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Summary

Seasonal influenza infects between 10 and 50 million people in the United States
every year. Accurate forecasts of influenza and influenza-like illness (ILI) have been
named by the CDC as an important tool to fight the damaging effects of these epi-
demics. Multi-model ensembles make accurate forecasts of seasonal influenza, but
current operational ensemble forecasts are static: they require an abundance of past
ILI data and assign fixed weights to component models at the beginning of a season,
but do not update weights as new data on component model performance is collected.
We propose an adaptive ensemble that (i) does not initially need data to combine
forecasts and (ii) finds optimal weights which are updated week-by-week throughout
the influenza season. We take a regularized likelihood approach and investigate this
regularizer’s ability to impact adaptive ensemble performance. After finding an opti-
mal regularization value, we compare our adaptive ensemble to an equal-weighted
and static ensemble. Applied to forecasts of short-term ILI incidence at the regional
and national level, our adaptive model outperforms an equal-weighted ensemble and
has similar performance to the static ensemble using only a fraction of the data avail-
able to the static ensemble. Needing no data at the beginning of an epidemic, an
adaptive ensemble can quickly train and forecast an outbreak, providing a practical
tool to public health officials looking for a forecast to conform to unique features of
a specific season.
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1 COMPUTING Q(�) AND Q(Z) FOR THE DEGENERATE VARIATIONAL MIXTURE
MODEL (DEVI-MM)

The functional forms for q(Z) and q(�) are computed. Readers interested in more details, and theoretical background, should
consult1,2,3,4. In particular,2 gives a brief introduction to variational inference focused on the applied statistician, while3,4 provide
more theoretical details. The most detailed material can be found in1.
We find the q(Z) and q(�) that maximize the lower bound (q) by taking advantage of our factored q and using iterated

expectations.

(q) = E�,Z {log [p(, Z, �)] − log[q(�)] − log[q(Z)]} (1)
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Maximizing q(�), we can take the iterated expectation

max
q(�)

(q) =max
q(�)

E�|ZEZ {log [p(, Z, �)] − log[q(�)] − log[q(Z)]}

= max
q(�)

E�|Z
{

EZ log [p(, Z, �)] − log[q(�)]
}

= min
q(�)

KL
{

log q(�)||EZ log [p(, Z, �)]
}

The Kullback-Leibler divergence, taking values from 0 to∞, is minimized when

log q(�) = EZ log [p(, Z, �)]

or when
q(�) ∝ exp

{

EZ log [p(, Z, �)]
}

.
Maximizing Z follows a similar pattern. The optimal hidden distributions of q(�) and q(Z) can then be computed

q(�) ∝ exp
{

EZ log [p(D,Z, �)]
}

q(Z) ∝ exp
{

E� log [p(D,Z, �)]
}

.

We first compute q(�), expanding the complete loglikelihood, taking the expectation overZ, and recognizing this expectation
as a specific distribution. Here we don’t explicitly describe �’s dependence on t for convenience.

log q(�) ∝ EZ log [p(D,Z, �)]

=
T
∑

t=1

M
∑

m=1
E [z(m, t)] log

[

�mfm(yt)
]

+
M
∑

m=1
[�(t) − 1] log(�m) − log {� [�(t)]}

=
T
∑

t=1

M
∑

m=1
E [z(m, t)] log

(

�m
)

+
M
∑

m=1
[�(t) − 1] log

(

�m
)

=
M
∑

m=1
log

(

�m
)

{

�(t) +
T
∑

t=1
E [z(m, t)] − 1

}

=
M
∑

m=1
log

(

�m
)

{

�(t) +
T
∑

t=1
r(m, t) − 1

}

,

where � is the normalizing constant for the Dirichlet distribution and r(m, t) the expected value of the indicator variable zm,t, the
probability model m generated the ILI value at time t. Studying the form of log q(�),we recognize � is Dirichlet distributed

q(�) ∼ Dir ()

 [m] = �(t) +
T
∑

t=1
r(m, t)

The same procedure can also be applied to compute q(Z):

log q(Z) ∝ E� log [p(D,Z, �)]

=
T
∑

t=1

M
∑

m=1
z(m, t)

