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Abstract

Background.—Global gains toward malaria elimination have been heterogeneous and have
recently stalled. Interventions targeting afebrile malaria infections may be needed to address

residual transmission. We studied the efficacy of repeated rounds of community-based mass

testing and treatment (MTaT) on malaria infection prevalence in western Kenya.

Methods.—Twenty clusters were randomly assigned to 3 rounds of MTaT per year for 2

years or control (standard of care for testing and treatment at public health facilities along

with government-sponsored mass long-lasting insecticidal net [LLIN] distributions). During
rounds, community health volunteers visited all households in intervention clusters and tested

all consenting individuals with a rapid diagnostic test. Those positive were treated with
dihydroartemisinin-piperaquine. Cross-sectional community infection prevalence surveys were
performed in both study arms at baseline and each year after 3 rounds of MTaT. The primary
outcome was the effect size of MTaT on parasite prevalence by microscopy between arms by year,
adjusted for age, reported LLIN use, enhanced vegetative index, and socioeconomic status.
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Results.—Demographic and behavioral characteristics, including LLIN usage, were similar
between arms at each survey. MTaT coverage across the 3 annual rounds ranged between 75.0%
and 77.5% in year 1, and between 81.9% and 94.3% in year 2. The adjusted effect size of MTaT
on the prevalence of parasitemia between arms was 0.93 (95% confidence interval [Cl1], .79-1.08)
and 0.92 (95% ClI, .76-1.10) after year 1 and year 2, respectively.

Conclusions.—MTaT performed 3 times per year over 2 years did not reduce malaria parasite
prevalence in this high-transmission area.

Clinical Trials Registration.—NCT02987270.
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From 2000 to 2015, Plasmodium falciparum infection prevalence halved and the incidence
of clinical malaria decreased by 40% in sub-Saharan Africa [1]. These gains have been
heterogeneous and in certain settings progress has stalled [2]. The population of individuals
with afebrile infections, which represents = 60% of all malaria infections in endemic
settings, may contribute substantially to ongoing transmission [3]. These individuals are
less likely to seek care at health facilities or to be treated through active fever screening
strategies, and may remain infected for prolonged periods, sustaining a human parasite
reservoir [3, 4].

Mass drug administration (MDA), where all members of a community are treated with an
antimalarial without testing, and mass testing and treatment (MTaT), where all community
members are first tested and those with positive test results are treated, are 2 strategies that
specifically target afebrile infections. MDA has been implemented or tested on different
scales and transmission settings for more than a century. In 1981, a nationwide MDA in
Nicaragua reduced £ falciparum incidence rates for up to 7 months [5]. In the Garki Project,
conducted in northern Nigeria between 1971 and 1975, indoor residual spraying combined
with high-frequency MDA (every 2 weeks during the wet season, and every 10 weeks during
the dry season) rapidly reduced £ falciparum prevalence from > 50% to < 1%, and it
remained below 5% for the duration of the intervention [6]. However, after withdrawal of
these interventions, and in the absence of sustained control measures, parasite prevalence
returned to baseline levels within 1 year [6]. Most MDA trials have corroborated these
findings of a large, rapid reduction in parasite prevalence with a return to baseline levels
within 6 months in the absence of robust malaria preventive services [7].

The availability of sensitive point-of-care rapid diagnostic tests (RDTs) and artemisinin-
based combination therapies with a prolonged posttreatment prophylaxis window initiated
interest in the evaluation of MTaT for rapid malaria reduction in a moderate- to high-
transmission area where sustained malaria control measures were in place. We conducted
a cluster randomized controlled trial (RCT) to evaluate the efficacy of MTaT on malaria
infection prevalence in an area of high malaria transmission.

Clin Infect Dis. Author manuscript; available in PMC 2022 June 01.
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The study was performed within the Kenya Medical Research Institute (KEMRI) and
Centers for Disease Control and Prevention (CDC) Health and Demographic Surveillance
System (HDSS) in Siaya County, Kenya [8, 9]. Malaria transmission is high and perennial
with peak prevalence during May—-July and November—December, following the long and
short rainy seasons, respectively. In July 2012, the population prevalence of malaria was
30.6% by microscopy, and 80.2% by 18S-nucleic acid sequence—based amplification [10]. In
2013, 55% of individuals with microscopically confirmed malaria infections reported being
afebrile in the preceding 2 weeks, and increased with age to > 90% [11].

