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Abstract

Aging across the Primate Order is poorly understood because ages of individuals are often 

unknown, there is a dearth of aged animals available for study, and because aging is best 

characterized by longitudinal studies which are difficult to carry out in long-lived species. The 

human population is aging rapidly, and advanced age is a primary risk factor for several chronic 

diseases and conditions that impact healthspan. As lifespan has increased, diseases and disorders 

of the central nervous system (CNS) have become more prevalent, and Alzheimer’s disease 

and related dementias have become epidemic. Non-human primate (NHP) models are key to 

understanding the aging primate CNS. This Special Issue presents a review of current knowledge 

about NHP CNS aging across the Primate Order. Similarities and differences to human aging, and 

their implications for the validity of NHP models of aging are considered. Topics include aging-

related brain structure and function, neuropathologies, cognitive performance, social behavior and 

social network characteristics, and physical, sensory, and motor function. Challenges to primate 

CNS aging research are discussed. Together, this collection of articles demonstrates the value 
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of studying aging in a breadth of NHP models to advance our understanding of human and 

nonhuman primate aging and healthspan.
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1 | INTRODUCTION

The human population is aging. By 2050, the United Nations Department of Economic and 

Social Affairs predicts that 1 in 6 people will be over the age of 65 (United Nations, 2019). 

Aging is accompanied by a suite of physiologic changes, not all of which are detrimental to 

health. However, advancing age represents a key risk factor for several chronic diseases and 

conditions, including neurodegenerative disorders such as Alzheimer’s disease (AD) (Hou 

et al, 2019). The purpose of this Special Issue is to present a review of current knowledge 

about nonhuman primate (NHP) aging, with a focus on the central nervous system (CNS), 

and to examine similarities and differences to human aging and their implications for the 

validity of NHP models of human aging. This Special Issue examines aging-related changes 

across the Primate Order, from prosimians to hominids, in multiple domains including 

cognitive performance, brain structure and function, neuropathologies, social behavior and 

social network characteristics, and physical, sensory, and motor function.

1.1 | Animal models

Animal models of human health are important for several reasons. Human studies enroll 

individuals that vary in many ways that can affect outcome variables, and many of 

these variables cannot be controlled or accounted for in statistical analyses. For example, 

differences in social status in humans are accompanied by disparities in education, health 

care, living conditions, access to food, clean water, and green spaces, all confounding 

factors that are known to affect a myriad of health outcomes. Long-term clinical trials also 

suffer from selection bias (Abdelnour et al, 2020) or cohort effects (Dodge et al, 2014), 

reducing the reproducibility of results. In contrast to human studies, captive animals can 

be housed under controlled conditions in which light/dark cycles, diet composition, water 

availability, physical and social characteristics of housing, and health care are uniform 

across all individuals in a study. Studies of free-ranging animals may provide opportunities 

to study age-related processes independent of the effects of modern sociocultural practices. 

Longer term human studies also rely largely on self-report of characteristics that may impact 

health outcomes such as diet, use of alcohol or other drugs, or exposure to psychological 

stressors. The accuracy of self-report of many of these variables has been shown to be 

poor. Such variables can either be excluded, controlled or accurately measured in animal 

studies. Further, many outcomes cannot be directly measured in humans for logistic or 

ethical reasons; in these cases, studies rely on indirect measures of biomarkers, which less 

accurately reflect experimental effects. For all of these reasons determination of causal 

relationships relies on animal models (Verdier et al, 2015).
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1.2 | Nonhuman primate models of aging

NHPs have played a critical role in medical science and health because of their close 

phylogenetic relatedness and similarity to humans in structure and function of multiple 

systems (Phillips et al., 2014). NHPs are useful models for investigations involving 

the reproductive system, bioenergetics, diet, obesity, diabetes, cardiovascular health, the 

musculoskeletal system, CNS structure and function, cognitive and social behavior, and 

diseases of aging. Studies on prospective (birth-to-death) NHP wild populations have 

provided unique opportunities to assess variables which drive maturation, rates of aging, 

and lifespan (Bjork et al., 2019; Campos et al., 2021; Sapolsky & Altmann, 1991; Snyder-

Mackler et al., 2020). NHPs also have been critical models to understand women’s health, 

in particular the role sex hormones in disease susceptibility and resistance (Shively & 

Clarkson, 2009). NHP research was instrumental in stemming the rate and impact of 

HIV infection (Friedman et al., 2017; Veazey & Lackner, 2017), and NHPs provided the 

foundation for the rapid development of severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) vaccines (Lu et al., 2020). The Office of Research Infrastructure Programs of 

the National Institutes of Health (ORIP, NIH) listed well over 150 coronavirus SARS-CoV-2 

studies and reviews using NHPs just 9 months after the COVID-19 epidemic was first 

identified (https://orip.nih.gov/Nonhuman-primate-models).