{

E� log
(

�m
)

+ log
[

fm(yt)
]}

+

E�

M
∑

m=1
[�(t) − 1] log(�m) − log [�(�)]

∝
T
∑

t=1

M
∑

m=1
z(m, t)

{

E� log
[

�m
]

+ log
[

fm(yt)
]}

q(Zt,m) ∝ exp
{

E� log
(

�m
)

+ log
[

fm(yt)
]}

, (2)
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and we recognize q(Zt,m) is Bernoulli distributed, and with the additional constraint that all indicators must sum to one for every
time period (t), we see Zt is multinomial for every t.

q(Zt,m) ∼ Bern [r(m, t)] (3)

r(m, t) =
exp

{

E� log
(

�m
)

+ log
[

fm(yt)
]}

∑M
m=1 exp

{

E� log
(

�m
)

+ log
[

fm(yt)
]}
. (4)

Although burdensome upfront, this approximate procedure drastically reduces computational time, compared to more intense
monte carlo sampling techniques, and gives a good approximate answer, only assumingZ and � independent from one another.
Also note this mixture model algorithm (both EM and VI), unlike a typical Gaussian mixture model, cannot manipulate the
paramters control the component model distributions. But this inability to access the component model parameters opens up
greater opportunities for other forecasters to submit models, requiring every forecast model to supply just 1, 2 ,3 , and 4 week
ahead forecasts.

2 COMPUTING E[log(�)]

Variational inference over hidden variables (Z, �) requires computing the expected value of the log of �’s, a natural consequence
of adapting the Dirichlet distribution to exponential form. Exponential form rewrites a probability distribution in the form

p [�|�(�)] = ℎ(�)e
∑

k �k(�)Tk(�)−c(�). (5)

where c(�) is a normalizing constant. Two facts about exponential form lead to an analytic formula for E(log�): taking the
gradient of c(�) and relating the set of sufficient statistics T (�) with this expectation. Starting with the first fact. If c(�) is a
normalizing constant, then it must equal

c(�) = log
(

∫ ℎ(�)e�
′ (�)T (�) d�

)

, (6)

and it’s gradient must equal

∇� [c(�)] = ∫ Tk(�)
ℎ(�)e�

′ (�)T (�)

∫ ℎ(�)e�′ (�)T (�)
d� (7)

= ∫ T (�)p(�) = E[T (�)]. (8)

A powerful consequence of exponential form, the gradient of the normalizing constant equals the expected value of the
distribution’s sufficient statistics. The Second fact. Working with the log likelihood of a distribution in exponential form,

log

[ N
∏

n=1
p(�|�)

]

= N logℎ(�) +N
∑

k
�k(�k)Tk(�) −Nc(�), (9)

taking the gradient and setting equal to 0,

∇� log

[ N
∏

n=1
p(�|�)

]

=
∑

T (�n) −N∇c(�) = 0 (10)

∇c(�) = E [T (�)] = 1
N
T (�). (11)

The expected value of the distribution’s sufficient statistics are equal to the gradient of c(�). If the Dirichlet’s sufficient statistics
take the form log(�), then we only need to take the gradient of the normalizing constant to find an analytic expression.
Looking at the Dirichlet distribution, the loglikelihood equals

log
[

∏

p(�n|�)
]

= N log Γ

(

∑

�
�k

)

−N
∑

k
log Γ

(

�k
)

+N
∑

k
(�k − 1) log(�k) (12)
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the sufficient statistics for �k take the form log
(

�k
)

. Taking the gradient then will provide an analytic expression for computing
the log�’s expected value.

∇� log
[

∏

p(�n|�)
]

= N 

(

∑

�
�k

)

−N
∑

k
 
(

�k
)

+N log(�k), (13)

where  is the digamma function. Then the expected value of log (�) equals a difference of digamma functions

E
[

�k
]

=  
(

�k
)

−  

(

∑

�
�k

)

. (14)

This formula can be used to compute the responsibility function (see Algorithm 2 step 7).