Following the 2014 Ministry of Health’s long-lasting insecticidal net (LLIN) distribution,
54.4% of households had access (1 LLIN for every 2 household inhabitants) to LLINs

[12]; indoor residual spraying has never been conducted programmatically in this area.
Artemether-lumefantrine was scaled up as the first-line antimalarial in 2006 [13], and while
community case management of malaria was initially implemented in 2013 [14], in 2015,
only 3.6% of febrile children aged < 5 years who sought care did so from a community
health volunteer (CHV) [12].

Mass Testing and Treatment Design, Procedures, and Evaluation

A detailed description of the study procedures and methodology has been published [9].

In brief, 10 health facilities in the HDSS were purposively selected and adjacent villages
within 3 km of each facility were grouped into 3 clusters that were randomly assigned

to intervention, control, or future intervention. We decided not to implement a future
intervention and the third cluster was merged with the control cluster for a total of 10
clusters per arm (Figure 1). To reduce the impact of parasite migration on the analyses, only
individuals residing in compounds within a core area of each cluster, defined as = 300 m
from the cluster perimeter, were considered for sampling [15].

Six rounds of MTaT were performed in the intervention clusters between September 2013
and April 2015 (Supplementary Figure 1). The selection of the number and timing of
rounds was informed by a mathematical model [9]. During MTaT rounds, CHVs visited
every household in intervention clusters until they had tested each household member =

1 month of age by RDT (Carestart Malaria HRP-2/pLDH [Pf/PAN] Combo Test RDT,;
Somerset, New Jersey), or made 3 attempts to do so. RDTs were used for MTaT rounds

as point-of-care tests are needed for treatment decisions. This RDT was selected because

it was the RDT procured and distributed by the Kenya Ministry of Health for use in

public facilities and by CHVs at this time, received a positive recommendation by the
World Health Organization (WHO), and had a sensitivity of 95%-99% and 99%-100%
during WHO testing in samples with 200 parasites/uL and 2000 parasites/jL, respectively
[16]. Those positive by RDT were treated with dihydroartemisinin-piperaquine (Eurartesim,
Sigma-Tau, Pomezia, Italy; or Duo-Cotecxin, Holley-Cotec, China), selected due to its
prolonged posttreatment prophylaxis window, or according to the study algorithm [9]. Dried
blood spots were prepared on filter paper for future real time quantitative polymerase chain

Clin Infect Dis. Author manuscript; available in PMC 2022 June 01.
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reaction (QPCR). This manuscript describes the impact of MTaT on malaria prevalence; the
impact on malaria incidence is described elsewhere [17].

MTaT Rounds Data

Population coverage of MTaT, adherence to treatment, and in- and out-migration by round
have been published previously [17] and are presented in Supplementary Figure 2. In brief,
MTaT coverage was defined as follows:

Number of Individuals Tested in Round
(Individuals previously living in intervention cluster) + (Individuals migrated in since previous round) — (died + migrated out) X 100 %

Coverage ranged between 75.0% — 77.5% during year 1 rounds and increased to 81.9%—
94.3% in year 2. Test positivity rate across the 6 rounds ranged from 35.6% to 48.6%,

and self-reported adherence to treatment courses ranged from 91.5% to 95.4%. In- and
out-migration were measured in each household at each round and ranged between 25.1%
and 35.9%.

We estimated the number of infections missed by MTaT during rounds due to the limit of
detection (LoD) of RDTs (compared to gPCR) and incomplete intervention coverage using
previously published data [17]. The equations, assumptions, and results are presented in the
Supplementary Methods and Supplementary Table.

Ethical Considerations

Sample Size

The protocol was approved by the KEMRI institutional review board (IRB), the CDC IRB
relied on KEMRI for approval, and the Kenya Pharmacy and Poisons Board approved

the protocol and importation of Eurartesim. The trial was retrospectively registered at
ClinicalTrials.gov (NCT02987270). Written informed consent was obtained from adult
participants and parents/guardians of participating children. Additionally, written informed
assent was sought for children 13-17 years of age.

The sample size was calculated using Bennett and Hayes’s [18] formula for RCTs assuming
a malaria infection prevalence of 40% in the control arm, a type | error rate of 5%, and 80%
power to detect a relative difference in malaria prevalence of 50% between arms in the final
cross-sectional study. A coefficient of variation of 0.3 for between-cluster and compound
variance was used. We performed a simple random sample of compounds, sampling all
constituents. Assuming an average compound constituency of 4.5 individuals, we selected
20 compounds per cluster to attain our calculated sample size.