NHPs are particularly valuable to understanding human aging because they appear to age 

like humans (Verdier et al., 2015). Humans experience a relatively long, slow degradation 

of motor, sensory, and cognitive function and accumulate chronic diseases of aging such as 

sarcopenia, arthritis, hypertension, chronic kidney disease, diabetes, cardiovascular disease, 

and AD (Jaul & Barron, 2017). This is due in part to the aging of a population supported 

by good health care and nutrition (Chetty et al., 2016; Hao et al., 2020). However, with 

advancing age has come an increase in aging-related diseases. A primary goal of geroscience 

is to understand how aging enables diseases and use that knowledge to slow the rate and 

progression of disease and disability, thus extending the healthspan (Olshansky, 2018; Seals 

et al., 2016; Sierra, 2016). NHPs also experience aging-related declines in sensory, motor, 

and cognitive function, and social interaction (Verdier et al., 2015), accumulate many similar 

disabilities and diseases with age, and thus may be used to understand the basic biology of 

aging and how aging enables disease (Mattison & Vaughan, 2017).

This Special Issue explores aging in detail in seven NHP species. Table 1 presents 

approximate developmental time points and approximate lifespan parameters drawn from 

captive data for these NHP species, and these are graphically compared in Figure 1. Table 

1 also shows that all seven NHP species naturally develop neuropathology similar to two 

major types found in human neurodegenerative disorders: β-amyloid (Aβ) and tau-related 

pathologies. Likewise, Table 1 identifies the NHP species in which Aβ and tau-pathologies 

have been experimentally induced to manipulate and study disease progression, a valuable 

approach that is not possible in human participants. Freire-Cobo et al. (2021) in this issue 

provides a comprehensive review of age-related brain changes in NHPs and details on exact 

neuropathological findings, beyond the seven species summarized here.
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1.3 | Alzheimer’s disease

Neurocognitive decline, and AD and related dementias (ADRD) have become epidemic in 

the US and around the world causing a public health crisis. Ninety-five percent of cases are 

diagnosed after 65 years of age, and are referred to as late-onset AD. AD is the sixth leading 

cause of death, and the only one in the top 10 with no known treatment or cure (“2020 

Alzheimer’s Disease Facts and Figures,” 2020). AD also is one of the most expensive 

disease in the world, costing societies trillions of dollars in the forms of direct medical, 

social, and informal care (Wimo et al., 2017). In the US alone, over five million adults 

have AD, and that figure is expected to grow to 13.8 million by 2050 (“2020 Alzheimer’s 

Disease Facts and Figures,” 2020). Moreover, AD disproportionately affects women and 

people of color; two-thirds of cases are women, and Hispanics and African-Americans have 

1.5 and 2 times higher rates of AD than do the rest of the population, respectively (https://

www.cdc.gov/aging/aginginfo/pdfs/Module1-Alzheimers-Disease-Public-Health-Crisis.pdf).

Longitudinal studies of cognitive function, neuroimaging (positron emission tomography 

[PET] and magnetic resonance imaging [MRI], and cerebrospinal fluid (CSF) biomarkers 

have characterized a long preclinical phase of accumulating pathophysiology that precedes 

the onset of clinical AD symptoms by 1–2 decades (Sperling et al., 2011; Vermunt et 

al., 2019) (Figure 2). The course of disease is characterized by early (β-amyloid (Aβ) 

accumulation in the precuneus and other cortical regions, followed by neuroinflammation 

indicated by microglia and astrocyte activation (PET) (Jack et al., 2019); (Gordon et al., 

2016; Gordon et al., 2018). Cortical hypometabolism manifests after Aβ accumulation, 

indicating the onset of synaptic dysfunction (fluorodeoxyglucose PET) (Mosconi et al., 

2008). Synaptic dysfunction gives way to tau phosphorylation, detected via changes in the 

CSF (Karikari et al., 2020), neurofibrillary tangle tau pathology (PET), hippocampal atrophy 

(structural MRI), and finally cognitive impairment (Bateman et al., 2012; T. Fagan et al., 

2006; Gordon et al., 2016); (A. M. Fagan et al., 2007; A. M. Fagan et al., 2014; Gordon et 

al., 2018; Hanseeuw et al., 2019; Jack & Holtzman, 2013; Long & Holtzman, 2019; Morris 

et al., 2009; Vos et al., 2013).