3 CONVEXITY ANALYSIS

The problem of finding an optimal set of mixture weights can be recast as a constrained optimization problem. Attempting to
optimize a convex function over a convex set will prove a global optima exists, and showing strict convexity will prove the a
unique vector obtains this optimum.
The original problem searches for weights that maximize a loglikelihood whose sum is constrained to equal one,

max
T
∑

t=1
log

[ M
∑

m=1
�mfm(yt)

]

(15)

subject to
M
∑

m=1
�m = 1,

and can be converted to a Langragian with a single constraint (�)

(�, �) =
T
∑

t=1
log

[ M
∑

m=1
�mfm(yt)

]

+ �

( M
∑

m=1
�m − 1

)

.

Knowing the solution � needs to lie in theM dimensional simplex, a convex set, we only need to show the above function (15)
is convex. Given (15) is differentiable at least twice, we will appeal to a second-order condition for convexity—proving the
Hessian is positive semidefinite. After proving the Hessian is positive semidefinite, going further and showing the Hessian is in
fact positive definite will prove a unique vector � is a the global optimum of our objective function (15).
First, we compute the mth element of the gradient for (15),

∇�mf (�) =
T
∑

t=1

fm(ii)
∑M
m=1 �mfm(yt)

.

Then the (m, n) entry of the Hessian is

H(m, n) = −
T
∑

t=1

fm(yt)fn(yt)
[

∑M
m=1 �mfm(yt)

]2
.

TheHessian is always negative, and if weminimized the negative loglikelihood (instead ofmaximizing the positive logelikihood)
would see the Hessian is a positive semidefinite matrix. But we can prove more by rewritingH

H = F ′F ,

where the [m, t] element
F [m, t] =

fm(yt)
∑M
m=1 �mfm(yt)

.

Positive definite matrices can always be written as a transposed matrix times the matrix itself, and so H must also be positive
definite. Our convex optimization problem must then have a global optimum, attained by a unique vector �. The inability to
change forecasting models is a limitation, but allows us to guarantee a global optima. When the component model parameters
can also be updated, no such guarantee exists.
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4 SIMPLEX PLOTS OF ALL SEASONS

Regularizing the adaptive ensemble suppresses large swings in weight assignment, independent of season. The adaptiveover
ensemble stays closer to equal weighting throughout the season compared to the adaptiveopt and adaptivenon ensembles. If
one exists, there is no strong relationship between the adaptive and static ensemble weighting. Some seasons (2014/2015 and
2016/2017) show higher variability in weight assignment than others. The optimal weight assignments given data from all
previous seasons (Static MLE) does not carry forward to the optimal weight assignment for the adaptive ensemble at the end of
the current season.
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FIGURE 1 Component model weights for an adaptive ensemble with 0% (non), 8% (opt), and 20% (over) priors plotted over
epidemic week and stratified by season. Equal weighting is represented by a pentagon and the Static ensemble weights repre-
sented by an X. All ensembles start at an equal weighted triple of the 1st and 2nd highest weighted component model, and the
sum of the remaining components at the end the season (�(1)t ,�2t ,

∑M
j=3 �

(j)
t ), and move from week to week as new data is received

and the adaptive ensemble re-estimates component model weight assignments.
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5 TABULATED COMPARISONS OF ADAPTIVE, STATIC, AND EQUAL LOG SCORES

The adaptiveopt ensemble consistently outperforms the EW ensemble, and performs similarly to the static ensemble. When
compared to the EW model, the adaptive cannot show statistical significance in the 2012/2013 season, but all differences are in
the positive direction, favoring the adaptive model. The adaptive and static comparisons are more even. Some season, regions,
and targets favor the static ensemble, others the adaptive model, but absolute differences are small. Despite markedly less data,
the adaptive ensemble bests the EW ensemble and shows similar performance to the static.