Cross-sectional Community Infection Prevalence Evaluation

Cross-sectional studies were performed annually at peak malaria transmission seasons in
July prior to the first round of MTaT in September 2013, and then 2 months after the
completion of the last of 3 MTaT rounds in years 1 and 2. CHVs visited the randomly
selected compounds from the core areas of each cluster, enrolled all residents = 1 month
of age, and administered a questionnaire to each participant or their caregiver. Excepting

Clin Infect Dis. Author manuscript; available in PMC 2022 June 01.
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children < 4 months of age, only data from individuals having lived in the study area for at
least 4 months (usual residents) were included in the analyses. Global Pasitioning System
geocoordinates were collected for each compound. CHVs collected a blood sample for RDT
to prepare a thick and thin blood smear for microscopy, and RDT-positive individuals were
treated according to an algorithm that incorporated age, pregnancy status, and history of
drug reaction [9].

Laboratory Procedures

Preparation and examination of blood smears are described in detail elsewhere [9]. In brief,
all blood smears were read by 2 microscopists who were blinded to study arm; discordant
reads were evaluated by a third blinded microscopist. The procedures for g°PCR x have been
described elsewhere [19].

Statistical Analysis

RESULTS

Prevalence estimates and 95% confidence intervals (Cls) accounting for clustering at

the level of the health facility were calculated using Taylor series linearization [20].
Socioeconomic status (SES) wealth quintiles were assigned using multiple correspondence
analysis models from data of household assets collected during cross-sectional surveys [21].
Values for enhanced vegetative index (eVI) were accessed for the 3 months preceding each
survey [22] using compound geocoordinates; values associated with the best model fit were
assigned to each observation.

The primary outcome was the all-ages effect size of MTaT on £ falcijparum infection
prevalence by microscopy from the cross-sectional studies between arms for each year with
the baseline serving as the reference. The effect sizes were calculated as adjusted ratio

of prevalence ratios (aRPRs) with 95% Cls of the exponentiated parameter estimates of

the interaction between study arm and year by a log-binomial model using generalized
estimating equations to account for clustering at the health facility level [23]. The aRPRs
represent a ratio in the change in prevalence from baseline for each of the 2 study arms. A
3-way interaction term between reported net use, study arm, and year was assessed for effect
modification. In the absence of evidence of this (P> .05), reported net use was included as
a variable in the model along with age (categorized as < 5 years, 5-14 years inclusive, and =
15 years), SES, and eV1 [24].

As a planned secondary analysis, we performed age-stratified analyses of the primary
outcome, and post hoc secondary analyses of clinical malaria prevalence, defined as
microscopically confirmed malaria in the presence of axillary fever = 37.5°C or history
of fever in the previous 2 weeks, and clinical malaria as a proportion of all with malaria
infection.

Two hundred compounds were randomly selected in each study arm at each of the 3 study
surveys. Compound enrollment ranged between 179 and 190 compounds (Figure 2); the
coefficient of variation was 0.154. The most common reasons for not enrolling were that the
compound was vacant, destroyed, could not be found, or no one was home after 3 visits.

Clin Infect Dis. Author manuscript; available in PMC 2022 June 01.
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Compound head refusals were < 3% in each round. A total of 1927 of 1954 (98.6%), 1912
of 2044 (93.5%), and 1748 of 1849 (94.5%) eligible individuals from selected compounds
were enrolled and provided data at each survey.

Population Characteristics by Survey and Study Arms

Demographic characteristics, reported history of fever and LLIN use, SES, and eV

were similar between arms at each round (Table 1). Sex and age structures of the

sampled population were similar to those of the overall HDSS population in 2012 [25].
Approximately 55% of the population was female, 15% were aged < 5 years, 33% were
aged 5-14 years, and 52% were aged = 15 years. Reported LLIN use increased significantly
in both arms in year 2 to 87.5% (95% Cl, 82.4%-92.6%) vs 87.0% (95% Cl, 82.1%-91.9%),
after the Ministry of Health sponsored mass LLIN distribution. Reported LLIN use was
lowest in those aged 5-14 years and highest in those aged = 15 years.

Malaria Microscopy Results

Parasite Prevalence—Parasite prevalence by microscopy did not significantly change

in the intervention or control arms across years (Table 2). Parasite prevalence in the
intervention and control arms, respectively, was 33.9% (95% CI, 28.0%-39.9%) vs 36.8%
(95% Cl, 32.0%—41.6%) at baseline; 31.8% (95% Cl, 25.8%-37.8%) vs 39.4% (95% Cl,
34.2%-44.5%) after year 1; and 29.8% (95% CI, 24.0%—-35.7%) vs 36.1% (95% CI, 30.2%—
41.9%) after year 2. Prevalence in the 5-14 year age group was consistently highest in each
arm and year, ranging from 42.8% to 55.6% and 57.4% to 61.2% in the intervention and
control arms, respectively.