The accumulation of Aβ results in extracellular amyloid plaque deposition which impairs 

intercellular communication (Hughes et al., 2020). Amyloid may also be deposited in the 

cerebrovasculature resulting in cerebral amyloid angiopathy (Greenberg et al., 2020). The 

ensuing vascular dysfunction reduces perivascular amyloid clearance, thereby promoting 

amyloid deposition in the brain (Greenberg et al., 2020). The lack of clearance of amyloid 

is thought to promote tau phosphorylation, and accumulation of these pathological tau 

proteins disrupts intracellular function, and results in intracellular neurofibrillary tangles 

that interrupt processes associated with intracellular transport (Long & Holtzman, 2019). 

Thus, the available data strongly support the central role of pathologic Aβ accumulation in 

mediating AD pathogenesis and that aggregated, hyperphosphorylated forms of tau may be a 

primary driver of neurodegeneration and cognitive decline (Hanseeuw et al., 2019; Long & 

Holtzman, 2019).

The earliest cognitive changes typically include impairments in learning, memory, attention, 

and executive function (Guarino et al., 2019, 2020; Kirova et al., 2015; McKhann et al., 

2011). Impairments in hearing, vision, olfaction, physical function, and sleep may precede 
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or accompany cognitive decline (Brzecka et al., 2018; Bubu et al., 2017; Chen et al., 

2016; Ju et al., 2013; Lim et al., 2013; Lloret et al., 2020; Murphy, 2019; Spira et al., 

2012, 2014; Vanderheyden et al., 2018). Importantly, heterogeneity is characteristic of 

the underlying neuropathology and clinical presentation. AD overlaps clinical presentation 

and neuropathology with a number of other dementias which together are considered 

ADRD (https://www.ninds.nih.gov/Current-Research/Focus-Disorders/Alzheimers-Related-

Dementias).

Given the long preclinical period and heterogeneous presentation of pathologies, and role(s) 

of comorbidities, the study of AD etiology faces considerable challenges. Moreover, by the 

time of diagnosis, neuropathology is extensive, defying intervention (Long & Holtzman, 

2019). While late-onset AD may have a heritable component (Gispert et al., 2017), risk 

factors amenable to modification have been identified and include many of the most 

common chronic diseases and disorders of aging mentioned above, as well as lifestyle 

factors (Askarova et al., 2020; Edwards et al., 2019). Notably, many of these are also 

cardiovascular risk factors including obesity, hypertension, diabetes, hypercholesterolemia, 

depression, psychological stress, social isolation, physical inactivity, and poor nutrition 

(Serrano-Pozo & Growdon, 2019).

1.4 | Aging-related neurocognitive decline and neuropathology in NHP models

NHPs have been valuable models for the study of most of these known risk factors for 

AD (Phillips et al., 2014). The current understanding of the basic biology of AD is 

largely dependent on rodent models, however, to date, the translation of novel therapeutics 

from rodent to humans has had little success (Drummond & Wisniewski, 2017). Rodents 

and humans diverged much earlier than humans and NHPs, and this may have led to 

fundamental differences in their aging processes (Messaoudi & Ingram, 2012). NHPs are 

particularly valuable to understanding aging effects on the CNS because of their long 

lifespan, and similarity to humans in the accrual of decrements in sensory, motor, social and 

cognitive function (Mattison & Vaughan, 2017). Unlike the rodent brain, many aging-related 

gene expression changes in the brain are conserved from NHPs to humans (Loerch et al., 

2008). Thus, NHPs may fill the gap between rodent models and humans (Verdier et al., 

2015).

Several NHP species develop aging-related neuropathologies that are reminiscent of 

preclinical and early changes observed in human AD (see (Bateman et al., 2012; Long & 

Holtzman, 2019; Sperling et al., 2011) for reviews). Table 1 summarizes naturally occurring 

age-related and induced neuropathologies of the species that are the focus of articles in this 

special issue, and a broader overview of NHP neuropathology is provided by Freire-Cobo et 

al. (2021). Taken together, these data demonstrate that several aging NHPs naturally display 

human AD-like amyloid plaques and aggregated hyperphosphorylated tau protein, but a 

relative lack of tangles.

