(timereg)

# Resolve tied event times by adding draw from a uniform(0,1) distribution
event.times = time[which(cens==0)]

ties = which(time %inJ), event.times[duplicated(event.times)] & cens==0)

# If there are tied events on last day of follow-up, need to add 1 to censoring times
# on last day of follow-up
if (max (time)==max(time[ties]))

time [which(cens==1 & time==max(time))] = time[which(cens==1 & time==max(time))]+1

if (length(unique(event.times)) < length(event.times))
time[ties] = time[ties] + runif(length(time[ties]),0,1)

#set up survival data
surv.data = Surv(time, 1l-cens)

#get randomized treatment effect estimate and SE
if (is.null(X)){
form = surv.data ~ trt + cluster(clust)
Yelsed{
form = update_form_const(X, surv.data ~ trt + cluster(clust))

}

surv.fit = aalen(form, max.time=max.time, covariance=TRUE)

#get overall treatment effect estimate and SE
Z = mix.pct
if(is.null(X)){
form = surv.data ~ Z + cluster(clust)
Yelseq{
form = update_form_const(X, surv.data ~ Z + cluster(clust))

3

surv.fit.adj = aalen(form, max.time=max.time, covariance=TRUE)

if (plot.trt){
par(mfrow = c(1,2), mgp = c(2, 0.5, 0))
plot(surv.fit$cum[,1], surv.fit$cum[,3], type = "1", main = "Randomized Effect")
plot(surv.fit.adj$cum[,1], surv.fit.adj$cum[,3], type = "1", main = "Overall Effect")

¥
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#get change in cumulative incidence under randomized effect
id = which(time == max(time[time <= years*365]))

id = which (surv.fit$cum[,1]==max(surv.fit$cuml[,1])) [1]

cumIncTrt = surv.fit$cuml[id, 3]
sd_CIT = surv.fit$robvar.cum[id, 3]

#get change in cumulative incidence under overall effect
cumIncMix = surv.fit.adj$cum[id, 3]
sd_CIM = surv.fit.adj$robvar.cum[id, 3]

return(list(rand_fit = surv.fit,
overall _fit = surv.fit.adj,
cumIncTrt = cumIncTrt, sd_CIT
cumIncMix = cumIncMix, sd_CIM

sd_CIT,
sd_CIM))

3

# To get variance of incidence difference for covariates at values other than O
# x1 (and x2 if wanting different values for treated (x1) and control (x2))
# should be a vector of the same length as the covariates used in the model
incDiffX <- function(inc.res, x1, x2 = NULL){

if(is.null(x2)) x2 <- x1

sigma = inc.res$vcovmat
coefl = matrix(c(1,1,x1), nrow = 1)
coef2 = matrix(c(1,0,x2), nrow = 1)

sd_X <- sqrt(coeflyx¥sigmalx%t (coefl)+coef2¥*Ysigmal*’t (coef2))
return(sd_X)

est_ci = function (mod, digits=2){

est=mod$cumIncMix

se=sqrt (mod$sd_CIM)

cl_mix = est - 1.96%se

cu_mix = est + 1.96%se

ci_mix = paste("[",round(100*cl_mix,digits), ’, ’, round(100*cu_mix,digits), ’]°,
sep="")
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estr=mod$cumIncTrt

ser=sqrt (mod$sd_CIT)

cl_rand = estr - 1.96*ser

cu_rand = estr + 1.96%ser

ci_rand = paste("[",round(100*cl_rand,digits), ’, ’, round(100*cu_rand,digits), ’]’,
sep=’7)

return(c(round(100*est,digits), ci_mix, round(100%*estr,digits), ci_rand))

}

dat=read.csv(’analysis_dataset.csv’)

yl=dat %> filter(!is.na(tte_yearl))
set.seed(6)

mod=fit_addHaz(time=yl1$tte_yearl, #time of event or censoring
cens=1-yl1$infected_yearl, #indicator for censoring (
trt=factor(yl$treatmentl), # treatment assignment
X = NULL, #matrix of additional covariates.
mix.pct=y1$pctl, #percent of contacts to treated clusters
clust=y1$villagel, #cluster membership
years=1, #follow-up time (in years)
plot.trt = FALSE)

tab=matrix(nrow=4,ncol=4)
tab[1,] = est_ci(mod)

tab

## Model results, Year 1, excluding HIN1 2009 infections

ylseas=dat %>, filter(!is.na(tte_yearl_seasonal))

mod=fit_addHaz(time=ylseas$tte_yearl_seasonal,
cens=1-ylseas$infected_yearl_seasonal,
trt=factor(ylseas$treatmentl),
X = NULL,
mix.pct=ylseas$pctl,
clust=ylseas$villagel,
years=1,
plot.trt = FALSE)

tab[2,]=est_ci(mod)