Clinical Malaria—The proportion of individuals with clinical malaria did not significantly
change in either arm (Table 2). In the intervention arm, clinical malaria was 15.2% (95%

Cl, 11.1%-19.2%), 12.6% (95% Cl, 10.4%-14.8%), and 10.7% (95% ClI, 8.4%-13.0%) at
baseline, year 1, and year 2, respectively. In the control arm, the prevalence was 14.4% (95%
Cl, 11.9%-17.0%), 15.6% (95% Cl, 12.5%-18.6%), and 11.4% (95% CI, 8.8%-13.9%) at
baseline, and after years 1 and 2, respectively.

The crude proportion of individuals with clinical malaria among those infected did not
significantly change in either arm across years. In the intervention arm, the proportion was
45.0% (95% Cl, 34.9%-55.2%), 39.6% (95% Cl, 31.6%-47.7%), and 35.9% (95% ClI,
31.1%-40.6%) at baseline, and after years 1 and 2, respectively. In the control arm, the
proportion was 39.0% (95% Cl, 34.9%-43.0%), 39.5% (95% Cl, 34.5%-44.5%), and 31.5%
(95% Cl, 26.3%—36.7%) at baseline, and after years 1 and 2, respectively.

Effect Size of MTaT

The effect size of MTaT on the primary outcome of all-age malaria microscopy prevalence
was nonsignificant after year 1 (aRPR, 0.93 [95% CI, .79-1.1]) and year 2 (aRPR, 0.92
[95% CI, .76-1.1]) (Figure 3). Though the study was not powered for age-stratified
evaluations, there was a consistent, though not statistically significant, protective effect of
MTaT in the age group 5-14 years (0.85 [95% CI, .68-1.07] and 0.80 [95% Cl, .63-1.02]
after year 1 and year 2, respectively).

Clin Infect Dis. Author manuscript; available in PMC 2022 June 01.
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The effect size of MTaT on the prevalence of clinical malaria was not significant. There was
a significant reduction in the proportion of individuals with clinical malaria among those
infected with malaria between year 1 and baseline (0.81 [95% ClI, .66—.99]); however, there
was no effect after 2 years (Figure 3).

Missed Infections

The total number of individuals tested per round ranged between 23 226 and 26 342. We
estimated that 12.6%-19.6% and 5.7%-25.0% of the infections were missed due to the LoD
of RDTs as compared to qPCR among those tested and due to incomplete coverage by
round, respectively (Supplementary Methods and Supplementary Table). Combining these,
we estimate that 24.2%-36.9% of all of the infections were missed per round.

DISCUSSION

Despite high levels of community coverage and self-reported adherence to treatment,
MTaT did not significantly reduce malaria infection or clinical malaria prevalence over

2 years. Our results are consistent with recent findings from another high-transmission
area [26], and support the 2015 WHO Malaria Policy Advisory Committee position not

to recommend MTaT with the current LoD of RDTs [27]. Insufficient number of MTaT
rounds and suboptimal levels of malaria control interventions likely contributed to the lack
of efficacy. Additionally, it is possible that the stability of the artemisinin derivative in
dihydroartemisinin-piperaquine could have been compromised during MTaT rounds when
carried for days by CHVs [28]. However, we believe that missed infections during rounds
and parasite migration from nonintervention to intervention areas were the primary drivers.

Missed Infections

Missed infections are primarily due to the LoD of the diagnostic test used and incomplete
coverage during rounds [29]. We estimate that we missed a total of 24.2%-36.9% of all
circulating infections in each round; 12.6%-19.6% due to the LoD of RDTs, and 5.7%—
25.0% of all infections due to incomplete intervention coverage (Table 1). A minimal cutoff
of 80% coverage is suggested for effective rounds [7], which we did not achieve until year 2.
However, despite coverage ranging from 81.9% to 94.3% in year 2, there was no evidence of
increased efficacy; the aRPRs in year 1 and year 2 to baseline were 0.93 (95% Cl, .79-1.08)
and 0.92 (95% Cl, .76-1.10), respectively. MTaT with ultrasensitive RDTs, which were

not available at the time of this study, likely would have reduced the number of missed
infections. However, it may be that in areas with high parasite reproductive rates, higher
coverage levels with MDA, which in addition to treating all reached infections provides a
chemoprophylactic effect on all treated, may be necessary to effectively reduce transmission
[30].