1.4.1 | Induced models—The use of induced NHP models of AD complements studies 

of naturally occurring NHP models, thereby advancing our mechanistic understanding of 

the transitions from normal aging to AD. For example, induced cynomolgus macaque 
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(Macaca fascicularis) models, in which Aβ oligomers were injected directly into the 

brain, re-capitulated several signatures of human AD, including Aβ accumulation, tau 

hyperphosphorylation, microglial and astrocyte activation, cognitive impairment, and the 

formation of neurofibrillary tangles (Forny-Germano et al., 2014). Recent work in rhesus 

macaques (M. mulatto) supports these findings, showing that Aβ injection leads to dendritic 

spine loss reminiscent of normal aging, induces neuroinflammation, and increases AD 

biomarkers (Beckman et al., 2019b). Induced models of tau propagation (Beckman et al., 

2021) may be critically important given that NHPs do not appear to develop the extensive 

neurofibrillary tangles due to tauopathies characteristic of human AD. Taken together with 

the ongoing work in naturally occurring NHP models of aging and NHPs, studies using 

induced models will support the development of therapeutic interventions to slow or even 

reverse AD progression.

1.5 | Current limitations of NHP models of aging and AD

There is a need to better understand CNS aging and factors that influence it across the 

primate Order. The following limit the understanding of aging in NHPs: (1) Currently, the 

field lacks critical data regarding the physiologic changes that accompany normal aging for 

many species of NHPs. These data are necessary to distinguish healthy from pathologic 

aging phenotypes. (2) There is limited availability of aged animals. Relatively long lifespans 

(compared to rodents) as well as the costs associated with maintaining aged populations of 

NHPs in captivity are primary factors contributing to the low availability of age-appropriate 

subjects (NIH, 2018). In addition, high demands for a particular species (e.g., rhesus 

monkeys for vaccine testing, marmosets for neuroscience studies), and lack of commercially 

available resources severely restrict the numbers of animals available for aging studies 

(Servick, 2018). Within the populations of NHPs that are available for study, the sex ratios 

of older-aged animals often are skewed. This situation arises because husbandry practices 

may aim to recapitulate the normal social structures of wild animals, in which there is a 

low male: female ratio. Thus, the availability of older-aged male monkeys is limited for 

many species of interest to aging and AD. Finally, due to the NIH chimpanzee breeding 

moratorium, retirement of NIH-owned animals to sanctuaries, and restrictions on the type of 

research that can be conducted, the population of chimpanzees available for aging research 

has been drastically reduced (Collins, 2015). (3) It is difficult to establish stable long-term 

funding for long-lived animals. While efforts to increase the availability of aged NHPs are 

currently underway (e.g., “Brain Initiative” NIH), many funding mechanisms are less than 

five years, and multiple successful renewals are necessary to reach natural end of life. As 

such, ongoing longitudinal studies of NHP aging may end prematurely due to financial 

constraints. These challenges emphasize the need for increased support for long-term studies 

of aging NHP cohorts.

1.6 | Contributions of the articles in this Special Issue

Within the comparative perspective of this Special Issue, the authors have addressed 

various aspects of the aging phenotype in well-characterized and emerging NHP models, 

ranging from prosimians to hominids, including: gray mouse lemurs (Chaudron et al. 2021), 

common marmosets (Rothwell et al., 2021), vervet/African green monkeys (Frye et al, 

2021), three macaque species: rhesus (Arnsten et al, 2021; Beckman & Morrison, 2021; 

Shively et al. Page 6

Am J Primatol. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Upright & Baxter, 2021), cynomolgus (Darusman et al, 2021), and Barbary (Rathke & 

Fischer, 2021); and chimpanzees (Mulholland et al, 2021). Four main themes emerge from 

this collection.

One theme highlights the diversity of NHP models suitable for aging research. The review 

by Chaudron et al. (2021) provides a detailed description of the aging phenotype in a 

well-characterized prosimian, the gray mouse lemur. The authors review the cognitive and 

psychomotor changes that develop with age in this species and summarize age-related 

cerebral, metabolic and cellular alterations that correlate with cognitive decline. They also 

discuss the effectiveness of nutritional interventions such as caloric restriction and diet 

supplementation in affecting aging trajectories in this species. Similarly, Frye et al. (2021) 

provide a comprehensive characterization of the aging phenotype in vervet/African green 

monkeys. Their review emphasizes the many similarities between humans and vervets in 

age-related decline in cognitive, physical, metabolic, and cerebral function. Rothwell et al. 