Adaptiveopt - EW Adaptiveopt - Static
� (95CI) p ppermutation � (95CI) p ppermutation

Season
2011/2012 0.13 (0.08, 0.19) <0.01 < 0.01 0.02 (-0.04, 0.08) 0.51 0.58
2012/2013 0.06 (0.00, 0.12) 0.04 0.21 0.02 (-0.04, 0.08) 0.48 0.52
2013/2014 0.10 (0.04, 0.15) <0.01 0.04 0.00 (-0.06, 0.06) 0.96 0.97
2014/2015 0.14 (0.09, 0.20) <0.01 < 0.01 0.03 (-0.03, 0.09) 0.30 0.36
2015/2016 0.13 (0.07, 0.18) <0.01 0.01 -0.02 (-0.08, 0.04) 0.54 1.00
2016/2017 0.11 (0.06, 0.17) <0.01 0.01 -0.04 (-0.10, 0.02) 0.20 1.00
2017/2018 0.21 (0.15, 0.26) <0.01 0.00 -0.01 (-0.06, 0.05) 0.86 1.00

Region
HHS1 0.16 (0.11, 0.22) <0.01 < 0.01 0.01 (-0.05, 0.07) 0.80 0.83
HHS2 0.11 (0.06, 0.17) <0.01 < 0.01 -0.01 (-0.07, 0.06) 0.85 1.00
HHS3 0.13 (0.08, 0.18) <0.01 < 0.01 0.04 (-0.03, 0.10) 0.28 0.41
HHS4 0.12 (0.07, 0.17) <0.01 < 0.01 -0.01 (-0.08, 0.05) 0.68 1.00
HHS5 0.13 (0.07, 0.18) <0.01 < 0.01 -0.05 (-0.11, 0.01) 0.12 1.00
HHS6 0.12 (0.07, 0.18) <0.01 0.001 -0.04 (-0.11, 0.02) 0.17 1.00
HHS7 0.13 (0.08, 0.18) <0.01 < 0.01 0.05 (-0.01, 0.12) 0.09 0.20
HHS8 0.14 (0.09, 0.20) <0.01 < 0.01 0.00 (-0.06, 0.06) 0.99 1.00
HHS9 0.08 (0.02, 0.13) <0.01 0.01 0.02 (-0.04, 0.08) 0.55 0.60
HHS10 0.12 (0.07, 0.17) <0.01 < 0.01 -0.04 (-0.11, 0.02) 0.19 1.00
Nat 0.13 (0.07, 0.18) <0.01 < 0.01 0.06 (-0.01, 0.12) 0.08 0.17

Target
1 week ahead 0.16 (0.11, 0.22) <0.01 < 0.01 0.06 (0.00, 0.11) 0.07 0.18
2 week ahead 0.13 (0.08, 0.19) <0.01 < 0.01 -0.01 (-0.07, 0.05) 0.81 1.00
3 week ahead 0.11 (0.06, 0.17) <0.01 < 0.01 -0.01 (-0.07, 0.05) 0.67 1.00
4 week ahead 0.09 (0.03, 0.14) <0.01 0.02 -0.03 (-0.09, 0.03) 0.35 1.00

TABLE 1 Random effects regressions compared log scores between the adaptiveopt vs equally-weighted and adaptiveopt vs
static ensembles. The model included an intercept, and separate random effect for: season, region, and target. The dependent
variables is the difference in log scores paired by season-region-target-epidemic week. Conditional mean, 95%CI, asymptotic,
and a permutation based p-value are reported.
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Adaptivenon - EW Adaptivenon - Static
� (95CI) p ppermutation � (95CI) p ppermutation

Season
2011/2012 0.09 ( 0.00, 0.18) 0.04 0.16 -0.02 (-0.11, 0.06) 0.63 1.00
2012/2013 0.00 (-0.09, 0.09) 0.95 1.00 -0.05 (-0.13, 0.04) 0.28 1.00
2013/2014 0.04 (-0.13, 0.05) 0.35 1.00 -0.12 (-0.21, -0.04) <0.01 1.00
2014/2015 0.12 ( 0.03, 0.21) 0.01 0.06 0.01 (-0.07, 0.10) 0.79 0.82
2015/2016 0.06 (-0.03, 0.15) 0.20 0.37 -0.09 (-0.17, 0.00) 0.04 1.00
2016/2017 0.09 ( 0.00, 0.17) 0.06 0.18 -0.06 (-0.14, 0.03) 0.18 1.00
2017/2018 0.10 ( 0.01, 0.19) 0.03 0.14 -0.10 (-0.18, -0.01) 0.02 1.00