15



## Model results, Year 2
y2=dat %>}, filter(!is.na(tte_year2))

mod=fit_addHaz (time=y2$tte_year2,
cens=1-y2$infected_year?2,
trt=factor(y2$treatment?2),
X = NULL,
mix.pct=y2$pct2,
clust=y2$village?2,
years=1,
plot.trt = FALSE)

tab[4,]=est_ci(mod)
## Model results, Year 2, censored before the strike:

BEGIN = as.Date("7/15/2010", "Ym/%d/%Y") # Beginning of follow-up for this year
strike.begin = as.Date("1/1/2011", "Ym/%d/%Y")
max.time = strike.begin - BEGIN

mod=fit_addHaz(time=y2$tte_year2,
cens=1-y2$infected_year2,
trt=factor(y2$treatment2),
X = NULL,
mix.pct=y2$pct2,
clust=y2$village2,
max.time=max.time,
years=1,
plot.trt = FALSE)

tab[3,]=est_ci(mod)

rownames (tab) = c("Year 1, all infections", "Year 1, excluding A/H1N1pdmO9",
"Year 2, censored", "Year 2, all")

colnames(tab) = c("Estimate", "95% C.I.", "Estimate", "95J% C.I.")
xtable(tab, rownames=FALSE)

tab
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7. Data Cleaning

Village of residence was recorded during quarterly censuses of the Niakhar population
by the Niahkar Demographic Surveillance System. Delaunay et al. (2002) If participants
moved during the trial, their departure date, arrival date, and village of their new resi-
dence were recorded. Those who moved a second time had their departure date (but not
residence after second move) recorded as well. The cleaning process for inconsistencies
in the recorded movement data is described below:

(a)

(b)

In 8 cases, the departure and arrival dates of the second move were earlier than
those of the first move. For these cases, the information for second and first moves
was swapped.

In 46 cases, the arrival date of the second move was earlier than the arrival and
departure dates of the first move, and the departure date of the second move was
missing. For these cases, the information for second and first moves was swapped.
After the swap, the (missing) departure date for the first move was imputed to be
the arrival date of the second.

In 13 cases where the departure date of the first move was missing, it was imputed
to be the arrival date of the second move.

In 83 cases where the arrival date of the second move was earlier than the departure
date of the first, the departure date of the first was recoded to equal the arrival
date of the second.

In 13 cases where the departure date of the first move was earlier than the arrival
date of the first move, and the arrival date of the second move was non-missing, the
departure date of the first move was recorded to be the arrival date of the second.

After these updates were made, there were 13 cases that did not have arrival and
departure dates in sequential order (i.e., arrival 1 < departure 1 < arrival 2 <
departure 2); these were excluded from analysis.

The movement data was recorded by storing the village, arrival date, and depar-
ture date, of the first “stay” and the second “stay”, as well as an overall “village”
variable. In over 99% of cases, the village variable matched that of the first stay.
However, there were 168 participants for whom the overall village variable differed
from that of the first stay. This is because movement data were recorded differ-
ently for this small subset of the data. For them “village” indicated the village of
residence prior to the first stay rather than the village of the first stay. As such,
these cases had up to three distinct residence stays recorded, which differs from
the rest of the data which only had up to two distinct stays recorded. These cases
were re-coded to be consistent with the rest of the data by transferring the village
information (which actually describes the first distinct stay) to the variables for the
first stay (so that village and village.stay.1 are consistent), transferring the infor-
mation recorded for the first stay (actually the second stay) to the variables for the
second, and removing information for the second (actually third) stay, as follows:
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(i) village.stay.1l was re-coded to village
(i) arrival.date.stay.l was re-coded to birth.date

)
)
(iii) departure.date.stay.l was re-coded to arrival.date.stay.1
(iv) village.stay.2 was re-coded to village.stay.1

)

(v) arrival.date.stay.2 was re-coded to the original arrival.date.stay.1 (the updated
departure.date.stay.1)

(vi) departure.date.stay.2 was re-coded to departure.date.stay.1
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