(2021) comment on the crucial importance of longitudinal assessments for understanding 

neurocognitive aging and discuss the value of the common marmoset, an NHP with a 

relatively short lifespan, to assess age-related change in cognition, behavior, and brain 

function. They point out that the heterogeneity of cognitive profiles identified in aging 

marmosets provides an opportunity to capture trajectories of healthy versus pathological 

aging and to identify predictors of cognitive decline. While the papers above highlight the 

advantages and limitations of NHP models of natural AD pathology, Beckman & Morrison 

(2021) underline the usefulness of an induced model of early AD, based on cerebral 

injection of Aβ soluble oligomers. Their paper summarizes the suite of neural alterations 

observed in Aβ-treated female rhesus monkeys and argue for the development of this model 

for a better understanding of sex-specific manifestations of AD.

The second theme of this volume addresses one aspect of aging that has received little 

attention until recently, social aging. Rathke & Fischer (2021) use social network analysis to 

assess age-related differences in social activity in semi-free barbary macaques. Interestingly, 

age-related reductions in social effort were found, and social aging was independent of sex. 

This work provides much needed comparative insights into patterns typifying social aging in 

both male and female primates.

The third theme highlighted in the Special Issue is brain aging and AD neuropathology. 

Based on cytoarchitectonie and structural similarities between the human and macaque 

prefrontal cortex, Upright & Baxter (2021) emphasize the value of cross-species 

comparisons and review the prefrontal-dependent cognitive changes observed in healthy 

aging in the rhesus monkey. Also focusing on healthy aging, Mulholland et al. (2021) 

illustrate how neuroimaging and cognitive data can be used in concert to characterize 

neurocognitive aging. Using Volumetric Based Morphometry in chimpanzees who were 

cognitively characterized, they show that successful agers have greater gray matter volume 

in many brain regions compared to apes who underperform for their age, and that 

these differences concern regions that typically decline with age. Frye et al. (2021) also 

provide evidence that vervet monkeys recapitulate many of the features of early AD 

pathophysiology. Finally, the review by Freire-Cobo et al. (2021) offers a much-needed 
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inventory of the age-related cellular changes that occur with normal and pathological aging 

across primate species.

The last theme of this volume focuses on potential mechanisms for age-related cognitive 

decline. Focusing on molecular mechanisms, Darusman et al. (2021) use qPCR to examine 

the expression of 6 APP-pathway related genes in blood samples from cognitively 

impaired versus unimpaired cynomolgus macaques. One gene (GAPDPH) involved in 

amyloidogenesis was upregulated in cognitively impaired monkeys versus control monkeys 

and correlated with the magnitude of cognitive impairment, providing a potential target 

for treatment. Based on extensive data collected in rhesus monkeys and other primate 

comparisons, Arnsten et al. (2021) propose that dysregulation of calcium signaling due to 

aging or inflammation is a key factor in initiating tau pathology. Framing this hypothesis in 

an evolutionary framework, the authors argue that the expansion of association cortices in 

the course of primate evolution led to an increase in synapses critical to calcium signaling, 

making the brain of humans and closely related species more vulnerable to calcium toxicity 

and tau pathology. This compelling hypothesis may lead to identifying key cortical circuits 

for early intervention.

2 | CONCLUSION

This Special Issue provides a comprehensive description of phenotypes that accompany 

aging in several species of NHPs that are valuable models for advancing our understanding 

of human aging. In addition to providing important comparative insights across the Primate 

Order, this body of work delivers important translational lessons about aging trajectories 

that may culminate in chronic diseases, including neurodegenerative disorders, such as 

Alzheimer’s disease. Characterizing these patterns of aging in primates will promote 

understanding of the degree to which aging is malleable and identification of interventions 

that extend healthspan.
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FIGURE 1. 
Comparison of major developmental time points and approximate lifespan in species 

discussed in this Special Issue, drawn from captive NHP data. Definitions: (1) Maturity. 

Age of known sexual maturity or first successful conception; (2) Adulthood. Span between 

maturity and end of lifespan; (3) Assumed Elderly. Ages used to categorize old-age; (4) 

Menopause. Age at cessation of menstrual cycling for females; (5) Typical Lifespan. Typical 

age at death for captive individuals in this species, drawn from life expectancy and mean or 

median lifespan values; (6) Maximum Lifespan. Oldest documented age for an individual of 

this species. Reference values are drawn from Table 1. Vervet: aka African green monkey
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FIGURE 2. 
Hypothetical model of accumulating late-onset Alzheimer’s disease (AD) pathophysiology, 

including Aβ deposition, synaptic dysfunction, tauopathy-associated neuronal injury, 

volumetric reductions, and cognitive and functional declines. Dashed lines indicate that 

synaptic dysfunction may be detectable before Aβ accumulation in carriers of the ε4 allele 

of the apolipoprotein E. Figure is reprinted with permission from Sperling et al., 2011
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