Region
HHS1 0.15 ( 0.05, 0.24) <0.01 0.02 -0.01 (-0.10, 0.08) 0.89 1.00
HHS2 0.06 (-0.03, 0.16) 0.18 0.32 -0.06 (-0.15, 0.04) 0.24 1.00
HHS3 0.10 ( 0.00, 0.19) 0.04 0.14 0.00 (-0.09, 0.09) 1.00 1.00
HHS4 0.09 ( 0.00, 0.18) 0.06 0.15 -0.04 (-0.13, 0.05) 0.36 1.00
HHS5 0.03 (-0.07, 0.12) 0.57 0.70 -0.15 (-0.24, -0.06) <0.01 1.00
HHS6 0.00 (-0.09, 0.09) 0.99 1.00 -0.13 (-0.22, -0.04) <0.01 1.00
HHS7 0.07 (-0.02, 0.17) 0.13 0.27 0.00 (-0.10, 0.09) 0.92 1.00
HHS8 0.11 ( 0.01, 0.20) 0.02 0.11 -0.03 (-0.13, 0.06) 0.46 1.00
HHS9 0.07 (-0.16, 0.03) 0.16 1.00 -0.13 (-0.22, -0.04) 0.01 1.00
HHS10 0.05 (-0.04, 0.14) 0.30 0.42 -0.11 (-0.20, -0.02) 0.02 1.00
Nat 0.06 (-0.03, 0.16) 0.18 0.30 -0.01 (-0.10, 0.08) 0.89 1.00

Target
1 week ahead 0.09 ( 0.01, 0.16) 0.03 0.04 -0.02 (-0.09, 0.06) 0.70 1.00
2 week ahead 0.06 (-0.02, 0.14) 0.13 0.15 -0.07 (-0.15, 0.00) 0.06 1.00
3 week ahead 0.06 (-0.02, 0.14) 0.14 0.15 -0.06 (-0.14, 0.01) 0.11 1.00
4 week ahead 0.03 (-0.05, 0.11) 0.42 0.44 -0.09 (-0.17, -0.01) 0.03 1.00

TABLE 2 Random effects regressions compared log scores between the adaptivenon vs equally-weighted and adaptivenon vs
static ensembles. The model included an intercept, and separate random effect for: season, region, and target. The dependent
variables is the difference in log scores paired by season-region-target-epidemic week. Conditional mean, 95%CI, asymptotic,
and a permutation based p-value are reported.
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Adaptiveover - EW Adaptiveover - Static
� (95CI) p ppermutation � (95CI) p ppermutation

Season
2011/2012 0.11 (0.06, 0.16) <0.01 0.01 0.00 (-0.05, 0.06) 0.94 0.95
2012/2013 0.06 (0.01, 0.10) 0.03 0.23 0.02 (-0.04, 0.07) 0.54 0.62
2013/2014 0.07 (0.02, 0.12) 0.01 0.12 0.01 (-0.07, 0.04) 0.62 1.00
2014/2015 0.12 (0.08, 0.17) <0.01 0.01 0.01 (-0.04, 0.07) 0.62 0.72
2015/2016 0.11 (0.06, 0.16) <0.01 0.02 0.04 (-0.09, 0.02) 0.18 1.00
2016/2017 0.07 (0.03, 0.12) <0.01 0.12 0.06 (-0.12, -0.01) 0.02 1.00
2017/2018 0.18 (0.14, 0.23) <0.01 0.00 0.03 (-0.08, 0.03) 0.35 1.00

Region
HHS1 0.13 (0.09, 0.18) <0.01 0.00 -0.02 (-0.08, 0.04) 0.45 1.00
HHS2 0.10 (0.05, 0.15) <0.01 0.00 -0.02 (-0.08, 0.04) 0.57 1.00
HHS3 0.11 (0.06, 0.15) <0.01 0.00 0.01 (-0.05, 0.07) 0.69 0.78
HHS4 0.10 (0.06, 0.15) <0.01 0.00 -0.03 (-0.09, 0.03) 0.29 1.00
HHS5 0.11 (0.07, 0.16) <0.01 0.00 -0.06 (-0.12, 0.00) 0.04 1.00
HHS6 0.07 (0.03, 0.12) <0.01 0.00 -0.06 (-0.12, 0.00) 0.06 1.00
HHS7 0.11 (0.07, 0.16) <0.01 0.00 0.04 (-0.02, 0.10) 0.22 0.40
HHS8 0.12 (0.07, 0.16) <0.01 0.00 -0.03 (-0.09, 0.03) 0.38 1.00
HHS9 0.08 (0.03, 0.12) <0.01 0.01 0.02 (-0.04, 0.08) 0.54 0.66
HHS10 0.10 (0.06, 0.15) <0.01 0.00 -0.06 (-0.12, 0.00) 0.05 1.00
Nat 0.11 (0.06, 0.15) <0.01 0.00 0.04 (-0.02, 0.10) 0.22 0.36