Parasite Migration

We attempted to limit the impact of parasite migration on the analyses by selecting
compounds from cluster core areas. Epidemiological [31] and entomological [32] data
from our study area that indirectly demonstrated the mass effect of a community-based

Clin Infect Dis. Author manuscript; available in PMC 2022 June 01.
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intervention (LLINS) extended to approximately 300-m informed our choice of distance; this
distance may have been insufficient.

Additionally, modeling studies have concluded that parasite migration through human
mobility is an important factor toward the success of MDA [33]. We found that an average
of 31% of the population in our clusters migrated in or out between each round, a large
proportion of which likely carried parasites into intervention arms. Additionally, individuals
may have been exposed to infectious bites through daily commuting activities to a market,
place of work, or school outside the cluster of residence as increased vector biting has been
documented in this area in the early evening and late mornings when individuals are unlikely
to be under bednets [34-36]. These exposures were unmeasured in our study. Our cluster
size (3 villages in the intervention arms) and buffer area may not have been large enough to
minimize the impact from these events, and may partially explain the differing results from
our trial and one performed in a moderate- to high-transmission setting in Zambia, which
found a significant impact of a single year of 3 rounds of MTaT on the prevalence of malaria
in children < 5 years of age (adjusted odds ratio [aOR], 0.47 [95% CI, .24-.90]) [37]. There,
cluster sizes were much larger (2-3 health facility catchment areas), and rather than a 300-m
buffer zone, they had a 5-km buffer [37].

Clinical Malaria and Age-stratified Analyses

The effect size of MTaT on infection prevalence and clinical malaria did not change. These
findings were corroborated with those from the incidence cohort (incidence rate ratio [IRR],
0.95 [95% ClI, .87-1.04]) and from passive surveillance of clinical malaria at facilities (IRR,
0.79 [95% ClI, .61-1.02]) [17]. However, clinical malaria was transiently reduced after the
dry season (after rounds 2 and 5; IRR, 0.73 [95% ClI, .54-.98] and 0.66 [95% ClI, .49-.87],
respectively) [17], supporting the importance of timing of rounds in relation to malaria
seasonality. Additionally, after year 1 of MTaT, individuals with malaria infection were less
likely to report febrile events within the previous 2 weeks (aRPR, 0.81 [95% ClI, .66—-.99]).
While this may be interpreted as MTaT impacting the clinical presentation of malaria, it is
difficult to make any conclusions as this finding did not persist after year 1.

We did not power our trial to assess age-stratified effects of MTaT; however, there was a
consistent nonsignificant protective point estimate of MTaT (aRPR, 0.80 and 0.85) in the
5-14 age category after each year. This age category harbors the highest prevalence of
infection and is the least likely to have clinical malaria and thus seek care when infected,
and least likely to report LLIN use the previous night. While a trial of MTaT in Kenya
among school-aged children showed a nonsignificant reduction on malaria parasitemia after
12 months of follow-up (aOR, 0.76 [95% ClI, .46-1.11]), the authors suggest that this may
have been the result of the intervention only being carried out in 2 classes within the school
[38]. Our findings suggest that an active approach, rather than an intervention predicated
on consistent and repeated behavioral patterns by the end user (such as LLIN use), may be
effective in reducing malaria in this age category and could be trialed.

In summary, MTaT utilizing traditional RDTs performed 3 times per year for 2 years in an
area of high transmission was not efficacious in reducing the prevalence of malaria infection.

Clin Infect Dis. Author manuscript; available in PMC 2022 June 01.
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This is likely due to several factors including missed infections and the impact of human
movement on parasite migration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study site and clusters, including core areas. A, Study site in relation to Kenya. 5,

Health and Demographic Surveillance System (HDSS) in relation to western Kenya. C,
Clusters within HDSS, core areas within clusters, and study health facility location. Figure
reprinted from Samuels et al [9] (open access; https://creativecommons.org/licenses/by/4.0/);
no changes were made. Abbreviations: CDC, Centers for Disease Control and Prevention;
HDSS, Health and Demographic Surveillance System; KEMRI, Kenya Medical Research

Institute.
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Figure 2.
Compound and individual study enrollment by survey and arm.
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Figure 3.
Effect size of mass testing and treatment on blood smear prevalence, clinical malaria, and

clinical malaria as a proportion of malaria. *Sample size insufficient for < 5-year age

category. Abbreviations: Cl, 95% confidence interval; MTaT, mass testing and treatment; Yr,

year.
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