Target
1 week ahead 0.13 (0.08, 0.18) <0.01 0.00 0.03 (-0.03, 0.08) 0.33 0.43
2 week ahead 0.11 (0.06, 0.16) <0.01 0.00 -0.03 (-0.08, 0.03) 0.35 1.00
3 week ahead 0.10 (0.05, 0.14) <0.01 0.00 -0.03 (-0.08, 0.03) 0.33 1.00
4 week ahead 0.08 (0.03, 0.12) <0.01 0.01 -0.04 (-0.09, 0.02) 0.19 1.00

TABLE 3 Random effects regressions compared log scores between the adaptiveover vs equally-weighted and adaptiveover vs
static ensembles. The model included an intercept, and separate random effect for: season, region, and target. The dependent
variables is the difference in log scores paired by season-region-target-epidemic week. Conditional mean, 95%CI, asymptotic,
and a permutation based p-value are reported.
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6 REGULARIZATION IMPROVES STATIC ENSEMBLE

Regularizing ensemble weights improves both adaptive and static ensemble performance (Fig. 2). The static ensemble achieves
peak performance with a smaller prior than the adaptive. This smaller prior reflects that the static model is trained on data from
past seasons of finalized ILI data. The adaptive model, finding peak performance for a larger prior, needs to account for the lack
of training data and the revision-prone state of the data mid-season.
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FIGURE 2 The average log score for the equally-weighted ensemble, and adaptive, static ensembles for prior from 0% to 100%
by 1%. The log score is averaged over season, region, and target. The highest average log score corresponds to a larger prior
than the static ensemble. But both the static and adaptive ensemble benefit from regularization.
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7 SUPPLEMENTARY FIGURE

0 20 40 60 80 100
Prior percent (%)

-3.20

-3.10

-3.00

-2.90

-2.80

-2.70

Av
er

ag
e 

lo
g 

sc
or

e

A.

0.00 0.05 0.10 0.15
Prior with highest log score by season

Ga
us

sia
n 

ke
rn

al
 d

en
sit

y 
of

 p
rio

r

B.

FIGURE 3 (A.) The adaptive ensemble is fit for prior percentages from 0% to 100% by 1% and the average log score is computed,
and stratified by seasons 2010/2011-2017/2018. (B.) the distribution of priors corresponding to the highest log score per season.
(A.) Each seasons shows a similar trend in adaptive ensemble log score using different prior percentages. Priors close to 0%
produce small log scores, a peak log score occurs near a prior of 8%, and then log scores decrease with larger priors. (B.) The
25th and 75th percentile of priors corresponding to peak log scores are 6% and 8.25%. The smallest prior equals 3% and largest
equals 12%. The large probability near a prior percentage of 8%, across influenza seasons, suggests an optimal weighting may
lie near 8%, was not specific to the 2010/2011 season analysis, and could work well as a prior for future seasons.
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FIGURE 4 (A.) The final influenza-like illness (blue line) and all revised influenza-like illness values (blue dots) by epidemic
week for the 2017/2018 season. (B.) The relative difference between the final influenza-like illness and revised influenza-like
illness by the number of weeks after the first reported influenza-like illness value. Revised values show the largest differences
close to the peak final influenza-like illness. The relative difference is highest in the first few weeks after an influenza-like illness
value is reported. After 10 weeks the revised influenza-like illness is likely within 1% of the final value. This is one factor that
may contribute to difficulty assessing true component model performance throughout the influnza season.
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